
Faculty of Computer Science
Algorithm Engineering (Ls11)
44221 Dortmund / Germany
http://ls11-www.cs.uni-dortmund.de/

Challenges for Contemporary

Evolutionary Algorithms

Thomas Bartz-Beielstein,
Mike Preuss, Karlheinz Schmitt,

Hans-Paul Schwefel

Algorithm Engineering Report
TR10-2-003
May 2010

ISSN 1864-4503

Challenges for Contemporary Evolutionary Algorithms

Thomas Bartz-Beielstein1, Mike Preuss2,
Karlheinz Schmitt2, and Hans–Paul Schwefel2

1 Cologne University of Applied Sciences, Cologne, Germany,
thomas.bartz-beielstein@fh-koeln.de,
2 University of Dortmund, Dortmund, Germany,

{mike.preuss,karlheinz.schmitt,hans-paul.schwefel}@cs.uni-dortmund.de

This work resembles a section of the book ‘Emergence, Analysis and Evolution of Structures’, available at
http://www.springer.com/engineering/book/978-3-642-00869-6. It is made available
in accordance with the author contract rules of the ‘Berlin-Brandenburgische Akademie der Wissenschaften’.

Does one need more than one optimization method? Or, stated differently, is
there an optimal optimization method? Following from the No Free Lunch theo-
rem (NFL, Wolpert and Macready [1]), in the general case—without clearly speci-
fied task—there is not. For every single task, creating a specialized method would
be advantageous. Unfortunately, this requires (i) a lot of effort, and (ii) extensive
knowledge about the treated problem, and is thus not practiced. Alternatively,
two strategies are usually followed when tackling a ‘new’ optimization problem:

– Adapt an existing algorithm to the problem in its current form, and/or
– model/formulate the problem appropriately for an existing algorithm.

The first strategy modifies the algorithm design, whereas the second strat-
egy modifies the problem design. These designs will be discussed in detail in
the remainder of this article. Whereas ‘traditional’ mathematical optimization
approaches mostly favor the second approach, it may provoke unwanted side-
effects: One has to make sure that the most important features of the original
problem are taken over into the model. E.g., matching the problem to an exist-
ing algorithm may obscure its real global or good local optimizers so that they
become unreachable for the optimization algorithm. Besides, many existing al-
gorithms require the problem to fulfill properties it obviously or possibly does
not, e.g. continuity and differentiability. Particularly, in cases where computing
the quality value of a solution candidate requires running a complex simulation
software, one seldomly knows in advance which properties the underlying (un-
known) objective function possesses.

When nothing more than quality determining response values for any set
of input variables are known for a problem, we speak of black box optimiza-
tion. In the single-objective case, the common notion of an objective function
and its global optimum/global optimizers—as given in eqn. 1 for unconstrained
problems—is still useful. However, global optimizers, the set of input vectors x
for which f(x) is optimal, cannot be determined analytically. An empirical trial
and error method is the only way to find them.

f∗G = min{f(x)|x ∈ X} (1)

The black box concept immediately leads to direct search methods—such a
method only utilizes objective function responses and “does not ‘in its heart’
develop an approximate gradient”, as Wright [2] puts it. As far back as in the
1960s, many direct search methods have been invented, e.g. the famous Nelder-
Mead simplex algorithm [3]. At the same time, the first steps into the world of evo-
lutionary computation (EC) were taken, presenting very simple versions of what is
now subsumed under the unified denotation evolutionary algorithms (EA). These
do not only use bio-inspired heuristics, they also employ randomness. However,
the extensive use of random numbers and the fragmentary theory supporting
EAs may be considered a drawback. Nevertheless, these optimization methods
have demonstrated their problem solving capability in numerous real-world ap-
plications.

Interestingly, in recent years, the mathematical optimization community has
again shown increased interest in direct search methods, e.g. Kolda et al. [4].
This may have to do with (i) the fact that these techniques simply did not go
extinct on the practitioners side, and (ii) improved theoretical analysis methods
that now help tackling heuristic algorithms. In computer science, the growing
field of randomized algorithms is exclusively dealing with algorithms employing
random numbers — not only in optimization. Motwani and Raghavan [5] give an
overview.

This section targets at introducing the main EA concepts and specialized tech-
niques for three important application areas: Multiobjective optimization, opti-
mization under uncertainty, and multimodal optimization. These are relevant to
the topic of this book as they are closely interrelated and often encountered con-
joined in real-world applications.

Historical roots Although there have been precursors in proposing the utiliza-
tion of evolutionary concepts for optimization tasks, as e.g. Bremermann [6] (also
see Fogel’s fossil record [7]), invention and development of the first evolutionary
algorithms is nowadays attributed to a handful of pioneers who independently
suggested three different approaches.

– Fogel, Owens, and Walsh introduced evolutionary programming (EP) [8], at
first focused at evolving finite automata, later on modified into a numerical
optimization method.

– Genetic algorithms (GAs), as laid out by Holland [9], mainly dealed with com-
binatorial problems and consequentially started with binary strings, inspired
by the genetic code found in natural life.

– Evolution strategies (ESs) as brought up by Rechenberg [10] and Schwefel [11]
began with solving experimental engineering problems by hand using dis-
crete/integer parameters, but turning to real-valued representations when nu-
merical problems had to be solved.

In the early 1990s, a fourth branch of evolutionary algorithms emerged, explic-
itly performing optimization of programs: Genetic programming (GP), suggested

2

by Koza [12]. Since about the same time, these four techniques are collectively
referred to as evolutionary algorithms, building the core of the evolutionary com-
putation (EC) field.

What is an evolutionary algorithm? Today, there is little doubt about compo-
nents and general structure of an EA. It is understood as population based direct
search algorithm with stochastic elements that in some sense mimics the organic
evolution.

Besides initialization and termination as necessary constituents of every algo-
rithm, EAs consist of three important factors: A number of search operators, an
imposed control flow (fig. 1), and a representation that maps adequate variables
to implementable solution candidates.

Although different EAs may put different emphasis on the search operators
mutation and recombination, their general effects are not in question. Mutation
means neighborhood based movement in search space that includes the explo-
ration of the ‘outer space’ currently not covered by a population, whereas re-
combination rearranges existing information and so focuses on the ‘inner space.’
Selection is meant to introduce a bias towards better fitness values; GAs do so
by regulating the crossover via mating selection, ESs utilize the environmental
selection.

mating selection

recombination

initialization
and evaluation

mutationevaluation

test for termination

environmental
 selection

crossoverreplacement

Fig. 1. The evolutionary cycle, basic working scheme of all EAs. Terms common for describing
evolution strategies are used, alternative (GA) terms are added below.

A concrete EA may contain specific mutation, recombination, or selection op-
erators, or call them only with a certain probability, but the control flow is usually
left unchanged. Each of the consecutive cycles is termed a generation. Concern-
ing the representation, it should be noted that most empiric studies are based
on canonical forms as binary strings or real-valued vectors, whereas many real-
world applications require specialized, problem dependent ones.

3

For an in-depth coverage on the defining components of an EA and their con-
nection to natural evolution, see Eiben and Schoenauer [13], Eiben and Smith [14],
and Bäck, Fogel, and Michalewicz [15].

Evolution strategies In the following, we introduce the most important canon-
ical ES variants for single objective optimization, which serve as basis for more
specialized algorithms later on.

