
Chapter 1
Introduction

Thomas Bartz-Beielstein, Marco Chiarandini, Luís Paquete, and Mike Preuss

Abstract Theory and experiments are complementary ways to analyze optimiza-

tion algorithms. Experiments can also live a life of their own and produce learning

without need to follow or test a theory. Yet, in order to make conclusions based

on experiments trustworthy, reliable, and objective a systematic methodology is

needed. In the natural sciences, this methodology relies on the mathematical frame-

work of statistics. This book collects the results of recent research that focused on

the application of statistical principles to the specific task of analyzing optimization

algorithms.

1.1 Optimization Algorithms

Optimization problems arise in many contexts of operations research, computer sci-

ence, engineering and other research and application areas. Designing constructive

mathematical abstractions, called algorithms, is a common approach to solve these

problems. Algorithms that are used to solve optimization problems can be essen-

tially divided into two different types: (i) exact algorithms and (ii) heuristic algo-

rithms.

Thomas Bartz-Beielstein
Institute of Computer Science, Cologne University of Applied Sciences, 51643 Gummersbach,
Germany, e-mail: thomas.bartz-beielstein@fh-koeln.de

Marco Chiarandini
Department of Mathematics and Computer Science, University of Southern Denmark, Odense,
Denmark, e-mail: marco@imada.sdu.dk

Luís Paquete
CISUC, Department of Informatics Engineering, University of Coimbra, Portugal, e-mail: pa-
quete@dei.uc.pt

Mike Preuss
Algorithm Engineering, TU Dortmund, Germany, e-mail: mike.preuss@tu-dortmund.de

1T. Bartz-Beielstein et al. (eds.), Experimental Methods for the Analysis of Optimization 
Algorithms, DOI 10.1007/978-3-642-02538-9_1, © Springer-Verlag Berlin Heidelberg 2010 



2 T. Bartz-Beielstein, M. Chiarandini, L. Paquete, M. Preuss

Exact algorithms compute provably optimal solutions. They can be general-

purpose algorithms, such as simplex and interior-point methods for mathematical

programming formulations, and complete search algorithms, such as backtracking

and graph-search algorithms. They may also be more problem specific, such as the

Dijkstra’s algorithm for finding the shortest path in a graph, the Ford–Fulkerson’s al-

gorithm to maximize the flow in a network, or the dynamic programming algorithm

for knapsack problems.

Heuristic algorithms (here shortened to heuristics) are algorithms for which it

is not possible to prove that the optimum will be reached in finite time. The term

heuristic is of Greek origin, meaning “serving to find out or discover.” Hence, a

heuristic can be considered as a useful shortcut, an approximation, or a rule of

thumb for guiding search. In practice, heuristics can achieve good performance both

in terms of runtimes and in terms of solution quality. They are frequently applied

when time constraints are too tight for exact algorithms. Their use is predominant

in relevant application areas of combinatorial optimization, such as routing (Golden

et al. 2008), scheduling (Van Hentenryck and Michel 2005), and timetabling Burke

et al. (2008). Typical examples of heuristics are greedy algorithms that construct a

solution by series of choices with the best local return. A particular class of heuris-

tics is made by approximation algorithms. They are understood as polynomial time

routines with a guaranteed level of performance in terms of solution quality. Ap-

proximation algorithms are designed for many hard optimization problems, such as

for the set covering, the bin packing and several machine scheduling problems.

Finally, there is the well-known class of metaheuristics. Metaheuristics are gen-

eral algorithmic frameworks that can be applied to a wide spectrum of problems for

producing heuristics. Typically, applying a metaheuristic is a rather simple process

that requires us only the design of problem specific components to be used within

the framework. Often, the guiding principle of a metaheuristic is inspired by some

natural phenomena, such as in the case of simulated annealing (Kirkpatrick et al.

