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Abstract. Evolutionary computation (EC) is a relatively new discipline
in computer science (Eiben & Smith, 2003). It tackles hard real-world
optimization problems, e.g., problems from chemical engineering, airfoil
optimization, or bioinformatics, where classical methods from mathe-
matical optimization fail. Many theoretical results in this field are too
abstract, they do not match with reality. To develop problem specific
algorithms, experimentation is necessary. During the first phase of ex-
perimental research in EC (before 1980), which can be characterized as
“foundation and development,” the comparison of di↵erent algorithms
was mostly based on mean values, nearly no further statistics have been
used. In the second phase, where EC “moved to mainstream” (1980-
2000), classical statistical methods were introduced. There is a strong
need to compare EC algorithms to mathematical optimization (main
stream) methods. Adequate statistical tools for EC are developed in the
third phase (since 2000). They should be able to cope with problems like
small sample sizes, nonnormal distributions, noisy results, etc.
However—even if these tools are under development—they do not bridge
the gap between the statistical significance of an experimental result and
its scientific meaning. Based on Mayo’s learning model (NPT ⇤) we will
propose some ideas how to bridge this gap (Mayo, 1983, 1996). We will
present plots of the observed significance level and discuss the sequential

parameter optimization (SPO) approach. SPO is a heuristic, but imple-
mentable approach, which provides a framework for a sound statistical
methodology in EC (Bartz-Beielstein, 2006).

1 Introduction

1.1 Experimental Research in Evolutionary Computation

One of the major goals in EC is to demonstrate that an algorithm, A, out-
performs a related algorithm, B. Researchers suppose that A and B behave
di↵erently, because one algorithm has features the other lacks, e.g., an improved
variation operator. Experimental hypotheses have implicitly the form “factor X
produces result Y .” However, many experiments in EC do not test these hypothe-
ses directly. A common way presenting results and drawing conclusions is to run
algorithms A and B on a given set of problem instances and to compare their
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results. These kind of experiments can be classified as observation experiments,
because experimenters use default factor settings that are not varied. Observa-
tion experiments were predominating during the first two phases of experimental
research in EC (until 2000). Enhanced experimental techniques, so-called manip-
ulation experiments, vary several factors: experimenters demonstrate a relation
between X and Y . Systematic approaches based on analysis of variance or regres-
sion techniques became popular in the last years. However—even if statistical
tools for manipulating experiments are under development—they do not bridge
the gap between the statistical significance of an experimental result and its
scientific meaning.

Based on a standard situation in experimental research we propose a method-
ology to analyze the relationship between statistical significance and scientific
import. Common to all observation and manipulation experiments is the need
to compare two algorithms, a task that can be modeled in the framework of hy-
pothesis testing. To test the hypothesis that algorithm A is better than B, first
assume that they perform equally, i.e., there is no di↵erence in means. Therefore
we are facing a standard situation from statistics, the comparison of samples
from two populations. Computer experiments can be designed, e.g., common
random numbers (CRN) can be used. If the same number of runs with similar
random seeds are performed, paired t-tests can be used to analyze the results.
The reader is referred to Law & Kelton (2000) for a discussion of CRN and
related variance-reducing techniques.

1.2 Paired t-tests

The following standard test situation will be discussed in the remainder of this
article. The jth paired di↵erence
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is the sample standard deviation of the di↵erences. Let

✓ = µ
1

� µ
2

denote the di↵erence in means. The null hypothesis H : µ
1

= µ
2

, or equivalently
H : ✓ = 0, would be not accepted if t

0

> t
↵,n�1

. The paired t-test can be advan-
tageous compared to the two-sample t-test due to its noise reduction properties.
The reader is referred to the discussion in Montgomery (2001).
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1.3 The New Experimentalism

In the following, we will introduce methods from the new experimentalism into
evolutionary computation. The new experimentalism is an influential trend in
recent philosophy of science that provides statistical methods to set up experi-
ments, to test algorithms, and to learn from the resulting errors and successes.
The new experimentalists are seeking a relatively secure basis for science, not
in theory or observation but in experiment. To get the apparatus working for
simulation studies is an active task. Sometimes the recognition of an oddity
leads to new knowledge. Important representatives of the new experimentalism
are Hacking (1983), Galison (1987), Gooding et al. (1989), Mayo (1996), and
Franklin (2003). Deborah Mayo, whose work is in the epistemology of science
and the philosophy of statistical inference, proposes a detailed way in which sci-
entific claims are validated by experiment. A scientific claim can only be said to
be supported by experiment if it passes a severe test. A claim would be unlikely
to pass a severe test if it were false. Mayo developed methods to set up experi-
ments that enable the experimenter, who has a detailed knowledge of the e↵ects
at work, to learn from error. Our presentation is based on Mayo (1983).

