
Performing Experiments Using the

Sequential Parameter Optimization Toolbox

spot

Thomas Bartz-Beielstein

Department of Computer Science,

Cologne University of Applied Sciences,

51643 Gummersbach, Germany

July 8, 2010

Abstract

The sequential parameter optimization (spot) package for R (R De-

velopment Core Team, 2008) is a toolbox for tuning and understanding

simulation and optimization algorithms. Model-based investigations are

common approaches in simulation and optimization. Sequential parame-

ter optimization has been developed, because there is a strong need for

sound statistical analysis of simulation and optimization algorithms. spot
includes methods for tuning based on classical regression and analysis of

variance techniques; tree-based models such as CART and random forest;

Gaussian process models (Kriging), and combinations of di↵erent meta-

modeling approaches. This article exemplifies how experiments can be

performed using the spot framework.

1 Introduction

This article describes the experimental setup which is necessary to perfom ex-
periments using the spot framework. The spot package can be downloaded
from the comprehensive R archive network at http://CRAN.R-project.org/

package=SPOT. spot is one possible implementation of the sequential parame-
ter optimization (SPO) framework introduced in Bartz-Beielstein (2006). For
a detailed documentation of the functions from the spot package, the reader is
referred to the package help manuals.

The performance of modern search heuristics such as evolution strategies (ES),
di↵erential evolution (DE), or simulated annealing (SANN) relies crucially on
their parametrizations—or, statistically speaking, on their factor settings. The
term algorithm design summarizes factors that influence the behavior (perfor-
mance) of an algorithm, whereas problem design refers to factors from the op-
timization (simulation) problem. Population size in ES is one typical factor

1

http://CRAN.R-project.org/package=SPOT
http://CRAN.R-project.org/package=SPOT

Procedure 1: (1+1)-ES()

t := 0;
initialize(~x, �);
y

p

:= f(~x
p

);
repeat

~x

o

:= ~x

p

+ �(N (0, 1),N (0, 1), . . . ,N (0, 1))T ;
y

o

:= f(~x
o

);
if y

o

 y

p

then

~x

p

:= ~x

o

;
y

p

= y

o

;
end

modify � according to 1/5th rule;
t := t+ 1;

until TerminationCriterion() ;
return (~x

p

, y

p

)

which belongs to the algorithm design, the search space dimension belongs to
the problem design.

The paper is structured as follows: Section 2 presents an example how the
experimental setup for an optimization algorithm written in JAVA can be spec-
ified in the spot framework.

2 JAVA Algorithms

2.1 1+1 Evolution Strategy

2.1.1 1+1 Basics

We consider a simple evolution strategy (ES), the so-called (1+1)-ES, see
Procedure 1. The 1/5th rule states that � should be modified according to the
rule

�(t+ 1) :=

8
<

:

�(t)a, if P
s

> 1/5
�(t)/a, if P

s

< 1/5
�(t), if P

s

= 1/5
(1)

where the factor a is usually between 1.1 and 1.5 and P

s

denotes the success
rate (Beyer, 2001). The factor a depends particularly on the measurement
period g, which is used to estimate the success rate P

s

. During the measurement
period, g remains constant. For g = n, where n denotes the problem dimension,
Schwefel (1995) calculated 1/a ⇡ 0.817. Beyer (2001) states that the “choice
of a is relatively uncritical” and that the 1/5th rule has a “remarkable validity
domain.” He also mentions limits of this rule.

Based on these theoretical results, we can derive certain scientific hypotheses.
One might be formulated as follows: Given a spherical fitness landscape, the

2

Table 1: (1 + 1)-ES parameters. The first three parameters belong to the algo-
rithm design, whereas the remaining parameters are from the problem design

Name Symbol Factor name in the algorithm design

Initial stepsize �(0) SIGMANULL
Stepsize multiplier a VARA
History g = n VARG

Name Symbol Name in the APD file1

Starting point ~x

p

xp0
Problem dimension n n
Objective function f(~x) =

P
x

2

i

f
Quality measure Expected performance, e.g., E(y) -
Initial seed s seed
Budget t

max

steps

(1+1)-ES performs optimally, if the step-sizes � is modified according to the
1/5th rule as stated in Eq. 1. This statement is related to the primary model.