1983), evolutionary algorithms (Schwefel 1995), and ant algorithms (Dorigo and

Stützle 2004). In continuous optimization, it sometimes sufficient to define a quality

function that, for two possible solutions, states whether they are equally good or

indicates which one is better, a situation known as black-box optimization.
Optimization algorithms are most commonly randomized. The reasons for ran-

domization are various: possibility of gains from reruns, the adversary argument,

structural simplicity for comparable average performance, speed up, avoiding loops

in the search, and so on (Motwani and Raghavan 1995). Exact algorithms, when

randomized, still return an optimal solution but have random runtime. Randomized

heuristics have instead both solution quality and runtime random.



1 Introduction 3

1.2 Analysis of Algorithms

1.2.1 Theoretical Analysis

In computer science, algorithms and machines to run them are formally described.

In particular, the Turing machine is the formal model within which any computable

algorithm can be analyzed. This led to the idea that there is no need to understand

details of the hardware, because the high-level description of the algorithms will

work the same on any physical system, provided that it is stable enough to carry

out the programs. This is true if algorithms can be investigated formally and if a

general and, to a certain extent, incomplete description of the algorithm behavior is

sufficient.

The themes of theoretical work on algorithms, here intended as well-substantiated

explanations derived by mathematical logic, are broad. Solving problems in the first

place can be seen as theoretical work comprising intuition, deduction and proof.

Examples are finding algorithms that solve complicated problems without using

bruteforce and complete enumeration, or reductions between problems arising in

NP -completeness theory. Restricting ourselves to the analysis of randomized algo-

rithms we can distinguish different kinds of theoretical analysis, without aiming at

being exhaustive. Worst-case and average-case are the classical analyses that can

be carried out both on solution quality approximation and on runtime. These in-

clude probabilistic analysis for the expected runtime. Domination analysis counts

the number of solutions that are dominated by the solutions returned by an algo-

rithm on the instance where it performs worst. Convergence analysis studies the

behavior of the algorithm when runtime increases to infinite. Other analyses may

focus on proving the usefulness of some algorithmic components or the invariance

of the algorithm with respect to some trivial transformation of the input data.

1.2.2 Experimental Analysis

Computers are human artifacts constructed to execute algorithms and solve practi-

cal problems. They make it possible to study computation as a natural occurrence,

not only by formal analysis, but also by experimentation. Algorithms that would be

too complex to study analytically become accessible via empirical inquiry. In addi-

tion, experimentation can provide more accurate predictions of the behavior of an

algorithm in practice.

In experiments, the object of analysis are not abstract algorithms but application

and simulation programs running in a particular computing environment and solv-

ing problems for real input instances (McGeoch 1996). Simulation programs differ

from application programs that are used in practice only in that they provide the sci-

entist with complete control of the experimental environment. Implementation de-

tails may have a certain impact on the performance of the programs that are derived



4 T. Bartz-Beielstein, M. Chiarandini, L. Paquete, M. Preuss

from the algorithms under study. These details are omitted for simplicity in a math-

ematical analysis and unfortunately, they are often omitted also in descriptions of

experimental work. McGeoch (1996) distinguishes different levels of description for

the algorithms analyzed. For instance, a metaheuristic is “a minimally instantiated

algorithm” that contains few implementation details and that is probably better de-

fined as an algorithm template. A more instantiated algorithm may incorporate basic

implementation strategies (such as whether to use stacks or queues for a given data

structure); an even more instantiated algorithm may specify programming tricks that

give constant-factor speeds. A highly instantiated algorithm might describe specific

details for a particular programming language or computer architecture. We deem

it important being aware of these distinctions. Accordingly, a certain degree of ex-

pertise in the field is required to know the level of description of an algorithm to

which the results of a program can be abstracted. In other words, the exploration

of the conditions that influence the study of an algorithm at the intended level of

description is part of the work of the experimenter. His skills and ingenuity enable

him to remove unwanted factors and to make experiments relatively easy to realize

and to reproduce.

