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SPOT—A Toolbox
for Visionary Ideas

Thomas Bartz-Beielstein

Abstract

We present SPOT, an open-source toolbox 
for the experimental analysis of optimiza-
tion algorithms. Evolution strategies (ES) 
have been severely criticized before they 
started their triumphal procession as opti-
mization algorithms. Schwefel discussed 
ideas which appeared to be provocative at 
the first sight. SPOT provides a modern 
framework to test these ideas. The extreme 
programming methodology was used to im-
plement the toolbox. Schwefel’s idea that 
forgetting is as important as learning, which 
laid the cornerstone for comma-strategies 
in ES, is analyzed.

1. Introduction

Schwefel proposed innovative ideas that 
have “been laughed at“ first. For example, 
Beyer and Schwefel (2002) wrote: “Had the
�ȝ���-ES already been laughed at because 
it makes use not only of the so far best in-
dividual to produce an offspring, but also of 
WKH� VHFRQG� EHVW�� HYHQ� WKH� ZRUVW� RXW� RI� ȝ�
parents, ...”

However, many of these ideas belong to 
the standard repertoire of modern optimiza-
tion practitioners. We present a framework 
to test new ideas and to derive interesting 
conclusions: SPOT (sequential parameter 
optimization toolbox), a toolbox for testing 
new ideas in simulation and optimization.

Extreme programming is presented as a 
valuable tool for testing stochastic algo-
rithms. As an example, Schwefel’s idea that 
survival of the best ancestor is not always a 
good advice is analyzed. SPOT was able to 

reproduce results from Schwefel’s original 
experiments.

2. The Sequential Parameter Optimiza-
tion Toolbox

SPOT has been developed as a toolbox for 
the experimental analysis of algorithms. It 
consists of three modules:

1. optimization

2. prediction

3. report and analysis

Each module is extensible and can be used 
separately. Interfaces are kept as simple as 
possible.

The optimization module contains an im-
plementation of an evolution strategy as 
presented in Beyer and Schwefel (2002). 
Optimization algorithms require the specifi-
cation of exogenous strategy parameters, 
e.g. population size in ES, before they can 
be started. One parameter setting is con-
sidered as a design point. The prediction 
module generates design points that might 
improve the algorithm’s performance. It us-
es the sequential parameter optimization 
(SPO) framework (Bartz-Beielstein 2006), 
which combines classical and modern sta-
tistical techniques such as DOE (design of 
experiments) and DACE (design and anal-
ysis of computer experiments). The third 
module is a collection of report generators 
and visualization routines for the analysis of 
the results.

Before we discuss the applicability of SPOT 
to analyze new ideas in simulation and op-
timization, the implementation of the ES in 
the optimization module is presented.
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3. Extreme Programming

Because ES are stochastic search algo-
rithms, it is difficult to test their correctness. 
Extreme programming (XP) tools have 
been proven to be valuable for our imple-
mentation. In contrast to waterfall-
development approaches, XP demands 
tests should be automated and performed 
continuously. Code does not consist of sol-
id blocks, it is in a liquid state: it can be re-
factored or even completely thrown away 
and rewritten. “Everything flows, nothing 
stands still” (Fig.2).

Figure 2: Heraclitus, Detail of Rafaello Santi's "The 
School of Athens" (1510), Vatican collection, Rome.
For Heraclitus everything is "in flux", as exemplified 
in his famous aphorism “Everything flows, nothing 
stands still". Fb78, Wikimedia Commons, lizenziert 
unter CreativeCommons-Lizenz by-sa-2.0-de,URL: 
http://creativecommons.org/licenses/by-
sa/2.0/de/legalcode

XP comprehends four basic techniques: 
Coding, testing, listening, and designing 
(Beck 1999). Features of the software do
not exist until they are verified and validat-

ed by tests. We take a glance at testing, 
because it is a key practice in XP.