The (1 + 1)-ES The first ES, the so-called (1 + 1)-ES or two membered evolution
strategy, uses one parent and one offspring only. Two rules have been applied to
these candidate solutions:

1. Apply small, random changes to all variables simultaneously.
2. If the offspring solution is not worse (in terms of its function value) than the

parent, take it as the new parent, otherwise retain the parent.

Schwefel [16] describes this algorithm as “the minimal concept for an imitation
of organic evolution.” The (1 + 1)-ES (fig. 2) is applied by many optimization
practitioners to their optimization problem and included in this article for three
reasons: (i) It is easy to implement, (ii) it requires only few exogenous parameters,
and (iii) it defines a standard for comparisons.

The first (1+1)-ES used binomially distributed mutations for integer variables
(Schwefel [17]). These have been replaced by Gaussian mutations for continuous
variables. Rechenberg [18] already proposed a simple rule to control the mutation
strength, the so-called 1/5 success rule. This simple ES requires the specification
of at four parameters (factors), namely the adaptation interval, the required suc-
cess rate, the step size adjustment factor3, and the step size starting value.

3 This is a constant factor c with 1 ≤ c ≤ 0.85, the lower bound being theoretically near-optimal
for simple model problems like the sphere model.

cloning

initialization
and evaluation

mutationevaluation

test for termination

environmental
 selection
replacement

Fig. 2. The evolutionary cycle of a two-membered (1+1) evolution strategy.

4

Population Based ESs Population based ESs use µ parents and λ offspring. Rechen-
berg introduced the first multimembered ES, the so-called (µ + 1)-ES. It uses µ
parents and one offspring and is referred to as the steady-state ES. Schwefel in-
troduced the (µ + λ)-ES, in which λ ≥ 1 candidate solutions are created each
generation, and the best µ out of all µ + λ individuals survive, and the (µ, λ)-ES,
in which the parents are forgotten and only the best µ out of λ candidate solutions
survive. These selection schemes will be discussed later in this section (p. 6).

A birth surplus is necessary for the (µ, λ)-ES, that is λ > µ. Schwefel et al. [19]
and Beyer and Schwefel [20] provide a comprehensive introduction to evolution
strategies.

Note that whereas GAs rely upon a start population uniformly scattered in
a closed search region, ESs—even if population based—may be started around
any start vector like standard optimization algorithms, without lower and upper
bounds for the variables.

Variation in ESs The use of populations enables an extension of the rather sim-
ple 1/5 success rule to control the mutation strength (Schwefel [11]). Beyer and
Schwefel [20] propose some guidelines derived from the philosophy of Dar-
winian evolution to design these variation operators.

1. A state comprises a set of object and strategy parameter values (x(t), s(t)).
Reachability demands that any state can be reached within a finite number
of iterations. This feature is necessary to prove (theoretically) global conver-
gence.

2. Variation operators (mutation and recombination) should not introduce any
bias, e.g. by considering only good candidate solutions. Variation operators
are designed to explore the search space in contrast to selection operators
that exploit the gathered information. Recombination works, according to
Beyer [21], mainly as gene repair operator, not only as building block collec-
tion mechanism.

3. Scalability is the third criterion that should be fulfilled by variation operators:
Small changes of the representation should cause small changes in the func-
tion values.

The standard ES recombination operators produce one offspring from a family
of ρ parent individuals (usually ρ = 2). Consider a set of µ parental vectors of
length N , representing either object or strategy parameters:

{(x11, . . . , x1N), (x21, . . . , x2N), . . . , (xµ1, . . . , xµN)}. (2)

Two recombination schemes are commonly used in ESs. Both use a set R =
{r1, r2, . . . , rρ}, that represents the indices of the mating partners. It is constructed
by randomly (uniformly) choosing ρ numbers (with replacement or not) from the
set {1, 2, . . . , µ}. Discrete recombination selects the entries of the offspring randomly
from R, whereas intermediary recombination averages the ρ corresponding values
of all mating pool members in each component of the newly generated vector.

5

Mutation is applied to the recombined intermediate solution. Mutation in mul-
timembered ESs is a self-adaptive process that relies on the individual coupling
of endogenous strategy parameters with object parameters. After being varied as
described above, the strategy parameters (standard deviations, also called mean
step sizes or mutation strengths) are applied to mutate the object parameters. To
illustrate this procedure, algorithms with one common σ are considered first. To
prevent negative standard deviations, mutation of this σ should be done multi-
plicatively. Beyer and Schwefel [20] discuss an additional argument for a multi-
plicative mutation of the mutation strength on the sphere model. It can be shown,
that in expectation σ should be changed by a factor that only depends on N .
Therefore, the mutation operator can be implemented as

σ(t+1) = σ(t) · exp(τz), (3)

where z is a realization of anN (0, 1) distributed random variable. The parameter
τ is the so-called learning rate. The object variables are mutated next:

x(t+1) = x(t) + w, (4)

where w is a realization of an N (0, σ(t+1)) distributed random variable. The mul-
tiplicative mutation scheme for one σ can be extended to several strategy param-
eters σ = (σ1, . . . , σN). Schwefel [22] proposes the following extended log-normal
rule:

σ(t+1) =
(
σ
(t)
1 exp(τz1), . . . , σ

(t)
d exp(τzN)

)
, (5)

where zi are realizations of N standard normally distributed random variables,
1 ≤ i ≤ N . This mutation scheme employs a single learning rate τ for all strategy
parameters. An alternative procedure that utilizes a global and a local learning
parameter τ0 and τ , respectively, is suggested by Bäck and Schwefel [23]. Self-
adaptive correlated mutations have already been introduced in 1974, see Schwe-
fel [24] and Schwefel [25].

Selection in ESs Selection should direct the evolutionary search toward promising
regions. In ESs, only candidate solutions with good function values are allowed
to reproduce. The replacement (environmental selection) process is deterministic
in contrast to the random processes used in GAs. This selection scheme is known
as truncation or breeding selection in biology. The κ-selection scheme takes the age
of candidate solutions into account: Only candidate solutions that are younger
than κ generations may survive, regardless of their fitness. For κ = 1 this selection
method is referred to as comma-selection: only offspring individuals can reproduce.
The κ-selection is referred to as plus-selection for κ = ∞: Both the offspring and
the parents belong to the mating pool. The plus-selection is an elitist selection
scheme, because it guarantees the survival of the best individual found so far.

Table 1 summarizes important ES parameters [26]. These parameters build
an algorithm design. In addition to algorithm designs optimization practitioners
have to cope with problem designs which will be discussed next.

6

Table 1. Algorithm design of ES

Symbol Parameter Range

µ Number of parent individuals N
ν = λ/µ Offspring-parent ratio R+

σ
(0)
i Initial standard deviations R+

nσ Number of standard deviations. N denotes the problem dimen-
sion

{1, N}

τ0, τ Multiplier for mutation parameters R+

ρ Mixing number {1, µ}
rx Recombination operator for object variables {intermediary,discrete}
rσ Recombination operator for strategy variables {intermediary,discrete}
κ Maximum age R+

Ways to Cope with Uncertainty In the following, we will distinguish three types
of parameters that influence experimental results [27]. The first type of parame-
ter to be mentioned is a control parameter. Control parameters can be set by an
experimenter to “control” the experiment.