Theoretical analyses provide asymptotic results or assume special types of input

data that are different from those in which the problem usually occurs in a real-life

context. Moreover, results from theory rely on a standard machine model for com-

putation that is far from modern computers. Hence, they lead to predictions that

are too vague for practical purposes. Additionally, theoretical analyses have to fix

concrete problems or at least assume that the problems, treated strictly, adhere to

some requirements, such as, for example, the objective function being convex. As

the algorithms applied in practice are often quite complex, these also have to be

simplified to be theoretically tractable. The insight gained by a theoretical analy-

sis is still valuable but may not be applicable to any practical use case. Using an

experimental approach, we are no longer bound to design simple algorithms that

are amenable to mathematical analysis. We can focus on complex algorithms whose

theoretical analysis would be beyond human ability, but whose performance better

satisfies practical needs. Similarly, this freedom can be extended to problems that

are more complex and closer to real-life situations. Experiments can inspire theo-

reticians and be used by them to disprove conjectures, gain new insights for their

work, or suggest new directions for theoretical analysis.

Hence, experimentation on algorithm implementations on up-to-date computers

is relevant in practice and definitely needed if we wish to achieve more accurate

predictions about their performance and robustness. The following section details

how experiments can benefit from theory and vice versa.



1 Introduction 5

1.3 Bridging the Gap Between Theoretical and Empirical
Analysis

As is widely understood, science is a systematic search for knowledge about the

world, resulting in a prescriptive practice and prediction of a type of outcome. In

many scientific disciplines, e.g., physics or chemistry, there is nowadays agree-

ment that theories and experiments are equally relevant. Researchers in theoreti-

cal physics collaborate with experimentalists to submit their theses to experimental

testing and, viceversa, experiments inspire new approaches.

The situation in the field of computing is much less well understood. Since al-

gorithms are mathematical abstractions there is a considerable area in the field of

computing that maintains a purely formal approach, quite similar to in mathematics

and the formal sciences. Some researchers in this area hold that a theoretical proof

of the behavior of an (often simplified) algorithm is of primary interest. However,

as mentioned above, to be of any use algorithms must be written into a program-

ming language and run on a computer. This necessarily transforms a mathematical

abstraction into a real-world matter that calls for a natural-science approach. Un-

fortunately, in the field of computing, contrary to in physics, theoretical results are

seldom subjected to empirical test or, as would be often more correctly stated in this

context, they are seldom submitted to refinement.
We observe instead a different approach to experimentation that is widespread in

other areas of computing, such as heuristics and evolutionary computation. In this

approach there is only a weak link with theory, in the sense that there is not a de-

ductively inferred theory to put to test but rather intuitive ideas on what would make

easier to solve a certain problem. In fact, a considerable number of scientists in this

area of computing implement these ideas in algorithms and try them on empirical

data without any prior analytical analysis. They observe the results and refine their

design. They proceed inductively, from experimental data. What we observe is a

learning process from experimentation rather than a theoretical development.

Our impression is then that, in the field of computing, theorists and experimen-

talists still live in two separate worlds. A serious attempt to bridge the gap between

these worlds is known under the name of algorithm engineering; see also the con-

tribution of Chimani and Klein in Chap. 6 of this book. The view of its proponents

is to test empirically theories about algorithms. The idea put forward is that theo-

retical and experimental work can inspire each other (as was already envisioned by

Galileo) in an iterative process, which they call the engineering cycle, and which

has the final goal of improving the design of the algorithms.

A peculiarity of computer science, with respect to other natural sciences, is that

theories are always true because they concern mathematical abstractions and are ob-

tained by mathematical reasoning. Nevertheless, they are often imprecise because

implementation aspects such as programming language and computer architecture

are not taken into consideration. Theories are therefore insufficient for good pre-

diction. Hence, well-conducted experiments enable us to refine theories, when any



6 T. Bartz-Beielstein, M. Chiarandini, L. Paquete, M. Preuss

are available, and to learn. Experiments can positively identify previously unknown

effects and are complementary to theories.