Each part of the program is isolated in XP. 
The goal of the so-called unit testing is to 
show that these individual parts are correct. 
Unit tests are pieces of source code written 
by a programmer to test a small and clearly 
specified part of software (Hunt and Thom-
as 2003). Assertions indicate that the 
source code behaves as expected. The fol-
lowing assertion assertTrue tests wheth-
er the condition is true. Figure 3 presents a 
simple example in JAVA. If the condition is 
not fulfilled (Fig. 4), a program terminates. 

public void assertTrue (boolean cond){
if (!cond){

abort();
}

}

Figure 3: A simple assertion. The program is aborted
if the test fails

The concepts discussed so far consider de-
terministic computer programs—evolution 
strategies are by definition stochastic 
search algorithms. The deterministic behav-
iour of the test in Fig. 4 can only be guaran-
teed if the value 2 is assigned deterministi-
cally to the variable a. The test would pro-
duce nonsense if a is a random variable.

int a=2;
xxxx xxxx
xxx xxxx
assertTrue(a == 2);
xxx xxxxxx xx
xxxxxxxxxx x

Figure 4: This program terminates if the test fails

Randomness is a fundamental concept for 
evolution strategies. Randomness compli-
cates testing, because the arguments for 
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the assertions are not deterministic, their 
results are not predictable. However, re-
sults are certain if the random stream 
seeds are set deterministically. One can go 
even one step further: replace ES-functions 
(methods) with deterministic functions. This 
concept is referred to as “de-randomization” 
in the following. De-randomization here is 
loosely related to techniques in complexity 
theory, but not to the de-randomized step-
size adaptation in ES. De-randomization 
generates mock objects from random ob-
jects. Mock objects have dummy behaviour, 
they replace domain objects. In JAVA, 
Mock objects implement an interface (Fig. 
5).

public interface IMutation {
public Individual mutate(Individual 

x);
}

Figure 5: Mock objects implement an interface. They 
are used in our example to imitate the behaviour of 
mutation operators

To give an example, we consider the muta-
tion operator in ES. The real mutation op-
erator is implemented as shown in Fig. 6, 
whereas the mock implementation is shown 
in Fig. 7. The code can be tested if the ES-
mutation operator is initialized with a Mock-
Mutation object. The real code uses the 
Mutation operator.

public class Mutation implements IMuta-
tion{
public Individual mutate(Individual x){
//the real mutation which uses 
// randomness
xxxxxxxxxxx…
xxxx
xxxxxxxx
}
}

Figure 6: The real mutation operator can be imple-
mented without any modification. It does not “see” 
the mock routines

Further ES operators, e.g., recombination 
or selection, can be implemented and test-
ed in a similar manner. The reader is re-
ferred to the SPOT documentation for de-
tails. To show that SPOT can be applied to 
analyze new ideas, we now investigate one 
idea from "Natural Evolution and Collective 
Optimum-Seeking".

public class MockMutation implements
IMutation{

private Individual b;

public void setMutationRsult(Individual
x) {

// method to control the deterministic

// behavior during the test

b=a;

}

public Individual mutate(Individual x){
// the mock mutation which produces
// deterministic results
return b;
}

}

Figure 7: The mock mutation operator returns deter-
ministic results

4. Forgetting and Learning: Schwefel’s 
Results

The idea "forgetting is as important as 
learning" (Schwefel 1992) sounds provoca-
tive at the first sight. Why should we skip 
available information in decision making? Is 
there any context where forgetting is bene-
ficial?

Schwefel wrote: " 'Survival of the fittest', of-
ten taken as Darwin's view, turns out to be 
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a bad advice. Forgetting, i.e. individual 
death, and even regression show up to be 
necessary ingredients of the life game." 

He described the (1+1)-ES as a represen-
tation of Darwin's 'survival of the fittest' se-
lection principle (Schwefel 1992):

"According to a given selection criterion, a 
descendant is rejected if its vitality is less 
than that of its ancestor, the ancestor oth-
erwise. This scheme may be called a (1+1) 
or a two-membered evolution strategy [...], 
resembling the "struggle for life" between 
one ancestor and one descendent."

The (1+1)-scheme can be extended to 
���Ȝ��� �ȝ����� RU� HYHQ� �ȝ�Ȝ�� VHOHFWLRQ�
schemes—all these plus schemes use the 
survival of the best. Schwefel introduced 
the so-called comma-VWUDWHJLHV�� WKH� �ȝ�Ȝ��
versions: parents are no longer included in 
the selection. This ES version requires a 
birth-surplus. Note, that information con-
cerning the best found position so far (ob-
ject parameters) is forgotten. However, in-
formation concerning “good” internal mod-
els (strategy parameters) are inherited. 
Formulated as a hypothesis, Schwefel's 
idea reads:

(H) Survival of the best ancestor is not al-
ways a good advice.