The second type of parameter, so–called environmental parameter depends on
the environment at the time the experiment is performed. Some authors refer to
environmental parameters as “noise” parameters. Note, that environmental pa-
rameters include measurement errors such as falsely calibrated measurement in-
struments, inexact scales, scale reading errors, etc. Data preprocessing techniques
were developed to reduce this source of error, which occurs in nearly every field
setting. In some situations, environmental parameters can be treated as having a
given distribution that is characteristic for the given experimental setup.

The third type of parameter, so–called model parameter describes the uncer-
tainty of the mathematical modeling. First, we have to take into account that com-
puter simulations require a model which simplifies the underlying real-world sce-
nario. Therefore, simulation results are only approximations of the corresponding
real-world data. Next, if stochastic (and not deterministic) simulations are consid-
ered, the measurements may be exact (because there is no environmental noise),
but some of the models’ parameters are random parameters. In some cases, there
is a known (subjective) distribution which describes this uncertainty.

As an example, we consider a sequence of traffic signals along a certain route
or elevators’ movements in high-rise buildings. Optimization via simulation sub-
sumes all problems in which the performance of the system is determined by
running a computer simulation. If the result of a simulation run is a random vari-
able, we cannot optimize the actual value of the simulation output, or a singular
performance of the system. One goal of optimization via simulation may be to op-
timize the expected performance. In addition, consider a field study which was
performed to validate the results from the computer simulation. This field study
includes environmental parameters.

Summarizing, there are two fundamental sources of uncertainty (or noise) that
can be described by environmental and model parameters. Figure 3 illustrates
these parameters in the context of algorithm and problem designs.

7

Algorithm
design

[Population size]

Problem
design

Control
[Number of runs]

Environment
[Arrival rate]

Model
[Fitness function]

Fig. 3. Before an EA can be started, the optimization practitioner has to specify several parameters.
Examples are shown in brackets. Environmental and model parameters can be affected by noise.

The efficiency of the evaluation and selection method is a crucial point, since
averaging over repeated runs reduces the efficiency of the optimization process.

The Impact of Noise on EAs Noise makes it difficult to compare different solutions
and select the better ones. Noise affects the selection process in evolutionary al-
gorithms: In every iteration, the best µ out of λ candidate solutions have to be
determined.

Wrong decisions can cause stagnation of the search process: Over-valuated
candidates—solutions that are only seemingly better—build a barrier around the
optimum and prevent convergence. Or, even worse, the search process can be mis-
guided: The selection of seemingly good candidates moves the search away from
the optimum. This phenomenon occurs if the noise level is high and the probabil-
ity of a correct selection is very small.

One may attempt to reduce the effect of noise explicitly (explicit averaging).
The simplest way to do so is to sample a solution’s function value n times, and
use the average as estimate for the true expected function value. This reduces the
standard deviation of the noise by a factor of

√
n, while increasing the running

time by a factor of n.
In contrast to explicit averaging, some authors proposed implicit averaging,

i.e., increasing the population size to cope with uncertainty in evolutionary opti-
mization. Theoretical results lead to contradictory recommendations: In [28] the
authors conclude that it is better to increase the population size whereas [29]
shows that increasing the sample size is advantageous.

Further means used by evolutionary algorithms to cope with noise are aver-
aging techniques based on statistical tests, local regression methods for function
value estimation, or methods to vary the population size [30–36]. Because uncer-
tainties complicate the selection process for direct search methods, some authors
suggested modified selection operators.

A Taxonomy of Selection Methods As introduced above, noise affects selection.
Following Bechhofer, Santner, and Goldsman [37] and Bartz-Beielstein [38], we

8

present a taxonomy of elementary selection methods. Depending on a priori
knowledge, selection schemes can be classified according to the following criteria:

Threshold: subset selection – indifference zone.
Termination: single stage – multi stage (sequential).
Sample size: open procedures – closed procedures.
Variances: known – unknown, equal – unequal.

The goal of subset selection is the identification of a subset containing the best
candidate. It is related to screening procedures. Subset selection is used when ana-
lyzing results, whereas the indifference zone (IZ) approach is used when designing
experiments. The sample size is known in subset selection approaches, it is deter-
mined prior to the experiments in the indifference zone approaches. Single stage
procedures can be distinguished from multi stage procedures. The terms “multi
stage” and “sequential” will be used synonymously. The latter can use elimina-
tion: If inferior solutions are detected, they are eliminated immediately. Selection
procedures are closed, if prior to experimentation an upper bound is placed on
the number of observations to be taken from each candidate. Otherwise, they are
open. Furthermore, it is important to know whether the variance is common or
known. Bartz-Beielstein [38] discussed similarities and differences of these ap-
proaches. He also analyzed threshold-based procedures, which were successfully
applied to noisy, dynamic functions, e.g., in elevator group control. Threshold
rejection increases the chance of rejecting a worse candidate at the expense of ac-
cepting a good candidate. It might be adequate if there is a very small probability
of generating a good candidate.

How can the experimenter cope with this multitude of selection methods?
Surely, there is no general rule for the determination of the best selection method.
Many theoretical results consider simplified sources of uncertainty, e.g. they re-
gard environmental parameters as random with a distribution that is known.
Performing experiments in a systematic manner might be useful. Modern ap-
proaches such as racing or sequential parameter optimization (SPO) can be rec-
ommended in this context [39, 40]. A typical result from an SPO analysis is shown
in Figure 4.

Regarding the classification from fig. 3, there two starting points to cope with
noise: (i) varying the algorithm design, e.g., choosing a modified selection opera-
tor or (ii) modifying the problem design, e.g., refining the fitness function. Evolu-
tionary optimization itself can be considered as an evolutionary process. Based on
results from previous optimization runs, the experimenter may gain insight into
the behavior of the evolutionary algorithm and into the structure of the problem
as well. He is able to modify (improve) algorithm and problem designs—black
box situations turn into gray box situations. Combinations of classical and evolu-
tionary methods (meta heuristics) may be useful in these situations.

Multiple Objectives For many problems of high practical interest in science and
engineering, several possibly contradicting objectives shall be pursued simulta-
neously. In daily life we are confronted with many examples. E.g. in chemical

9

0

20

40

0

5

10
−0.5

0

0.5

1

1.5

2

2.5

x 10
4

NPARENTSNU

F
un

ct
io

n
va

lu
e

Fig. 4. SPO combines classical and modern statistical tools for the analysis of algorithms. Modifying
population size (NPARENTS) and selective pressure (NU) can improve algorithm’s performance
significantly. Evolution strategies with small population sizes and moderate selective pressure per-
form best in this setting.

process engineering, where the productivity of chemical reactors is in contrast
to their loss during the start up and shut down phases. In the textile industry,
a similar conflict arises for the production of fabrics. Figure 5 shows a simple
discrete example. Total elongation (F1) and extensibility (F2) of the fabric shall
be improved, by means of maximizing F1 and minimizing F2. All objectives are
sufficiently defined and in this case pointwise quantifiable. Their values are deter-
mined by three adjustable control factors (decision variables): Number of knitting
skewers (x1), number of knitting rows (x2) and number of weft threads (x3) per
inch. The challenge for a multi-objective optimization algorithm consists of find-
ing decision variable value sets that fulfill all objectives as well as possible.