The description of the previous paragraphs is clearly specific of the field of com-

puting. However, we can find in the contemporary philosophy of natural sciences

a more general debate on the role of experiments and their importance (Chalmers

1999). In particular, two prominent philosophers, Hacking (2001) and Mayo (1996),

give a sustained treatment of experiments as independent of theory, interacting with

it, as well as with invention and technology, in numerous ways and with differ-

ent relationships in different sciences at different stages of development. Experi-

ments acquire a new stance and can be used as a starting point from which evi-

dence emerges. This new way of looking at experiments is known under the term

new experimentalism (Ackermann 1989). Mayo proposes learning about the world

by actively probing, manipulating, and simulating patterns of error in experiments.

Central to Mayo’s approach is the concept of severity that is directly connected to

learning from error. The experimenter learns that an error is absent when a proce-

dure of inquiry (which may be based on several tests) that has a very high proba-

bility of detecting an error if it exists nevertheless detects no error. A key goal of

the new experimentalism is to reinterpret classical statistical tests as tools for ob-

taining knowledge. Mayo (1983) presents the formal statistical framework. Bartz-

Beielstein (2008) transfers this framework to experimental approaches in computer

science (see also Chap. 2 of this book).

Summarizing, there are at least two interesting ongoing processes in the field

of computing that try to bridge the gap between theory and experiment: (i) algo-

rithm engineering, that starts with theories and refines them and (ii) the new ex-

perimentalism, that starts from experiments without any high-level theory and lets

evidence arise as a matter of fact. The former can be classified as a deductive ap-

proach, whereas the latter is related to inductive approaches and reliabilism. Note,

and this is a relevant observation, statistics plays a central role in both approaches.

With respect to the situation presented, our intention in this book is threefold.

First, we wish to give importance to experiments and qualify them as complemen-

tary to theories, as ways to test and refine them, improve them, and make them more

meaningful and useful in practice. Second, we intend to recognize the existence of a

scientific process in the field of computing that consists of applying statistical testing

and learning from error. This approach is interpreted within the position of Hacking

and Mayo. Accordingly, we regard the learning that we achieve from experiments

as valuable and trustworthy. Finally, because it is a common premise for achieving

the two previous aims, we wish to contribute to make the analysis of experiments

in the field of computing more rigorous, objective and reproducible, hence similar

to what is seen in other natural sciences such as physics, biology, and chemistry.

As we explain in the next section, this goes necessarily through the adoption of the

statistical framework.



1 Introduction 7

1.4 The Need for Statistics

So far we have argued for the relevance of experimentation in computing. But how

should experimentation be carried out in order to gain a scientific stance? What

are the pitfalls we would like to avoid? Prominent authors, like Hooker (1996) and

Johnson (2002), have already replied to this question, discussing extensively issues

related to the experimental study of algorithms. These articles are good starting

points for any experimenter in the field.

In this book, we further advocate the use of statistics as a systematic way of anal-

ysis. Statistics offers a well-developed and accepted mathematical framework to the

analysis of experimental data. It suggests ways to look at data to discover relevant

patterns and techniques to plan experiments intelligently and separate effects. It also

provides quantitative assessment of the inference in which the scientist is interested.

In the case of randomized algorithms, we need to protect the researcher from

falsely concluding about the presence of an effect caused by the algorithm when

there is none. The direction of the observed differences might be simply due to

chance and explained by sampling variance. Nevertheless, if algorithms differ in

even the smallest component then they should, ultimately, lead to different results.

Thus, it is important to consider the entity of the true differences: they might be

so small that we are in fact scientifically indifferent to them. On the other side, we

might want to be protected against erroneously concluding that no such difference

exists when one does. These concepts are made formal and quantitative in statistics

by fixing the level of significance and the statistical power of the chosen test proce-

dure. In this way, we bound within an agreed limit the chances of making a certain

kind of mistake if the test procedure were to be repeated a large number of times.