Severity is introduced in Section 2. Plots of the observed significance level
are introduced as tools to derive metastatistical rules to test whether statistical
significant results are scientifically relevant. Section 3 summarizes the sequential
parameter optimization which defines a standard framework for experimental
research in evolutionary computation.

2 Severity

The major goal introduced in Sec. 1.1 can be formulated in the context of Mayo’s
objective theory of statistical testing . To stay consistent with Mayo’s seminal text,
we assume a known standard deviation � in the first part of this study and use
the same notation as in Mayo (1983). Some quantity X is normally distributed,
i.e., X ⇠ N (✓, �2). The goal is to test whether the value of ✓ equals some value
✓
0

or some greater value. Then the null (H) and the alternative hypothesis (J)
read:

H : ✓ = ✓
0

vs. J : ✓ > ✓
0

(2)

The experimental test statistic S is the average of the n random variables X
i

,
i = 1, . . . , n:

Test Statistic S =
1
n

nX

i=1

X
i

= X. (3)

Under the assumption that the null is true, the experimental distribution of X
is N (✓

0

,�/
p

n).Let ↵ denote the significance level of the test. If ↵ is specified,
the critical value d

↵

can be determined, so that

P (X � �
0

+ d
↵

�
x

;H)  ↵ (4)
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The corresponding critical values for ↵ = 0.01, 0.02, and 0.05 are d
↵

= 2.3,
d

↵

= 2, and d
↵

= 1.6, respectively. The test rule (RU), represented by T+,
maps X into the critical region when X is significantly far from the hypothesized
average ✓

0

, i.e.,

Test Rule T+: Reject H : ✓ = ✓
0

i↵ X � ✓
0

+ d
↵

�
x

(5)

The areas under the normal curve given by the distribution of X under H
illustrates the relationship between ↵ and the distances of X from ✓

0

. Similar
to Mayo (1983), we present an example of an application of test T+. It will be
discussed in the context of EC.

2.1 An Example From Evolutionary Computation

The flocking behavior of swarms and fish shoals was the main inspiration which
led to the development of particle swarm optimization algorithms (Kennedy &
Eberhart, 1995). Particle swarm optimization algorithms belong to the class of
stochastic, population-based optimization algorithms. They exploit a popula-
tion of individuals to probe the search space. In this context, the population
is called a swarm and the individuals are called particles. Each particle moves
with an adaptable velocity within the search space, and it retains in a mem-
ory the best position it has ever visited. Particle swarm optimization has been
applied to numerous simulation and optimization problems in science and engi-
neering (Kennedy & Eberhart, 2001; Parsopoulos & Vrahatis, 2002, 2004).
Example 1 (Particle swarm size). Analyzing a particle swarm optimization
algorithm (PSO), we are interested in testing whether or not the swarm size has
a significant influence on the performance of the algorithm. A minimization task,
the 10-dimensional Rosenbrock function was chosen as a test function (Rosen-
brock, 1960). Based on the parameterization in Shi & Eberhart (1999), the swarm
sizes were set to 20 and 40. The corresponding settings will be referred to as
run PSO(20) and PSO(40), respectively. The question is whether the increased
swarm size improves the performance of the particle swarm optimization. Our
inquiry can be formulated as the scientific claim
Scientific Claim 1 (C). Increasing the swarm size from 20 to 40 particles im-
proves the algorithm’s performance.
As in Shi & Eberhart (1999), a random sample is drawn from each of the two
populations. The average performance y