In this context, the Pareto [41] concept of optimality proved as suitable. Dur-
ing the beginning of an optimization run, it is often not hard to find solutions
that simultaneously improve both objectives. However, if an objective can be im-
proved further only by worsening an other objective, a solution is called Pareto-
optimal. Due to different possible preferences concerning the single objectives, this
leads to a set of Pareto-optimal solutions, each of them representing a valid op-
timal solution for the multi-objective problem (MOP). Figure 5 shows six solu-
tions in the decision variable space (a) and the objective space (b) for the fabric
improvement example. In this example, the decision variable space is discrete
and constrained as indicated by the surrounding solid line. Consequently, there
is only a finite number of possible objective value combinations. Direct compari-
son of solutions 5 and 6 shows that the former improves on F1 without changing
F2. According to the Pareto dominance concept, solution 5 dominates solution 6.
However, pairwise comparison of solutions 1 to 5 does not result in recognizing
any such domination as improvement in one objective always comes along with

10

worsening in the other. These solutions are therefore indifferent to each other,
hence incomparable or non-dominated. If due to problem-specific constraints no
further improvements can be obtained (solutions 1-5 are on the border of the fea-
sible region) the set of all non-dominated solutions represents the Pareto Set in the
decision space and the Pareto Front in the objective space. Since in each case only
one solution can be realized, preference information of a decision maker (DM)
must be used next to select the final solution of the MOP.

2

1

3

5
6

1

2

3

4 6
dominated

b
et

te
r

better

dom
in

at
ed

non−dominated

(a) Decision Space (b) Objective Space

X2

X3

Extensibility F2

T
o

ta
l

el
o

n
g

a
ti

o
n

 F
1

X1

non
−dom

in
at

ed

5

4

feasible region

Fig. 5. The Pareto-dominance concept. (a) Decision space, (b) objective space

Why Use Evolutionary Algorithms? Problems with several conflicting criteria have
been treated for many years, e.g. with a considerable variety of techniques de-
veloped in Operational Research. Concise overviews of existing approaches can
be found in Achilles et al. [42] and Miettinen [43]. Usually one tries to reduce
the MOP into a single-objective problem, so that it can be solved by means of
methods from single-objective optimization. One possible approach consists of
choosing a single criterion as main objective, and transform the other objectives
to constraints with lower or upper bounds. Without specific knowledge of the
problem, the choice of concrete upper and lower bounds suffers from arbitrari-
ness. Alternatively, one may try aggregation-based approaches. These combine
all criteria into a single, parametrized one. The aggregation can be accomplished
by any combination of arithmetical operations (i.e. a weighted sum), according
to some understanding of the problem. However, these techniques have several
limitations. Some of them are e.g. susceptible to the shape (convex/concave) of
the Pareto front, others to its continuity (connected/disconnected). In addition,
most of the ‘conventional’ approaches are only able to compute one single non-
dominated solution per run. Searching for a representative set of non-dominated
solutions requires a restart with different external parameter settings and differ-
ent starting points for each run.

11

Evolutionary algorithms are robust search methods, whose success and failure
is by far less susceptible to the shape or the continuity of the Pareto front. Their
greatest advantage is that they are able to provide a point-wise approximation
of the whole Pareto front in one go by employing cooperative search of a whole
population.

Algorithm Design If one regards the development of the evolutionary multi-objective
(EMO) algorithms within the last two decades, then the rise of suggested ap-
proaches is impressing. The largest well-known collection of existing approaches
was arranged by Coello Coello and contains over 1900 entries [44]. A common
classification of all EMO-algorithms comes from Masud [45]. Depending on the
time at which the preference information from the DM is used, four classes
can be differentiated: (i) Non-preference, (ii) a-priori, (iii) interactive, and (iv) a-
posteriori. In the following, this classification is not discussed in detail as most
EMO-algorithms can be assigned to the last category. The optimization process
takes place before any preference information is incorporated. This entails a clear
task definition: Find a representative set of non-dominated solutions as close
(convergence) as possible to the Pareto optimal set/front. Additionally, the result-
ing approximation has to exhibit a good distribution of solutions in terms of both
spread and uniformity - usually described by the term of diversity. The aim of this
section is to give an overview of the main methods that have been developed in
order to achieve these goals.

Fitness Assignment When moving from single-objective to multi-objective opti-
mization while applying EAs, the most important changes to be made concern
the selection operator and especially the fitness assignment. In EAs, the fittest
individuals have better chances to survive and reproduce. For single-objective
optimization, only one scalar fitness value exists. However, in the multi-objective
case we have to deal with a fitness vector. Since EAs need a scalar to work on,
generally two design decisions must be made: On the one hand, this vector must
be scaled to enable for EA selection, and on the other hand the two conflicting
tasks of convergence and diversity shall be respected. But how to assign the fit-
ness of an individual in order to express suitability towards both goals? We can
roughly divide the existing answers into two categories:

Combined Fitness Assignment: Fitness is assigned such that the fitness value
represents convergence and diversity at the same time.

Single Fitness Assignment: Fitness assignment respects only one goal. Usually,
this is convergence, as in the single-objective case.

Aggregation-, performance-, and Pareto-based approaches belong to the first
category. Aggregation-based approaches are the most traditional as well as sim-
plest possibility. Recently, performance-based fitness assignment strategies are
successfully used to evaluate the fitness of a new individual in relation to the
entire population. For example, the S-metric selection (SMS)-EMOA utilizes the
well-known S-metric (hypervolume) to calculate the fitness of an individual. This

12

measure is commonly used to evaluate the performance of an EMOA. It respects
proximity to the Pareto front as well as diversity of the solution set.

Pareto-based approaches use the Pareto dominance concept itself for fitness
assignment. Differences between these approaches arise in the methods em-
ployed to exploit the partial order. According to Zitzler et al. [46], this kind of
information can be divided into: (i) Dominance rank: The number of solutions
in the population that dominate the solution under consideration, (ii) dominance
count: The number of solutions in the population that are dominated by the so-
lution under consideration, and (iii) dominance depth: The rank of the solution in
the non-dominated sorted population. The latter approach is utilized by many
successful algorithms, e.g. the Non-dominated Sorting Genetic Algorithm (NSGA)-
II by Deb and others [47]. Dominance rank was first employed by Fonseca and
Fleming in their Pareto envelope-based algorithm (PESA) [48]. Today, a multiplicity
of methods are based on this principle, see for example Bosman and Thierens [49].
Dominance depth and dominance rank are successfully combined in the Strength
Pareto Evolutionary Algorithm 2 (SPEA2) approach by Zitzler and others [50].

However, most of these algorithms apply a secondary fitness assignment strat-
egy that serves the goal of diversity. In most cases they try to incorporate density
information into the selection process (mating/environmental), according to the
rule: The smaller the density of individuals within a neighborhood, the larger the
chance of an individual to reproduce. Figure 6 shows the three most frequently
used methods: Kernel-based, grid-based and nearest-neighborhood measures. Fitness
sharing, as e.g. used in NSGA, is a kernel-based strategy. The distance of an in-
dividual to all other individuals in the population is calculated and summed up.
These values are then used to deflect the evolutionary search out of densely pop-
ulated regions. Grid-based techniques as e.g. utilized by the Pareto Archived Evo-
lution strategy (PAES) of Knowles and Corne [51], employ hypergrids to define
neighborhoods within the objective space. The more individuals in a box, the
heavier they are penalized (see fig. 6). Nearest neighborhood techniques as used
in SPEA2 and its variants calculate the distance between an individual and its
nearest neighbor in order to estimate the neighborhood density.