In computing we may distinguish different scenarios where statistics is needed.

On the one side, we may wish to draw conclusions on the basis of small samples

because it is computationally costly to run experiments. This situation occurs in

many real-world optimization scenarios, e.g., in engineering design where one sin-

gle function evaluation might be the result of a complex simulation. In this case

statistics helps us to avoid premature conclusions that are not evident from the data

and to design the experiments in the most effective way. On the other side, computa-

tional cost might not be a problem, in which case we could run as many experiments

as we wish but might want to have a unique decision at the end. This situation might

occur while optimizing artificial test functions that were defined to understand the

behavior of algorithms. Still here, statistics helps us to maximize the space of tested

algorithmic configurations, telling us when the data collected are sufficient to deter-

mine a difference and suggesting the direction for new experiments. Alternatively,

it can provide confidence intervals around the estimated effects, thus increasing the

level and precision of the information collected. It is possible, of course, to find sit-

uations that stay half-way between the two described here. For example, it might be

possible to decide to stop the experiments before a unique answer has been found.

This may be done when a time deadline is reached or when enough statistical power

has been collected to detect a minimal effect of scientific interest and this has not

yet become evident in the data collected.



8 T. Bartz-Beielstein, M. Chiarandini, L. Paquete, M. Preuss

One of the criticisms of experimental research in computing is that the results

produced are less trustworthy than theoretical ones because they are contextual, ar-

chitecture dependent and hence less general and unreproducible. Indeed, we agree,

often computational experiments found in the literature are not severe enough and

many claims remain invalidated. But our point of view is that this criticism should

not hinder experimentation, rather, through its awareness, it should rise its quality

and lead to a more sophisticated methodology. In our vision computational experi-

ments are more complex than it is believed and require field expertise to deal with

the various sources of variance. They go beyond running a few experiments on a sin-

gle machine and collecting results in a table. They entail summarizing, visualizing,

and testing data with principled methods of analysis taken from statistics to distin-

guish the effects of different sources. The ultimate goal is a useful and generalizable

description of algorithm behavior. We will achieve these goals by borrowing from

well-established rules on experimentation from other fields and developing new spe-

cific tools. The final goal is the establishment of standards for experimental research

in computing. The methods arising from considerations of this kind may then be of

advantage not only to the scientist but also to the practitioner and designer, provid-

ing them with the tools for correct and fast decision making.

1.5 Book Contents

The analysis of optimization algorithms focuses primarily on two measures of per-

formance solution cost and runtime. From a statistical point of view these are ran-

dom variables and in experimentation we base our description on finite-sized sam-

pled data.

In statistics we distinguish three areas of data analysis: descriptive statistics, de-

sign of experiments, and inferential statistics. Descriptive statistics deals with the

summary and graphical representation of results. Design of experiments provides a
systematic framework for the collection and evaluation of data. Finally, inferential
statistics supplies a probabilistic measure of events on the basis of mathematical

derivations from the empirical data.

In this book we collect important techniques from all these areas that may con-

tribute to attaining an empirical assessment in different scenarios of analysis. Given

our aim of a book oriented to practice, every chapter contains both an explanation

of the techniques and their example application to case studies.

We have organized the chapters into three parts, where similar questions are ad-

dressed. In Part I, the focus is on the object of analysis, the algorithms, and the

problem instances. In Part II, the focus is on the characterization of the probability

distribution of the random variable chosen to measure algorithm performance. In

Part III, we group all applications of experimental design techniques for modeling

the relationships between algorithm parameters, instance features, and algorithm

performance. The goal of all these methods is the separation of effects and the com-



1 Introduction 9

parison of average performance. The differences in size of these parts reflects the

attention devoted to the different scenarios in the literature.

Most of the chapters have a more or less involved statistical content. The reader

who is not very confident with this subject can find in the Appendix a very precise

introduction to the theory of inferential statistics by Dario Basso.