In the experimental model, we relate primary questions or statements to
questions about a particular type of experiment. At this level, we define an
objective function, a starting point, a quality measure, and parameters used by
the algorithm. These parameters are summarized in Table 1.

Note, the quality measure is defined in the CONF file.

2.1.2 The JAVA Implementation of the 1+1 ES

We are using a JAVA implementation of the (1+1) ES described in Sect. 2.1.1.
The corresponding jar file can be downloaded from the workshop’s web site2.

The JAVA (1+1)-ES algorithm uses the parameters from Tab. 2. The (1+1)-
ES can be started using the jar file from the command line with the following
arguments.

java -jar simpleOnePlusOneES.jar 1 100 1.0E-6

de.fhkoeln.spot.objectivefunctions.Ball

3 "c(1.0,1.0,1.0)" 1.0 1.2239 3 0 2

The following command-line parameters were used:

1. seed = 1;

2. the algorithm has a budget of one hundred function evaluations;

3. it terminates, if the function value is smaller than 1e-6;

4. the sphere function is used as the objective function;

2http://advm1.gm.fh-koeln.de/ bartz/simpleOnePlusOneES.jar

3

http://advm1.gm.fh-koeln.de/~bartz/simpleOnePlusOneES.jar

Table 2: JAVA (1 + 1)-ES: Parameters as reported by the algorithm
Name Parameter
seed random seed (e.g. 12345)
steps maximum number of evolution steps (e.g. 10000)
target objective function threshold for preliminary evolution

end (e.g. 0.0001)
f objective function class name (e.g.

de.fhkoeln.spot.objectivefunctions.Ball)
n problem dimension (e.g.12)
xp0 starting point

(uniform = uniformly distributed random vector from
[0.0, 1.0]n,
gaussian = normally distributed random vector from
N(0,1),
c(xp0

0

, ..., xp0
n

) = the vector [xp0
0

, ..., xp0
n

])
sigma0 initial step size (e.g. 1.0)
a step size muliplier (e.g. 1.2239)
g history length (e.g. 12 = n)
px individual printing mode

(0 = do not print individuals, 1 = only print best in-
dividual, 2 = only print improving step numbers and
individuals, 3 = print every individual)

py objective function value printing mode
(0 = do not print objective function values, 1 = only
print best objective function value, 2 = only print im-
proving step numbers and objective function values, 3
= print every objective function value)

4

5. a three dimensional search space is used;

6. (1, 1, 1) was chosen as the starting point;

7. the initial step size was set to one;

8. as a step size multiplier, the value 1.2239 was chosen;

9. the history length was set to three;

10. no information about individuals is printed;

11. and the best objective function value is reported at the end.

This algorithm run produces the following output:

1 0.3732544130302741

13 0.2268318386083562

20 0.19052464589633564

25 0.17090575193950355

31 0.14554127695687402

37 0.08943630492465122

38 0.07890216216826802

47 0.07318808722843884

53 0.0573032759515119

61 0.001451451919883614

68 0.0010101618142669604

79 1.89432721043702E-4

93 8.645160644753755E-5

2.2 CMA-ES

2.2.1 CMA-ES Basics

We are using Hansen’s CMA-ES, see http://www.lri.fr/~hansen/javadoc/
index.html for details.

3 Experimental Setup

spot allows the user to specify the region of interest ROI. In addition, spot
can be configured (CONF) and additional parameters can be passed to the
algorithm (APD).

3.1 Files Used During the Tuning Process

Each configuration file belongs to one spot project, if the same basename is
used for corresponding files. spot uses simple text files as interfaces from the
algorithm to the statistical tools.

5

http://www.lri.fr/~hansen/javadoc/index.html
http://www.lri.fr/~hansen/javadoc/index.html

1. The user has to provide the following files:

(i) Region of interest (ROI) files specify the region over which the al-
gorithm parameters are tuned. Categorical variables such as the
recombination operator in ES, can be encoded as factors, e.g., “in-
termediate recombination” and “discrete recombination.”

(ii) Algorithm design (APD) files are used to specify parameters used by
the algorithm, e.g., problem dimension, objective function, starting
point, or initial seed.