Criterion-based approaches represent the second category of fitness assign-
ment strategies. They all share the same basic idea: The fitness value of an in-
dividual is determined by only one of the criteria according to the goal of con-
vergence. However, the choice of a single criterion for any individual shall be
reconsidered repeatedly (in each generation). As thereby parts of the population
are selected according to different criteria, it is hoped that the goal of diversity
can be achieved indirectly (see Schaffer [52] and Laumanns and others [53]).

Representations and Variation Operators Design and analysis of representations and
corresponding genetic operators is prevalent in the field of evolutionary compu-
tation. Often, an adept combination of all components determines the system’s
success or failure. This insight is ubiquitous in the case of single-objective opti-
mization. However, in multi-objective optimization, the conceptual approaches
are still mainly concerned with the selection operator. Research focusing on vari-

13

kernel−base

nearest neighbor

grid−base

Extensibility

T
o
ta

l
el

o
n

g
a

ti
o
n

Fig. 6. Most common diversity preservation strategies in EMOA.

ation operators or representations remains rare. Some recent approaches are:
Rudolph [54] and Hanne [55] who investigate control mechanisms for the mu-
tation strength in the multi-objective case. Grimme and Schmitt [56] focus on re-
combination operators that produce diverse offspring in each generation.

Elitism Elitism preserves previously attained good solutions from one generation
to the next. The prime example of an elitist algorithm in the single-objective case
is the ‘plus’-selection ES. In the multi-objective case two types of elitism are used:
Maintaining elitism in the current population, as is already done in the single-
objective case, or doing so in an archive (secondary population) that stores non-
dominated solutions externally. Archive contents may or may not be integrated
again into the optimization process (Zitzler and others [46]). Of vital importance
is the criterion used to control replacement of archive members, the most com-
monly used of which is the dominance criterion. It leads to an archive of non-
dominated solutions, relative to all solutions generated during a run.

Future Perspectives As has been hinted to in the previous paragraphs, a lot of work
remains to be done on EMOAs. We briefly discuss the currently most promising
paths:

Investigating representations and variation operators: Büche and others [57]
show that the interaction between selection and search operators is often not
co-ordinated well, and that approximation of the Pareto front cannot be done
with arbitrary precision. Further on, there is the dilemma of stagnation with
good diversity of the solution set on the one hand, or arbitrarily exact approx-
imation of a few points on the Pareto front. We conjecture that this trade-off
between convergence and diversity can be attributed to the fact that variation
operators cannot simply be taken over from the single-objective case and that

14

changing only the selection operator is not sufficient to meet the requirements
of multi-objective optimization.

Focusing on the region of interest (ROI): In the last years, most EMO re-
searchers focus on algorithms that are able to find the whole Pareto front.
However, in practice, the decision maker is only interested in a specific region
of the Pareto-front. Focusing on a region derived from user preferences may
help to increase convergence speed and/or quality and also simplify solution
selection by the DM later on.

Parallelism: Considering the suitability of EAs working in a parallel manner, one
should expect that the development of parallel approaches stands only at the
beginning. Apart from first successful attempts to convert the state-of-the-art
algorithms into a parallel version [58], an increasing number of parallel ap-
proaches has been published only recently [59, 60].

Parameter tuning: Attaining good parameter settings for a given problem-
algorithm combination currently is one of the hot topics in single-objective op-
timization [38]. It is necessary to adapt those techniques for the multi-objective
case in order to avoid the commonly used manual parameter tuning and pro-
vide important insight into parameter interactions.

Multimodal Problems Although, during the last decades, many empirical and
most of the theoretical studies in EC have been devoted to simple test prob-
lems with only one extremal point, the great majority of practical applications
requires optimization in far more complex fitness landscapes. Multimodality—
the presence of more than one locally optimal point—requires a shift from a hill-
climbing oriented towards a global perspective. At the top of the hill, the need
arises to somehow ’escape’ the associated local optimum. This may be done in
two different ways. Either, one tries to save as much positional and learned (step
sizes/mutation strengths) information as possible and, preserving this informa-
tion, attempts to jump over the neighboring valleys. Or, one completely gives up
the current search space location and performs random initialization again. For
mutation strenghts getting larger and larger, the former scenario more and more
resembles the latter.

However, if the treated optimization problem is not available in a closed alge-
braic form, detecting the arrival at a local optimum may not be trivial, depending
on the employed variable representation. Combinatorial and binary encoded op-
timization problems come with a natural minimal step definition which enables
enumeration of the neighborhood. For real-valued representations, eqn. 6 speci-
fies a necessary and sufficient condition for a local optimum, with x∗L meaning
its search space location, d(x,y) a distance metric, and ε the maximal distance
to tested neighboring search points. Nevertheless, the bounded but still infinite
neighborhood cannot be completely explored efficiently and one has to rely on
the strong causality assumption (Rechenberg[61]: similar causes entail similar ef-
fects) to identify local optima at least in probability.

x∗L is local minimizer iff ∃ε : ∀x ∈ X : d(x,x∗L) < ε⇒ f(x∗L) ≤ f(x) (6)

15

Strongly related to the notion of local optima is the one of basins of attraction;
these emcompass the search space portion leading to an optimum if the steepest
descent is followed. For this local search process, efficient approximation meth-
ods are known, e.g. quasi-Newton algorithms. However, identification of differ-
ent basins is even more difficult than local optimum detection if no further infor-
mation regarding size and/or location of the basins is available. The key property
of multimodal optimization methods is thus how efficient they are in finding the
different search space regions that contain the best local optima.

Canonical population based EAs perform global and local search at the same
time, gradually narrowing their focus to the most promising regions, and more
sooner than later to a single basin of attraction (e.g. Preuss, Schönemann and
Emmerich [62]). From the discussion above, it becomes clear that the ability to
explore multiple promising regions—either concurrently or sequentially—is de-
cisive for obtaining well performing EA variants. But for a given limit of available
computational time, these always have to face the global vs. local search tradeoff
like any other global optimization algorithm.

One possible way to speedup local optimization, so that more effort can be di-
verted to search space exploration, is to hybridize EAs with existing local search
methods. These approaches are subsumed under the term memetic algorithms
(MA) that was introduced by Moscato [63]. A recent overview is given by Krasno-
gor and Smith [64], together with a suggested taxonomy.

Most other specialized EAs strive for enhanced global search capabilities by
means of at least one of the following three techniques:

Restarts are utilized to enhance the chance of reaching the/a basin of attraction
of the global optimum. As an example, an efficient restart CMA-ES for mul-
timodal problems has been suggested by Auger and Hansen [65]. Multistart
methods obtain potential solutions consecutively, and every new instantiation
may be provided with search results of completed previous runs. They avoid
the problem of jumping into a neighboring good region by giving up the cur-
rent search space location completely.

Diversity maintenance aims for a uniform distribution of individuals over the
whole search space. Comparing relative or absolute distances of solution
candidates and applying clustering methods are common means to prevent
overlapping search paths and promote good search space coverage. Diver-
sity may be held up explicitly or implicitly. Following Eiben and Smith [14],
explicit means that active measures are taken to model the distribution of
search points in the desired way, whereas implicit stands for deliberately
slowing down information exchange by restricting recombination or selec-
tion/replacement. Classical island models provide implicit diversity main-
tenance by building relatively independent subpopulations. Spatially struc-
tured EAs [66] do so by restricting the effect of recombination and selection
operators to the local neighborhood. Shifting balance GAs by Oppacher and
Wineberg [67] exemplify explicit diversity maintenance as they prevent sub-
population overlap which is measured by absolute population distances.