1

of n = 50 runs of PSO(20) is 108.02,
whereas the average performance y

2

of n = 50 runs of PSO(40) is 56.29. The
same number of function evaluations was used in both settings. The number of
runs n is referred to as the sample size, and y denotes the sample mean. ⇤
A typical problem in this situation can be described as follows: The di↵erence
of the function values from the samples of the particle swarm optimizer may be
observed to have an average performance X that is larger than 0 even though
the increased swarm size does not have the positive e↵ect. Mayo (1983) states:
“As such, the need for statistical considerations arises.” We present the situation
from EC in the context of Mayo’s models of statistical testing, see Fig. 1.
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Scientific inquiry or problem

How to generate and analyze 
empirical observations and 
to evaluate scientific claims

Model of

hypotheses

Model of ex-

perimental test

Model of

data

Statistical inquiry: Testing hypotheses

(1) (2) (3)

Fig. 1. Models of statistical testing. Mayo (1983) develops a framework that permits
a delinearization of the complex steps from raw data to scientific hypotheses. Primary
questions arise when a substantive scientific question is broken down into several lo-
cal hypotheses. Experimental models link primary questions based on the model of
hypotheses to questions about the actual experiment. Data models describe how raw
data are transformed before. Not the raw data, but these modeled data are passed
to the experimental models. Mayo (1983) describes three major metastatistical tasks:
“(1) relating the statistical hypotheses [. . .] and the results of testing them to scientific
claims; (2) specifying the components of experimental test [. . .]; and, (3) ascertaining
whether the assumptions of a model for the data of the experimental test are met by
the empirical observations [. . .]”

(A) Statistical Hypothesis. We will assume that the standard deviation is known,
in our example � = 160, see Bartz-Beielstein (2006). If C is wrong, the
distribution of X among particle swarm optimizers with an increased swarm
size would not di↵er from particle swarm optimizers with 20 particles only.
If C is true, and the increased swarm size does have a positive e↵ect, ✓ will
be larger than 0. These observations correspond to the following statistical
hypotheses:

H : ✓ = 0 vs. J : ✓ > 0. (6)

(B) Experimental Test. The vector y
i

= (y
i1

, . . . , y
in

) represents n observations
from the ith configuration, and y

i

denotes the ith sample mean, i = 1, 2. The
experimental test statistic is T = Y

12

= Y
1

�Y
2

, and its distribution under
H is N (0, 2�2/n). The upper ↵ percentage point of the normal distribution
is denoted as z

↵

, for example, z
0.05

= 1.64, or z
0.01

= 2.33. As the number
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of observations was set to n = 50, it follows that the value of the standard
error is �

x

= �
y1�y2

= 160
p

2/50 = 32. The significance level of the test
was ↵ = 0.01, thus z

↵

= z
0.01

= 2.33. So the test rule RU is

T : Reject H : ✓ = 0 if T = Y
1

� Y
2

� 0 + z
↵

· �
x

.

(C) Sample data. The average performance y
1

of n = 50 runs of PSO(20) is
108.02, whereas the average performance y

2

of n = 50 runs of PSO(40) is
56.29. The di↵erence x = y

1

� y
2

is 51.73. Since this value does not exceed
74.44, the test rule T+ does not reject H.

2.2 Empirical Scientific Inquiries and Statistical Models of NPT

The problem how to relate an empirical scientific inquiry to statistical models of
NPT is a metastatistical problem. NPT can be interpreted as a means of decid-
ing how to behave. To contrast her reformulation of NPT with this behavioristic
model, Mayo (1983) introduces the term learning model , or simply NPT⇤, for
the former. NPT⇤ goes beyond NPT, it uses the distribution of the test statistic
S (Eq. 3) to control error probabilities. Statistical tests are seen as “means of
learning about variable phenomena on the basis of limited empirical data.” In
the particle swarm example we are interested in learning if particle swarm op-
timizers with increased population sizes give rise to performance improvements,
i.e., performance describable by N (0,�), or by N (✓, �), with ✓ > 0.

Mayo (1983) claims that NPT⇤ provides tools for specifying tests that “will
very infrequently classify an observed di↵erence as significant (and hence reject
H) when no discrepancy of scientific importance is detected, and very infre-
quently fail to do so (and so accept H) when ✓ is importantly very discrepant
from ✓

0

.”