(iii) Configuration files (CONF) specify spot specific parameters, such
as the prediction model or the initial design size.

2. spot will generate the following files:

(i) Design files (DES) specify algorithm designs. They are generated
automatically by spot and will be read by the optimization algo-
rithms.

(ii) After the algorithm has been started with a parametrization from
the algorithm design, the algorithm writes its results to the result
file (RES). Result files provide the basis for many statistical evalu-
ations/visualizations. They are read by spot to generate prediction
models. Additional prediction models can easily be integrated into
spot.

3.2 spot Configuration

A configuration (CONF) file, which stores information about spot specific set-
tings, has to be set up. For example, the number of (1+1)-ES algorithm runs,
i.e., the available budget, can be specified via auto.loop.nevals. spot imple-
ments a sequential approach, i.e., the available budget is not used in one step.
Evaluations of the algorithm on a subset of this budget, the so-called initial
design, is used to generate a coarse grained meta model F . This meta model
is used to determine promising algorithm design points which will be evaluated
next. Results from these additional (1+1)-ES runs are used to refine the meta
model F . The size of the initial design can be specified via init.design.size.
To generate the meta model, we use random forest (Breiman, 2001). This can
be specified via seq.predictionModel.func = "spotPredictRandomForest".

Random forest was chosen, because it is a robust method which can handle
categorical and numerical variables.

3.2.1 Setup of the CONF for the (1+1)-ES

The corresponding CONF file for the (1+1)-ES looks as follows. Note, all spot
options are summarized in the spotGetOptions3 file.

3http://advm1.gm.fh-koeln.de/ bartz/spotGetOptions.html

6

http://advm1.gm.fh-koeln.de/~bartz/spotGetOptions.html

alg.path="."

alg.func = "spotInterfacingTemplate"

alg.seed = 1235

spot.seed = 125

auto.loop.steps = 50;

init.design.func = "spotCreateDesignLhd";

init.design.size = 10;

init.design.repeats = 1;

seq.design.maxRepeats = 5;

seq.design.size = 250

seq.predictionModel.func = "spotPredictRandomForest"

io.verbosity=3

The settings can be explained as follows.

alg.path: Specify the path to the algorithm to be tuned. Type: STRING

alg.func: Specify the name of the algorithm to be tuned. Type: STRING

alg.seed: Seed passed to the algorithm. Type INT

spot.seed: Seed used by spot, e.g., for generating LHD. Type: INT

auto.loop.steps: spot Termination criterion. Number of meta models to be
build by spot. Type: INT

init.design.func: Name of the function to create an initial design. TYPE:
STRING

init.design.size: Number of initial design points to be created. Type: INT

init.design.repeats: Number of repeats for each design point from the initial
design. Type: INT

seq.design.maxRepeats: Maximum number of repeats for design points. Type:
INT

seq.design.size: Number of design points evaluated by the meta model. Type:
INT

seq.predictionModel.func: Meta model. Type: STRING

io.verbosity: Level of verbosity of the programm. TYPE: INT.

spot provides an CONF template, which can be downloaded from the work-
shop’s web site4.

4http://advm1.gm.fh-koeln.de/ bartz/SpotPerforming.d/java0.conf

7

http://advm1.gm.fh-koeln.de/~bartz/SpotPerforming.d/java0.conf

3.2.2 Setup of the CONF for the CMA-ES

The corresponding CONF file for the CMA-ES looks as follows. Note, all spot
options are summarized in the spotGetOptions5 file.

alg.path="."

alg.func = "spotAlgStartCmaEsJava"

alg.seed = 1235

spot.seed = 125

auto.loop.steps = 50;

init.design.func = "spotCreateDesignLhd";

init.design.size = 10;

init.design.repeats = 1;

seq.design.maxRepeats = 5;

seq.design.size = 250

seq.predictionModel.func = "spotPredictRandomForest"

io.verbosity=3

The settings can be explained as follows.