16

Niching methods also strive for a suitable spread of search points, only on the
level of basins of attraction. As Mahfoud [68] points out, it is the aim of niching
algorithms to detect separate basins and keep them in focus of the search. Un-
fortunately, basin identification within an EA is not easy and prone to error, so
that endogenously retrieved basin information is highly unreliable and nonex-
istent when the optimization starts. Crowding by De Jong [69] and fitness
sharing by Goldberg and Richardson [70] are regarded as the classical niching
methods. The former employ relative, the latter absolute distances. These have
been carried further e.g. by Li et al. [71], Streichert et al. [72], and Shir [73],
but still the radii employed for detecting search points located together in a
basin remain problematic. Only few approaches integrate fitness topology in-
formation into the basin identification process, e.g. the universal evolutionary
global optimizer (UEGO) by Jelasity [74], Ursem’s multinational GA [75], and
the sample-based crowding method proposed by Ando et al. [76].

It shall be noted that solving multimodal problems is related to tackling con-
strained or multiobjective ones. Removing constraints from a problem by trans-
forming it by means of (metric) penalty functions (see e.g. Michalewicz and
Schoenauer [77] and Coello Coello [78]) as commonly done in EC most often leads
to multimodal problems even if the original problem was unimodal.

In multi-objective optimization, the focus has been mainly on the objec-
tive space for a long time. Today, it becomes increasingly clear that population
movement in the decision (search) space heavily depends on the multimodal
search properties of the applied optimization algorithms (Preuss, Naujoks and
Rudolph [79]).

Conclusions May it be (or not) that one day there is no more need to invent new
optimization tools because we have got the best tailored ones already for every
possible real-world problem. May it be (or not) that then the dream of hardlin-
ers has come true that all of these best tailored methods can abstain from using
pseudo random numbers for deciding upon the next iteration in the search for the
solution. But, contemporary tools are still well advised not to rely on determinis-
tic algorithms alone. That is, why an idea from the early days of digital computers
is still alive, i.e., the idea to mimic procedures found in nature that obviously have
led to remarkably effective systems or subsystems. One may think that nature had
enough time to achieve a good solution by means of pure chance, but time has al-
ways been scarce when there are competitors, and the way nature finds its way is
much more sophisticated.

Anyway, it is a matter of fact that evolutionary algorithms have become
widely used in practice since their invention in the 1960s and even found their
way into articles in the field of theoretical computer science. Their domain of
application are ’black box’ situations, where the analysis of the situation at hand
does not help or is too costly or dangerous, i.e., in case of experimental design and
even computer simulation of nonlinear dynamic systems and processes. How-
ever, situations may occur where the black box situations turn into gray or even

17

white box situations. EAs can be combined with classical methods which leads
to meta heuristics, and the optimization practitioner can get the best from both
worlds.

References

1. D.H. Wolpert and W.G. Macready. No free lunch theorems for optimization. IEEE Transactions
on Evolutionary Computation, 1(1):67–82, 1997.

2. M.H. Wright. Direct search methods: Once scorned, now respectable. In Proc. 1995 Dundee
Biennial Conf. in Numerical Analysis), volume 344 of Pitman Res. Notes Math. Ser., pages 191–208.
CRC Press, Boca Raton, FL, 1995.

3. J.A. Nelder and R. Mead. A simplex method for function minimization. Computer Journal,
7(4):308–313, 1965.

4. T.G. Kolda, R.M. Lewis, and V.J. Torczon. Optimization by direct search: New perspectives on
some classical and modern methods. SIAM Review, 45(3):385–482, 2003.

5. R. Motwani and P. Raghavan. Randomized algorithms. Cambridge University Press, New York,
1995.

6. H.J. Bremermann. Optimization through evolution and recombination. In M.C. Yovits, G.T.
Jacobi, and G.D. Goldstein, editors, Self-Organizing Systems. Spartan Books, Washington DC,
1962.

7. D.B. Fogel. Evolutionary Computation: The Fossil Record. Wiley–IEEE Press, New York, 1998.
8. L.J. Fogel, A.J. Owens, and M.J. Walsh. Artificial intelligence through a simulation of evolution.

In A. Callahan, M. Maxfield, and L.J. Fogel, editors, Biophysics and Cybernetic Systems. Spartan
Books, Washington DC, 1965.

9. J.H. Holland. Genetic algorithms and the optimal allocation of trials. SIAM Journal of Comput-
ing, 2(2):88–105, 1973.

10. I. Rechenberg. Evolutionsstrategie: Optimierung technischer Systeme nach Prinzipien der biologischen
Evolution. Frommann-Holzboog, Stuttgart, 1973.

11. H.-P. Schwefel. Evolutionsstrategie und numerische Optimierung. PhD thesis, Department of Pro-
cess Engineering, Technical University of Berlin, Germany, 1975.

12. J.R. Koza. Genetic Programming: On the Programming of Computers by Means of Natural Selection.
MIT Press. Cambridge, MA, 1992.

13. A.E. Eiben and M. Schoenauer. Evolutionary computing. Information Processing Letters, 82(1):1–
6, 2002.

14. A.E. Eiben and J.E. Smith. Introduction to Evolutionary Computing. Springer, Berlin, 2003.
15. Th. Bäck, D. B. Fogel, and Z. Michalewicz, editors. Handbook of Evolutionary Computation. Ox-

ford University Press, New York, and Institute of Physics Publ., Bristol, 1997.
16. H.-P. Schwefel. Evolution and Optimum Seeking. Sixth-Generation Computer Technology. Wiley

Interscience, New York, 1995.
17. H.-P. Schwefel. Kybernetische Evolution als Strategie der exprimentellen Forschung in der

Strömungstechnik. Master’s thesis, Technical University of Berlin, Germany, 1965.
18. I. Rechenberg. Evolutionsstrategie: Optimierung technischer Systeme nach Prinzipien der biologis-

chen Evolution. PhD thesis, Department of Process Engineering, Technical University of Berlin,
Germany, 1971.

19. H.-P. Schwefel, G. Rudolph, and Th. Bäck. Contemporary evolution strategies. In F. Morán,
A. Moreno, J.J. Merelo, and P. Chacón, editors, Advances in Artificial Life – Proc. Third European
Conf. Artificial Life (ECAL’95), pages 893–907. Springer, Berlin, 1995.

20. H.-G. Beyer and H.-P. Schwefel. Evolution strategies – A comprehensive introduction. Natural
Computing, 1:3–52, 2002.

21. H.-G. Beyer. Toward a theory of evolution strategies: On the benefit of sex – the (µ/µ, λ)-theory.
Evolutionary Computation, 3(1):81–111, 1995.

22. H.-P. Schwefel. Numerische Optimierung von Computer–Modellen mittels der Evolutionsstrategie,
volume 26 of Interdisciplinary Systems Research. Birkhäuser, Basle, Switzerland, 1977.

18

23. Thomas Bäck and Hans-Paul Schwefel. Evolutionary algorithms: Some very old strategies for
optimization and adaptation. In D. Perret-Gallix, editor, New Computing Techniques in Physics
Research II, pages 247–254. World Scientific, Singapore, 1992.