The first part starts with “The Future of Experimental Research” by Thomas

Bartz-Beielstein and Mike Preuss, who examine the scientific method and its use in

computer science. They discuss philosophical foundations, the goal of experimen-

tation, the use of statistics, and the interpretation of results. While recognizing the

need for statistics, the authors warn the reader that statistics is not all. Other issues

such as the scientific meaning of a result must also be taken into consideration. The

view put forth is that experiments can be used to discover “theories” rather than only

to test theory. This view is consistent with the current of new experimentalism in the

contemporary philosophy of science.

The following chapter, “Design and Analysis of Computational Experiments:

Overview” by Jack P.C. Kleijnen, introduces the reader to experimental design and

modeling by means of classical and modern regression techniques. It includes both

methods that were successfully applied to the tuning of algorithms and that we will

encounter in the third part of the book as well as methods that have not yet been

applied and that represent interesting potential for future research.

The next chapter, “The Generation of Experimental Data for Computational Test-

ing in Optimization” by Nicholas G. Hall and Marc E. Posner, considers issues

that arise when generating random instances for testing algorithms on optimization

problems. A protocol for a generation scheme is proposed and a set of generation

principles is analyzed through a review of the literature of generation schemes for

testing optimization algorithms in different application areas. A wealth of pointers

for details on problem-specific issues is provided.

The chapter “The Attainment-Function Approach to Stochastic Multiobjective

Optimizer Assessment and Comparison” by Viviane Grunert da Fonseca and Carlos

M. Fonseca enlarges the object of study to multiobjective optimization. In this case,

solution quality is no longer expressed by a scalar value that becomes a random

variable when algorithms are randomized, but by a vector of values that becomes

a random set of points in the objective space in the case of randomization. The

attainment-function proposed to characterize a set of Pareto (approximate) optimal

solutions is derived from random set theory.

In the last chapter of this first part, “Algorithm Engineering: Concepts and Prac-

tice,” Markus Chimani and Karsten Klein give a wide introduction to experimental

algorithmics and algorithm engineering. They review several issues related to the

objects of the experiments of this book and provide many interesting links to fol-

low. The chapter has the intent to bridge a gap between two communities, the algo-

rithmic and the metaheuristic, that continue to have different venues but that could

profit from more interaction.

The second part describes the characterization in terms of statistical distributions

of algorithm performance, represented by solution quality or runtime.



10 T. Bartz-Beielstein, M. Chiarandini, L. Paquete, M. Preuss

In “Algorithm Survival Analysis,” the authors, Matteo Gagliolo and Catherine

Legrand, illustrate the theoretical background of survival analysis methods applied

to model runtime distributions of algorithms for solving decision problems. The

method presented has a potential impact not only on the analysis but also on the im-

provement of the algorithms themselves, as it provides indications for restart strate-

gies and for algorithm portfolio selection.

Jürg Hüsler, in his chapter “On Applications of Extreme Value Theory in Op-

timization,” models the tails of the distributions of solution quality returned by a

randomized algorithm for continuous optimization. He uses distributions from ex-

treme value theory and reports a formal proof that support their use with algorithms.

Manuel López-Ibáñez, Luís Paquete, and Thomas Stützle look at the character-

ization of algorithm performance in terms of Pareto-optimality in multiobjective

optimization. Their chapter “Exploratory Analysis of Stochastic Local Search Al-

gorithms in Biobjective Optimization” builds on the work of Viviane Grunert da

Fonseca and C.M. Fonseca and presents a graphical representation of the empirical

attainment function. This is a novel tool for exploratory data analysis in the con-

text of biobjective optimization that makes it possible to investigate and compare by

visual inspection different algorithm behaviors.

The third part collects advanced methods, mainly from experimental design, for

the problem of configuring and tuning algorithms on a specific class of instances.