Schwefel used the following experimental 
setup (experimental design in the jargon of 
statistics) to test (H): An (1,10)-ES is com-
pared to an (1+10)-ES on the 30-
dimensional sphere function f1 = �xi

2. The 
progress rate was measured as log¥(F0/Fg), 
where F0 denotes the start value, and Fg
the current value at generation g. Schwefel 
demonstrated that the (1,10)-ES performs 
better than the (1+10)-ES (Fig.8).

He explained this behaviour as follows 
(Schwefel 1987):

“If an ancestor happens to arrive at a supe-
rior position, this might be - by chance - in 

spite of a non-optimum step size, or a step 
size which is not suitable for further genera-
WLRQV��7KH����Ȝ��VFKHPH�SUHVHUYHV� Whe un-
suitable step size as long as with it a further 
success is placed. This leads to periods of 
stagnation. Within a (1,Ȝ) ES the good posi-
tion, occasionally won with an unsuitable 
step size, is lost, together with the latter, 
during the next generation. This short term 
regression, however, enhances the long 
term velocity of the whole process by a 
stronger selection with respect to the suita-
ble step size (strategy parameter). In other 
words: Forgetting is as important as learn-
ing, the former must be seen as a neces-
sary integral part of the latter. One might in-
terpret the fact of an inherent finite life time 
of living beings (preprogrammed maximum 
number of cell divisions) as an appropriate 
measure of nature to overcome the difficul-
ties of undeserved success - or, in a chang-
ing environment, of forgetting outdated 
`knowledge'.”

Figure 8: Self learning of one common mutation step 
size for the sphere function f1. a) (1+10) evolution 
strategy, b) (1,10) evolution strategy. Higher pro-
gress [rate] values are better (Schwefel 1987).
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5. Forgetting and Learning: SPOT Re-
sults

We repeated Schwefel’s experiments with 
SPOT. The results from the previous sec-
tion could be reproduced (Fig. 9).

Although Schwefel did not specify the exact 
experimental design, i.e., starting points, in-
itial step sizes, and other exogenous strat-
egy parameters, his results are reproduci-
ble—at least qualitatively. The curves de-
picted in Figs. 8 and 9 look similar even 
though the exogenous parameters were 
varied.

Figure 9: Self learning of one common mutation step 
size for the sphere function f1. a) (1+10) evolution 
strategy, b) (1,10) evolution strategy. Higher pro-
gress rate values are better. This figure was gener-
ated with SPOT, whereas Fig. 8 is the original figure 
presented in Schwefel (1987)

6. Summary

We have introduced SPOT, a toolbox for 
the experimental analysis of algorithms, to 
discuss briefly one visionary idea, Schwe-
fel‘s “forgetting is as important as learning” 
principle. SPOT provides a set of modern 
software tools to test randomized search 
algorithms and to confront visionary ideas 
with reality.

SPOT can be used to test further visionary 
ideas, e.g. the idea that “many wrongs do 
make a right” which is related to recombina-
tion. Schwefel (1992) comments: “If more 
than one, i.e. not only the best of the de-
scendants, become parents of the next 
generation and recombination by sexual 
propagation takes place, i.e. mixing of the 
information gathered by different individuals 
during the course of evolution, then 
over-adaptation and consecutive stagnation 
can be overcome. Now the convergence 
rate steeply goes up with the population 
size.” SPOT enables interested readers to 
perform related experiments.

Schwefel propagated many other ideas, 
some of them have been “re-invented” sev-
eral decades later, e.g. random search, 
asynchronous parallelism, self-adaptation, 
varying population sizes, meta-strategies, 
the importance of robustness (effectivity), 
ageing concepts, neighbourhood models, 
prey-predator models,   The reader is re-
ferred to Schwefel’s articles, many of them 
are freely available on the internet.

The SPOT software and the results dis-
cussed in this article are available for other 
researchers to test the huge potential of 
evolution strategies.

We close with an anecdote: One of Schwe-
fel’s friends, a researcher who enjoys an 
excellent reputation, stayed as a guest in 
Dortmund. Inspired by studies in Schwefel’s 
famous library he improved his own optimi-
zation algorithm. After the first day had 
passed, he proudly presented his improved 
algorithm: it used a modified selection op-
erator that worked in a similar manner as 
selection in ES. On the next day, his algo-
rithm even worked better, because he mod-
ified a second operator in an ES-like man-
ner. On the third day, he reported that tak-
ing over the real-valued representation from 
ES resulted in a significant improvement.
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This went on until the end of the week. Fi-
nally, he confessed: “Hans-Paul, my algo-
rithm works much better now—but it looks 
like your ES.”
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