24. Hans-Paul Schwefel. Numerical Optimization of Computer Models. Wiley, Chichester, 1981.
25. Hans-Paul Schwefel. Collective phenomena in evolutionary systems. In P. Checkland and

I. Kiss, editors, Problems of Constancy and Change – The Complementarity of Systems Approaches to
Complexity, Proc. 31st Annual Meeting, volume 2, pages 1025–1033. Int’l Soc. for General System
Research, 1987.

26. Th. Bartz-Beielstein. Experimental analysis of evolution strategies— Overview and compre-
hensive introduction. Interner Bericht des Sonderforschungsbereichs 531 Computational Intel-
ligence CI–157/03, Universität Dortmund, Germany, 2003.

27. T.J. Santner, B.J. Williams, and W.I. Notz. The Design and Analysis of Computer Experiments.
Springer, Berlin, 2003.

28. Hans-Georg Beyer. Towards a theory of evolution strategies: Some asymptotical results from
the (1 + /, λ)-theory. Evolutionary Computation, 1(2):165–188, 1993.

29. J.M. Fitzpatrick and J.J. Grevenstette. Genetic algorithms in noisy environments. Machine learn-
ing, 3:101–120, 1988.

30. P. Stagge. Averaging efficiently in the presence of noise. In A. Eiben, editor, Parallel Problem
Solving from Nature, PPSN V, pages 188–197. Springer, Berlin, 1998.

31. H.-G. Beyer. Evolutionary algorithms in noisy environments: Theoretical issues and guidelines
for practice. CMAME (Computer methods in applied mechanics and engineering), 186:239–267, 2000.

32. Y. Sano and H. Kita. Optimization of Noisy Fitness Functions by Means of Genetic Algorithms
using History of Search. In M. Schoenauer, K. Deb, G. Rudolph, X. Yao, E. Lutton, J.J. Merelo,
and H.-P. Schwefel, editors, Parallel Problem Solving from Nature (PPSN VI), volume 1917 of
LNCS, pages 571–580. Springer, Berlin, 2000.

33. D.V. Arnold. Evolution strategies in noisy environments — A survey of existing work. In
L. Kallel, B. Naudts, and A. Rogers, editors, Theoretical Aspects of Evolutionary Computing, Nat-
ural Computing, pages 239–249. Springer, Berlin, 2001.

34. J. Branke, C. Schmidt, and H. Schmeck. Efficient fitness estimation in noisy environments. In
L.Spector et al., editor, Proc. of the Genetic and Evolutionary Computation Conference (GECCO’01),
pages 243–250. Morgan Kaufmann, San Francisco, 2001.

35. Th. Bartz-Beielstein and S. Markon. Tuning search algorithms for real-world applications: A
regression tree based approach. In G. W. Greenwood, editor, Proc. 2004 Congress on Evolutionary
Computation (CEC’04), Portland, OR, volume 1, pages 1111–1118. IEEE Press, Piscataway NJ,
2004.

36. Yaochu Jin and Jürgen Branke. Evolutionary optimization in uncertain environments - a survey.
IEEE Transactions on Evolutionary Computation, 9(3):303–318, JUN 2005.

37. R. E. Bechhofer, T. J. Santner, and D. M. Goldsman. Design and Analysis of Experiments for Statis-
tical Selection, Screening, and Multiple Comparisons. Wiley, 1995.

38. Th. Bartz-Beielstein. Experimental Research in Evolutionary Computation—The New Experimental-
ism. Springer, Berlin, 2006.

39. M. Birattari, T. Stützle, L. Paquete, and K. Varrentrapp. A racing algorithm for configuring
metaheuristics. In W. B. Langdon et al., editor, GECCO 2002: Proceedings of the Genetic and
Evolutionary Computation Conference, pages 11–18. Morgan Kaufmann, 2002.

40. Thomas Bartz-Beielstein, Christian Lasarczyk, and Mike Preuß. Sequential parameter opti-
mization. In B. McKay et al., editors, Proceedings 2005 Congress on Evolutionary Computation
(CEC’05), Edinburgh, Scotland, volume 1, pages 773–780, Piscataway NJ, 2005. IEEE Press.

41. V. Pareto. Cours d’Economie Politique 1. Lausanne, Rouge, 1896.
42. A. Achilles, K.H. Elster, and R. Nehse. Bibliographie zur Vektoroptimierung. Math. Op. forsch.

Stat., Ser. Optim. 10, (2), 1979.
43. K. Miettinen. Nonlinear Multiobjective Optimization. Int. series in operations research and man-

agement science. Kluwer Academic Publishers, Boston, 1998.
44. C.A. Coello Coello. The EMOO repository: A resource for doing research in evolutionary mul-

tiobjective optimization. IEEE Computational Intelligence Magazine, 1(1):37–45, 2006.
45. C.L. Hwang and A.S.M. Masud. Multiple Objective Descision Making – Methods and Applications:

A State-of-the-Art Survey, volume 186 of Lecture Notes in Economics and mathematical Systems.
Springer, Berlin, 1979.

19

46. E. Zitzler, M. Laumanns, and S. Bleuler. A tutorial on evolutionary multiobjective optimization.
In Workshop on Multiple Objective Metaheuristics (MOMH 2002). Springer, Berlin, 2003.

47. K. Deb, S. Agrawal, A. Pratap, and T. Meyarivan. A fast elitist non-dominated sorting genetic
algorithm for multi-objective optimisation: NSGA-II. In M. Schoenauer, K. Deb, G. Rudolph,
X. Yao, E. Lutton, J.J. Merelo, and H.-P. Schwefel, editors, Proc. of the 6th Int’l Conf. on Parallel
Problem Solving from Nature - PPSN VI, volume 1917 of LNCS, pages 849–858. Springer, Berlin,
2000.

48. C.M. Fonseca and P.J. Fleming. On the performance assessment and comparison of stochas-
tic multiobjective optimizers. In H.-M. Voigt, W.-Ebeling, I. Rechenberg, and H.-P. Schwefel,
editors, Parallel Problem Solving from Nature - PPSN IV. Springer, Berlin, 1996.

49. P.A.N. Bosman and D. Thierens. The naive MIDEA: A baseline multi-objective EA. In
C.A. Coello Coello, A. Hernández Aguirre, and E. Zitzler, editors, Proc. Evolutionary Multi-
Criterion Optimization: Third Int’l Conference (EMO 2005), volume 3410 of LNCS, pages 428–442.
Springer, Berlin, 2005.

50. E. Zitzler, M. Laumanns, and L. Thiele. SPEA2: Improving the strength pareto evolutionary
algorithm for multiobjective optimization. In K.C. Giannakoglou, D.T. Tsahalis, J. Periaux, K.D.
Papailiou, and T. Fogarty, editors, Evolutionary Methods for Design, Optimization and Control with
Applications to Industrial Problems, pages 1–6. International Center for Numerical Methods in
Engineering(CIMNE), Barcelona, 2001.

51. J. Knowles and D. Corne. The pareto archived evolution strategy: A new baseline algorithm
for pareto multiobjective optimisation. In P.J. Angeline, Z. Michalewicz, M. Schoenauer, X. Yao,
and A. Zalzala, editors, Proc. Congress on Evolutionary Computation, (CEC’99), volume 1, pages
98–105. IEEE Press, Washington DC, 1999.

52. J.D. Schaffer. Multiple Objective Optimization with Vector Evaluated Genetic Algorithms. PhD
thesis, Vanderbilt University, 1984.