The chapter “Mixed Models for the Analysis of Optimization Algorithms” by

Marco Chiarandini and Yuri Goegebeur gives a detailed introduction to linear sta-

tistical models for the typical scenarios of optimization algorithm studies. The goal

is separating the effects of different factors in an aggregate analysis. It differentiates

algorithmic components and instance features, while maintaining them under the

same framework of analysis.

Enda Ridge and Daniel Kudenko in “Tuning an Algorithm Using Design of Ex-

periments” suggest the use of more advanced experimental designs for the goal of

screening the relevance of parameters with the least amount of experimentation.

Successively, the determination of the best setting for the parameters left is solved

by the use of response surface methods in which a response surface is modeled in

the space of parameters.

“Using Entropy for Parameter Analysis of Evolutionary Algorithms,” by Selmar

K. Smit and Agoston E. Eiben, proposes an alternative method to estimate the rele-

vance of parameters with respect to screening methods from statistics. The method

consists of an evolutionary algorithm (REVAC) that samples the space of parame-

ters and collects the values of entropy, a measure of information, at different levels

of performance measure. A detailed and well-explained case study is conducted,

showing the application of this method to the analysis of evolutionary algorithms

obtained by the combination of different choices for their parameters.

Selecting the best configuration out of a set of candidates is the topic of the next

three chapters.

In “F-Race and Iterated F-Race: an Overview,” Mauro Birattari, Zhi Yuan,

Prasanna Balaprakash, and Thomas Stützle present a simple but very effective ap-

proach with roots in machine learning. F-Race implements a sequential testing



1 Introduction 11

method in which candidates are discarded as soon as statistical evidence arises

against them. The procedure presented is an extension of the original F-race in

which new candidates can be sampled from the space of parameters on the basis of

current results. The focus is on different methods for generating new design points

on the basis of current results.

The last two chapters look also at sequential testing methods but they focus on

the statistical models used for fitting the results and thus obtain information about

where to move in the design space. The chapter “The Sequential Parameter Opti-

mization Toolbox,” written by Thomas Bartz-Beielstein, Christian Lasarczyk and

Mike Preuss, exemplifies the SPO framework introduced in Chap. 2. The sequen-

tial parameter optimization toolbox SPOT is introduced as a freely available tool

to improve algorithm performance. It is the result of a combination of principles

from design of experiments applied to the problem of tuning the parameters of al-

gorithms. However, the main benefit of SPOT is prevention from worse algorithm

parameter configurations—and not to determine the overall-best parameter set. The

example is explained using the free statistical environment R.

Finally, Frank Hutter, Thomas Bartz-Beielstein, Holger H. Hoos, Kevin Leyton-

Brown, and Kevin P. Murphy in “Sequential Model-Based Parameter Optimization:

An Experimental Investigation of Automated and Interactive Approaches” study

two modeling methods from the literature based on Gaussian process models. These

are sequential parameter optimization (SPO), which is also discussed in Chap. 14,

and sequential Kriging optimization (SKO). Key design decisions within the SPO

paradigm are considered. Results from these experimental studies lead to a new

version of SPO, dubbed SPO+. The authors compare automated parameter tuning

approaches to an interactive, manual process that makes use of classical regression

techniques. This interactive approach is particularly useful when only a relatively

small number of parameter configurations can be evaluated. It can help human ex-

perts to gain insights into the parameter response of a given algorithm and to identify

reasonable parameter settings.

The scenarios outlined above are just some of the experimental studies that can

be conducted in the study of algorithms for optimization. The description centered

necessarily on the content of the book. Performance measures are by no means re-

stricted to runtime and solution quality. Other indicators may be relevant in different

contexts, see, for example, McGeoch (1996), Chap. 6 in Birattari (2005) or Bartz-

Beielstein (2006).

Moreover, several chapters in this book, rather than being conclusive and giving

standards, outline the need for further research in this area. Correct experimental

analysis of algorithms is apparently a less easy task than it may seem. The contribu-

tion of this book in this sense is to bring the reader to the cutting edge of what the

available methods can do and where they might fall short.