2.3 Mayo’s Objective Interpretation of Rejecting a Hypothesis

NPT⇤ provides several tools for detecting whether the scientific relevance is
misconstrued, e.g., if accidental e↵ects such as measurement errors occur. A
di↵erence of 1 or 2 standard deviation units between X and its mean ✓ arises
relatively often, so these di↵erence can be easily confused with e↵ects caused by
real di↵erences. Two types of misconstruals or misinterpretations can arise.

1. A test can be specified so that it will give rise to a x that exceeds ✓
0

by the
required d

↵

�
x

, cf. Equation 5. Large sample sizes provide such sensitive tests,
so that ✓

0

+ d
↵

�
x

can be made so small that even the smallest di↵erences
appear meaningful.

2. A test can be specified so that it will give rise to a x that does not exceed ✓
0

by the required d
↵

�
x

. Decreasing ↵ values provide such insensitive tests, so
that ✓

0

+ d
↵

�
x

can be made so large that even the large di↵erences appear
meaningless.

To avoid these misinterpretations, Mayo proposed considering the observed sig-
nificance level.
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2.4 The Observed Significance Level

The frequency relation between a rejection of the null hypothesis H and values
of the di↵erence in means, ✓, is important for the interpretation of the rejection.
To interpret the rejection of H, Mayo introduces the observed significance level

↵(x, ✓) = ↵̂(✓) = P (X � x; ✓) (7)

Hence, ↵̂(✓) is the area under the normal curve to the right of the observed x,
as illustrated in Fig. 2. Note, that ↵̂ is the frequency of an error of the first kind

Fig. 2. Observed di↵erence and three hypothetical di↵erences. Di↵erence in means for
n = 50 samples and standard deviation � = 160. The value from the test statistic
x = 51.73 remains fixed for varying means ✓i of di↵erent distributions associated with
the null hypotheses Hi, i = 1, 2, 3. The figure depicts the probability density functions
of the associated normal distributions for three di↵erent means: ✓1 = 0, ✓2 = 18, and
✓3 = 70. To interpret the results, consider a hypothetical di↵erence in means of ✓2 = 18:
The observed significance level ↵(x, ✓) is the area under the normal curve to the right
of x. The value ↵(51.75, 18) is quite large and therefore not a good indication that
the true di↵erence in means is as large as ✓2 = 18. This figure corresponds to Fig. 4.3
in Mayo (1983)

if we set ✓ = ✓
0

. A rejection of the null H : ✓ = ✓
0

is a good indicator that
✓ > ✓

0

if the observed significance level ↵̂ is small. However, if some ✓ values in
excess of ✓ are not deemed scientifically important, even small ↵̂ values do not
prevent such a rejection of the null from being misconstrued when relating it to
the scientific claim C.

To relate the statistical result to the scientific import, Mayo proposes to
define ✓

un

:

✓
un

= the largest scientifically unimportant value in excess of ✓
0

. (8)
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In many situations, ✓
un

is not known exactly. Then, observing the values of ↵̂(✓0)
for ✓0 2 ⌦

J

indicates if the construal is legitimate or illegitimate. If ↵̂(✓0) is large,
then the statistical result is not a good indication that the scientific claim is true.

In addition to ✓
un

, Mayo defined ✓↵̂, the inversion of the observed significance
level function as:

✓↵̂ = the value of ✓ in ⌦ for which ↵(x, ✓) = ↵̂(✓) = ↵̂. (9)

Example 2. Consider a sample size of n = 50. If ✓
un

= 30, then rejecting H
cannot be taken as an indication that the scientific claim “PSO(40) outperforms
PSO(20)” is true. Figure 3 illustrates this situation. The observed significance
level ↵̂(30) = 0.25 is not a strong indication that ✓ exceeds 30. However, if the
sample size is increased (n = 500), then ↵̂(30) = 0.05 is small. This example
illustrates that ↵̂ is a function of the sample size n. ⇤
But are these results good indications that one is observing a di↵erence ✓ > 0
that is also scientifically important? This problem is outside the domain of statis-
tics. Its answer requires the specification of a scientifically important di↵erence,
a reasonable sample size, and an acceptable error of the first kind. The ↵̂ function
provides a nonsubjective tool for understanding the ✓ values, a metastatistical
rule that enables learning on the basis of a given RU rejection. As the examples
demonstrate, NPT⇤ tools enable the experimenter to control error probabilities
in an objective manner.