53. M. Laumanns, G. Rudolph, and H.-P. Schwefel. A spatial predator-prey approach to multi-
objective optimization: A preliminary study. In A. E. Eiben, M. Schoenauer, and H.-P. Schwefel,
editors, Parallel Problem Solving From Nature — PPSN V, pages 241–249, Amsterdam, Holland,
1998. Springer, Berlin.

54. G. Rudolph. On a multi–objective evolutionary algorithm and its convergence to the Pareto set.
In D.B. Fogel, H.-P. Schwefel, Th. Bäck, and X. Yao, editors, Proc. Fifth IEEE Conf. Evolutionary
Computation (ICEC’98), Anchorage AK, pages 511–516. IEEE Press, Piscataway NJ, 1998.

55. T. Hanne. On the convergence of multiobjective evolutionary algorithms. European Journal Of
Operational Research, 117(3):553–564, 1999.

56. C. Grimme and K. Schmitt. Inside a predator-prey model for multi-objective optimization:
A second study. In H.-G. Beyer et al., editor, Proc. Genetic and Evolutionary Computation
Conf. (GECCO 2006), Seattle WA, pages 707–714. ACM Press, New York, 2006.

57. D. Büche, S. Müller, and P. Koumoutsakos. Self-adaptation for multi-objective evolutionray
algorithms. In C. M. Fonseca, P. J. Fleming, E. Zitzler, K. Deb, and L. Thiele, editors, Evolutionary
Multi-Criterion Optimization, Second Int.’l Conf., (EMO 2003), number 2632 in LNCS, pages 267–
281. Springer, Berlin, 2003.

58. T. Okuda, T. Hiroyasu, M. Miki, and S. Watanabe. DCMOGA: Distributed Cooperation model
of Multi-Objective Genetic Algorithm. In MPSN - II, The Second Workshop on Multiobjective
Problem Solving from Nature, Granada, 2002.

59. J.L.A. Coello and C.A. Coello. MRMOGA: Parallel evolutionary multiobjective optimization
using multiple resolutions. In D. Corne et al., editor, Proc. 2005 IEEE Congress on Evolutionary
Computation, (CEC 2005), volume 3, pages 2294–2301. IEEE Press, 2005.

60. J. Mehnen, Th. Michelitsch, K. Schmitt, and T. Kohlen. pMOHypEA: Parallel evolutionary
multiobjective optimization using hypergraphs. Technical Report of the Collaborative Research
Centre 531 Computational Intelligence CI–189/04, University of Dortmund, 2004.

61. Ingo Rechenberg. Evolution strategy—nature’s way of optimization. In H. W. Bergmann,
editor, Optimization: Methods and Applications, Possibilities and Limitations. Springer, Berlin, 1989.

62. M. Preuss, L. Schönemann, and M. Emmerich. Counteracting genetic drift and disruptive re-
combination in (µ+, λ)-ea on multimodal fitness landscapes. In H.-G. Beyer, editor, Proc. 2005
Conf. on Genetic and Evolutionary Eomputation, (GECCO 2005), pages 865–872. ACM Press, New
York, 2005.

20

63. P. Moscato. On Evolution, Search, Optimization, Genetic Algorithms and Martial Arts: To-
wards Memetic Algorithms. Technical Report Caltech Concurrent Computation Program, Re-
port. 826, California Institute of Technology, Pasadena, CA, 1989.

64. N. Krasnogor and J.E. Smith. A tutorial for competent memetic algorithms: Model, taxonomy
and design issues. IEEE Transactions on Evolutionary Computation, 5(9):474–488, 2005.

65. A. Auger and N. Hansen. A restart CMA evolution strategy with increasing population size.
In B. McKay et al., editors, Proc. 2005 Congress on Evolutionary Computation (CEC’05), Edinburgh,
Scotland, volume 2, pages 1769–1776. IEEE Press, Piscataway NJ, 2005.

66. M. Tomassini. Spatially Structured Evolutionary Algorithms Artificial Evolution in Space and Time.
Natural Computing Series. Springer, Berlin, 2005.

67. F. Oppacher and M. Wineberg. The shifting balance genetic algorithm: Improving the
GA in a dynamic environment. In W. Banzhaf, J. Daida, A. E. Eiben, M. H. Garzon,
V. Honavar, M. Jakiela, and R. E. Smith, editors, Proc. Genetic and Evolutionary Computation
Conf. (GECCO 1999), Orlando FL, volume 1, pages 504–510. Morgan Kaufmann, San Francisco,
1999.

68. S.W. Mahfoud. Niching Methods for Genetic Algorithms. PhD thesis, University of Illinois at
Urbana Champaign, 1995.

69. K.A. De Jong. An analysis of the behavior of a class of genetic adaptive systems. PhD thesis, Univer-
sity of Michigan, 1975.

70. D.E. Goldberg and J. Richardson. Genetic algorithms with sharing for multimodal function
optimization. In Proc. of the Second Int’l Conf. on Genetic Algorithms on Genetic Algorithms and
Their Application, pages 41–49. Lawrence Erlbaum Associates, Inc., Mahwah, NJ, 1987.

71. J.-P. Li, M.E. Balazs, G.T. Parks, and P.J. Clarkson. A species conserving genetic algorithm for
multimodal function optimization. Evolutionary Computation, 10(3):207–234, 2002.

72. F. Streichert, G. Stein, H. Ulmer, and A. Zell. A clustering based niching method for evolution-
ary algorithms. In E. Cantú-Paz, editor, Proc. 2003 Conf. on Genetic and Evolutionary Computation,
(GECCO 2003), pages 644–645. Springer, Berlin, 2003.

73. O.M. Shir. Niching in evolution strategies. In H.-G. Beyer, editor, Proc. 2005 Conf. on Genetic
and Evolutionary Computation, (GECCO 2005), pages 865–872, New York, 2005. ACM Press, New
York.

74. M. Jelasity. UEGO, an abstract niching technique for global optimization. In A. E. Eiben, Th.
Bäck, M. Schoenauer, and H.-P. Schwefel, editors, Proc. Parallel Problem Solving from Nature –
PPSN V, Amsterdam, pages 378–387. Springer, Berlin, 1998.

75. R.K. Ursem. Multinational evolutionary algorithms. In P.J. Angeline, editor, Proc. of the Congress
of Evolutionary Computation (CEC-99), volume 3, pages 1633–1640. IEEE Press, Piscataway, NJ,
1999.

76. S. Ando, E. Suzuki, and S. Kobayashi. Sample-based crowding method for multimodal opti-
mization in continuous domain. In B. McKay et al., editor, Proc. 2005 Congress on Evolutionary
Computation (CEC’05), Edinburgh, Scotland, volume 2, pages 1867–1874. IEEE Press, Piscataway
NJ, 2005.

77. Z. Michalewicz and M. Schoenauer. Evolutionary algorithms for constrained parameter opti-
mization problems. Evolutionary Computation, 4(1):1–32, 1996.

78. C.A. Coello Coello. Theoretical and numerical constraint-handling techniques used with evo-
lutionary algorithms: A survey of the state of the art. Computer Methods in Applied Mechanics
and Engineering, 191(11–12):1245–1287, 2002.

79. M. Preuss, B. Naujoks, and G. Rudolph. Pareto set and EMOA behavior for simple multimodal
multiobjective functions. In Th.Ph. Runarsson et al., editor, Parallel Problem Solving from Nature
(PPSN IX), volume 4193 of LNCS, pages 513–522. Springer, Berlin, 2006.

21