These and other issues deserve attention and will certainly continue to attract in-

terdisciplinary research. We are grateful to the authors of the chapters for their out-

standing contributions. We hope that this book will be pleasant read and that it will



12 T. Bartz-Beielstein, M. Chiarandini, L. Paquete, M. Preuss

contribute to improve the assessment of optimization algorithms and consequently

the solution of problems arising in practice.

References

Ackermann R (1989) The new experimentalism. British Journal for the Philosophy

of Science 40:185–190

Bartz-Beielstein T (2006) Experimental Research in Evolutionary Computation—

The New Experimentalism. Natural Computing Series, Springer, Berlin, Heidel-

berg, New York

Bartz-Beielstein T (2008) How experimental algorithmics can benefit from Mayo’s

extensions to Neyman-Pearson theory of testing. Synthese 163(3):385–396, DOI

10.1007/s11229-007-9297-z

Birattari M (2005) Tuning Metaheuristics. Springer, Berlin, Heidelberg, New York

Burke EK, Gendreau M, Gendron B, Rousseau LM (eds) (2008) Proceed-

ings of the 7th International Conference on the Practice and Theory of Au-

tomated Timetabling, PATAT 2008, Université de Montréal, Montreal, CA,

available online: https://symposia.cirrelt.ca/PATAT2008/en/
Proceedings

Chalmers AF (1999) What Is This Thing Called Science. University of Queensland

Press, St. Lucia, Australia

Dorigo M, Stützle T (2004) Ant Colony Optimization. MIT Press, Cambridge, MA,

USA

Golden B, Raghavan S, Wasil E (eds) (2008) The Vehicle Routing Problem: Latest

Advances and New Challenges, Operations Research/Computer Science Inter-

faces Series, vol 43. Springer

Hacking I (2001) An Introduction to Probability and Inductive Logic. Cambridge

University Press, Cambridge, UK

Hooker J (1996) Testing heuristics: We have it all wrong. Journal of Heuristics

1(1):33–42

Johnson DS (2002) A theoretician’s guide to the experimental analysis of algo-

rithms. In: Goldwasser MH, Johnson DS, McGeoch CC (eds) Data Structures,

Near Neighbor Searches, and Methodology: Fifth and Sixth DIMACS Imple-

mentation Challenges, DIMACS Series in Discrete Mathematics and Theoretical

Computer Science, vol 59, American Mathematical Society, pp 215–250

Kirkpatrick S, Gelatt D, Vecchi MP (1983) Optimization by simulated annealing.

Science 220(4598):671–680

Mayo DG (1983) An objective theory of statistical testing. Synthese 57:297–340

Mayo DG (1996) Error and the Growth of Experimental Knowledge. The University

of Chicago Press, Chicago IL

McGeoch CC (1996) Toward an experimental method for algorithm simulation. IN-

FORMS Journal on Computing 8(1):1–15, (this journal issue contains also com-



1 Introduction 13

mentaries by Pierre L’Ecuyer, James B. Orlin and Douglas R. Shier, and a rejoin-

der by C. McGeoch)

Motwani R, Raghavan P (1995) Randomized Algorithms. Cambridge University

Press, Cambridge, UK

Schwefel HP (1995) Evolution and Optimum Seeking. Sixth-Generation Computer

Technology, Wiley, New York NY

Van Hentenryck P, Michel L (2005) Constraint-Based Local Search. The MIT Press,

Cambridge, USA


	Chapter 1 
Introduction
	1.1 Optimization Algorithms
	1.2 Analysis of Algorithms
	1.2.1 Theoretical Analysis
	1.2.2 Experimental Analysis

	1.3 Bridging the Gap Between Theoretical and Empirical Analysis
	1.4 The Need for Statistics
	1.5 Book Contents
	References