2.5 Monte Carlo Simulations and the Bootstrap

Mayo (1983) introduced the observed significance level under the assumptions
that

1. the samples follow a normal distribution
2. the variance �2 is known

In many real-world situations, these assumptions are not true. Results from
performance comparisons are not normally distributed, e.g., many values are
worse, but no value is better than the optimum. Bartz-Beielstein (2006) proposes
a bootstrap approach to tackle this di�culties.

Bootstrap Monte Carlo simulations can be applied for known population dis-
tributions from which the samples are drawn and unknown sampling distribu-
tions of the test statistic, for example, the trimmed mean or the interquartile
range. As bootstrap methods treat the sample as the population, they can be ap-
plied if the sampling distribution is unknown (Efron & Tibshirani, 1993). They
require a representative sample of the population. Nowadays the bootstrap is
considered a standard method in statistics (Mammen & Nandi, 2004). It has
been successfully applied to solve problems that would be too complicated for
classical statistical techniques and in situations where the classical techniques
are not valid (Zoubir & Boashash, 1998).
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Fig. 3. Plot of the observed significance level ↵(x, ✓) as a function of ✓, the possible true
di↵erence in means. Lower ↵̂ values support the assumption that there is a di↵erence
as large as ✓. The measured di↵erence is x = 51.73, the standard deviation is � = 160,
cf. Example 1. Each point of the three curves shown here represents one single curve
from Fig. 2. The observed significance value is value of area under the normal curve to
the right of the observed di↵erence x. The values can be interpreted as follows: Regard
n = 50. If the true di↵erence is (a) 0, (b) 51.73, or (c) 100, then (a) H : ✓ = 0, (b)
H : ✓ = 51.73, or (c) H : ✓ = 100 is wrongly rejected (a) 5%, (b) 50%, or (c) 95% of
the time

The idea behind the bootstrap is similar to a method that is often applied in
practice. Experiments are repeated to improve the estimate of an unknown pa-
rameter. If a representative sample is available, the bootstrap randomly reassigns
the observations and recomputes the estimate. The bootstrap is a computation-
ally intensive technique. Let ✓̂ be the estimate of an unknown parameter ✓ that
has been determined by calculating a statistic S from the sample:

✓̂ = S = s(y
1

, . . . , y
n

).

By sampling with replacement, n
b

bootstrap samples can be obtained. The boot-
strap replicates of ✓̂

✓̂⇤b = s(y⇤b), b = 1, . . . , n
b

,

provide an estimate of the distribution of ✓̂. The generic bootstrap procedure is
described in Fig. 4.

We describe the basic bootstrap procedure to determine the observed signif-
icance level ↵(x, ✓). It can be applied to generate plots of the observed signifi-
cance, as shown in Fig. 3. Note that this procedure requires only two paired and
representative samples, y

1

and y
2

.
Let y

1

= (y
11

, . . . , y
1n

)T and y
2

= (y
21

, . . . , y
2n

)T denote the random sam-
ples, and x = y

1

� y
2

= (y
11

� y
21

, . . . , y
1n

� y
2n

)T their di↵erence vector. The
procedure to obtain an estimate of the observed significance level ↵(x, ✓) for a
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Algorithm: Generic Bootstrap

1. Calculate ✓̂ from a representative sample y = (y1 . . . , yn).
2. To generate the bootstrap data sets y⇤b = (y⇤b

1 , . . . , y⇤b
n ) sample with replace-

ment from the original sample.
3. Use the bootstrap sample y⇤b to determine ✓̂⇤b.
4. Repeat steps 2 and 3 nb times.
5. Use this estimate of the distribution of ✓̂ to obtain the desired parameter, for

example the mean.

Fig. 4. The generic bootstrap procedure

di↵erence ✓
0

under the null hypothesis H can be implemented as in the following
example:

Example 3 (Bootstrap). Let y
1

and y
2

denote two vectors with representative
samples from a population. If a 2 R and the vector y = (y

1

, . . . , y
n

)T 2 Rn, the
scalar–vector addition is defined as

a + y = (y
1

+ a, . . . , y
n

+ a)T .

The bootstrap approach to generate the plots of the observed significance com-
prises the steps shown in Fig. 4. They can be detailed as follows:

1. Calculate x = y
1

� y
2

.
2. Determine x = 1/n

P
n

j=1

(y
1j

� y
2j

).
3. Specify the lower bound a and the upper bound b for the plot.
4. Specify m, the number of points to be plotted in the interval [a, b].
5. For i = 1 to m do:

(a) Determine x
i

= x� x + w
i

with w
i

= a + i⇥ (b� a)/m.
(b) Generate n

b

bootstrap sample sets x⇤b

i

, b = 1, . . . , n
b

from x
i

.
(c) Determine the n

b

mean values x⇤b

i

.
(d) Determine n

i

, that is, the number of times that x⇤b

i

> x.
(e) Determine the ratio r

i

= n
i

/n
b

.

Finally, the m points (w
i

, r
i

) are plotted. The ratio r
i

is a bootstrap estimate of
the observed significance value ↵(x,w

i

). ⇤

Histograms of the bootstrap replicates as shown in Fig. 5 are appropriate tools
for examining the distribution of ✓̂. Figure 6 depicts the result based on the
bootstrap. It represents the same situation as shown in Fig. 3, without making
any assumption on the underlying distribution. As the sample size is increased,
i.e., from 50 to 500, the bootstrap and the true curve start to look increasingly
similar.
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Fig. 5. Histograms of the bootstrap samples. Left : 50 samples (repeats); right : 500
samples. These figures show histograms of the bootstrap samples that were generated at
step 5 in Example 3. The di↵erence ✓ has the value 18.37. The dash-dotted curves show
the superimposed normal density. The area to the right of x = 51.73 under the curve
corresponds approximately with the observed significance level ↵(51.73, 18.37),i.e., the
ratio ri

Fig. 6. This figure depicts the same situation as shown in Fig. 3. But, unlike in Fig. 3,
no assumptions on the underlying distribution have been made. Samples of size n = 10,
50, and 500, respectively, have been drawn from a normal distribution. The bootstrap
procedure described in Example 3 has been used to generate this plot. The curves look
qualitatively similar to the curves from Fig. 3. As the number of samples increases, the
di↵erences between the exact and the bootstrap curves becomes smaller. The measured
di↵erence is 51.73, � = 160, cf. Example 1. Regard n = 50: If the true di↵erence is (a)
0, (b) 51.73, or (c) 100, then (a) H : � = 0, (b) H : � = 51.73, or (c) H : � = 100 is
(approximately) wrongly rejected (a) 1%, (b) 50%, or (c) 99% of the time
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The (bootstrap) plots of the observed significance can be used to apply con-
cepts developed in Mayo (1983) to important research goals in EC. They make
no assumptions on the underlying distribution. Bartz-Beielstein (2006) presents
further examples and guidelines how to interpret plots of the observed signifi-
cance.

2.6 Plots of the Observed Significant and Mayo’s Severity Curves

Mayo & Spanos (2006) present severity curves, cf. Fig. 7. These curves show the
same data as plots of the observed significance, but from a di↵erent perspective.
Severity curves vary the observed sample values x, whereas x remains unchanged
in plots of the observed significance. The former illustrate an enhanced (“fuzzy-
fied”) power concept, the so-called attained or actual power, the latter vary the
alternative hypotheses ✓0 and the number of experiments to illustrate the e↵ect
on the error of the first kind.

Fig. 7. Mayo & Spanos (2006) define “the severity with which we claim µ  µ1 passes
test T (↵) with data x0” in the case of an a statistically insignificant result, i.e., accept
H, as SEV(µ  µ1) = P (d(X) > d(x0); µ  µ1 false). Here, the experimental result is
varied, whereas plots of the observed significant level vary the number of experiments
and the hypothesized di↵erences

3 Sequential Parameter Optimization

Sequential parameter optimization describes an implementable but heuristic method
for the comparison and analysis of computer programs. It comprehends the 12
steps described in Tab. 1.

During the preexperimental planning phase (S-1) the experimenter defines
exactly what is to be studied and how the data are to be collected. The recogni-
tion and statement of the problem seems to be a rather obvious task. However,
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Table 1. Sequential parameter optimization. This approach combines methods from
computational statistics and exploratory data analysis to improve (tune) the perfor-
mance of direct search algorithms. It is detailed in Bartz-Beielstein (2006).

Step Action

(S-1) Preexperimental planning

(S-2) Scientific claim

(S-3) Statistical hypothesis

(S-4) Specification of the

(a) Optimization problem

(b) Constraints

(c) Initialization method

(d) Termination method

(e) Algorithm (important factors)

(f) Initial experimental design

(g) Performance measure

(S-5) Experimentation

(S-6) Statistical modeling of data and prediction

(S-7) Evaluation and visualization

(S-8) Optimization

(S-9) Termination: If the obtained solution is good enough, or the maxi-
mum
number of iterations has been reached, go to step (S-11)

(S-10) Design update and go to step (S-5)

(S-11) Rejection/acceptance of the statistical hypothesis

(S-12) Objective interpretation of the results from step (S-11)

in practice, it is not simple to formulate a generally accepted goal. Discovery ,
comparison, conjecture and robustness are only four possible scientific goals of
an experiment. Furthermore, the experimenter should take the boundary con-
ditions into account. Statistical methods like run length distributions provide
suitable means to measure the performance and describe the qualitative behav-
ior of optimization algorithms.

In step (S-2), the experimental goal should be formulated as a scientific claim,
e.g., “Algorithm A, which uses a swarm size s, that is proportional to the problem
dimension d outperforms algorithms that use a constant swarm size.”

A statistical hypothesis, such as “There is no di↵erence in means comparing
the performance of the two competing algorithms,” is formulated in the step
(S-3) that follows.

Step (S-4) requires the specification of problem and algorithm specific pa-
rameter settings, the so-called problem and algorithm designs.

After that, the experiment is run (S-5). Preliminary (pilot) runs can give a
rough estimate of the experimental error, run times, and the consistency of the
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experimental design. Since we consider probabilistic search algorithms in our
investigation, design points must be evaluated several times.

The experimental results provide the base for modeling and prediction in
step (S-6). The model is fitted and a predictor is obtained for each response.

The model is evaluated in step (S-7). Several visualization techniques can
be applied. Simple graphical methods from exploratory data analysis are often
helpful. Histograms and scatterplots can be used to detect outliers. If the initial
ranges for the designs were chosen improperly (e.g., very wide initial ranges),
visualization of the predictor can guide the choice of more suitable (narrower)
ranges in the next stage. Several techniques to assess the validity of the model
have been proposed. If the predicted values are not accurate, the experimental
setup has to be reconsidered. This includes the scientific goal, the ranges of
the design variables, and the statistical model. New design points in promising
subregions of the search space can be determined (S-8) if further experiments are
necessary. Thus, a termination criterion has to be tested (S-9). If it is not fulfilled,
new candidate design points can be generated (S-10). A new design point is
selected if there is a high probability that the predicted output is below the
current observed minimum and/or there is a large uncertainty in the predicted
output. Otherwise, if the termination criterion is true, and the obtained solution
is good enough, the final statistical evaluation (S-11) that summarizes the results
is performed. A comparison between the first and the improved configuration
should be performed. Techniques from exploratory data analysis can complement
the analysis at this stage. Besides an investigation of the numerical values, such as
mean, median, minimum, maximum, min

boot

and standard deviation, graphical
presentations such as boxplots, histograms, and RLDs can be used to support
the final statistical decision.

Finally, we have to decide whether the result is scientifically important (S-
12), since the di↵erence, although statistically significant, can be scientifically
meaningless. An objective interpretation of rejecting or accepting the hypothesis
from (S-2) should be presented here. Consequences that arise from this decision
are discussed as well. The experimenter’s skill plays an important role at this
stage. The experimental setup should be reconsidered at this stage and questions
like “Have suitable test functions or performance measures been chosen?” or
“Did floor or ceiling e↵ects occur?” must be answered. Test problems that are
too easy may cause such ceiling e↵ects.

4 Summary

We described the current situation of experimental research in EC. Several statis-
tic tools that reflect the requirements of today’s optimization practitioners are
developed nowadays. However, nearly no tools that enable an interpretation of
and learning from the scientific results exists. Mayo’s models of statistical testing
bridge this gap. We extended an approach introduced in Mayo (1983), so that it
is applicable if the underlying distributions are unknown. An example from EC
was presented to illustrated this approach.
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