alg.path: Specify the path to the algorithm to be tuned. Type: STRING

alg.func: Specify the name of the algorithm to be tuned. Type: STRING

alg.seed: Seed passed to the algorithm. Type INT

spot.seed: Seed used by spot, e.g., for generating LHD. Type: INT

auto.loop.steps: spot Termination criterion. Number of meta models to be
build by spot. Type: INT

init.design.func: Name of the function to create an initial design. TYPE:
STRING

init.design.size: Number of initial design points to be created. Type: INT

init.design.repeats: Number of repeats for each design point from the initial
design. Type: INT

seq.design.maxRepeats: Maximum number of repeats for design points. Type:
INT

5http://advm1.gm.fh-koeln.de/ bartz/spotGetOptions.html

8

http://advm1.gm.fh-koeln.de/~bartz/spotGetOptions.html

seq.design.size: Number of design points evaluated by the meta model. Type:
INT

seq.predictionModel.func: Meta model. Type: STRING

io.verbosity: Level of verbosity of the programm. TYPE: INT

spot provides an CONF template, which can be downloaded from the work-
shop’s web site6.

3.3 The Region of Interest

A region of interest (ROI) file specifies algorithm parameters and associated
lower and upper bounds for the algorithm parameters.

3.3.1 Setup of the ROI for the (1+1)-ES

• Values for sigmanull are chosen from the interval [.1; 5].

• Values for vara are from the interval [1; 2] and

• Values for varg are from the interval [2; 100].

The corresponding ROI file looks as follows.

name low high type

SIGMANULL 0.1 5 FLOAT

VARA 1 2 FLOAT

VARG 2 100 INT

spot provides an ROI template, which can be downloaded from the workshop’s
web site7.

3.3.2 Setup of the ROI for the CMA-ES

The JAVACMA-ES algorithm uses the parameters from Tab. 3. Note, that
there are constraints on the ls and us parameters:

ls > 0 and us > ls. (2)

Therefore, we introduce a new variable, namely usfprop, which is defined as
follows:

us = usprop⇥ (1.0 + ls). (3)

These parameters are related to the algorithm design and will be specified
in spot’s ROI file.

The corresponding ROI file for the CMA-ES looks as follows.

6http://advm1.gm.fh-koeln.de/ bartz/SpotPerforming.d/cmaEs0.conf
7http://advm1.gm.fh-koeln.de/ bartz/SpotPerforming.d/java0.roi

9

http://advm1.gm.fh-koeln.de/~bartz/SpotPerforming.d/cmaEs0.conf
http://advm1.gm.fh-koeln.de/~bartz/SpotPerforming.d/java0.roi

Table 3: JAVACMA-ES: Algorithm parameters as reported by the algorithm
Name Parameter Name in the ROI file
s population size (e.g. 9) S
restarts number of restarts (e.g. 1) RESTARTS
ipsf increase population size factor (e.g. 2.0) IPSF
isd initial standard deviations (e.g. 0.3) ISD
ls lower standard deviations (step sizes) LS
us upper standard deviations (step sizes) -
usprop upper standard deviations (step sizes) factor USPROP

name low high type

S 2 50 INT

RESTARTS 1 10 INT

IPSF 1 5 FLOAT

ISD 0.1 3 FLOAT

LS 0 1 FLOAT

USPROP 1 2 FLOAT

spot provides an ROI template, which can be downloaded from the workshop’s
web site8.

3.4 The Algorithm and Problem Design File

Parameters related to the algorithm or the optimization problem are stored in
the APD file. This file contains information about the problem and might be
used by the algorithm. For example, the starting point xp0 = "[1.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0]"

can be specified in the APD file.

3.4.1 Setup of the APD for the (1+1)-ES

px = 0

py = 1

steps = 100

target = 1e-10

f = "de.fhkoeln.spot.objectivefunctions.Ball"

n = 10

xp0 = "[1.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0]"

seed = 123

sigma0 = 1

a = 1.2

g = 10

8http://advm1.gm.fh-koeln.de/ bartz/SpotPerforming.d/cmaEs0.roi

10

http://advm1.gm.fh-koeln.de/~bartz/SpotPerforming.d/cmaEs0.roi

Table 4: JAVACMA-ES: Parameters as reported by the algorithm
Name Parameter Parameter name used in the CMA-ESAPD file
seed random seed (e.g. 12345) seed
d search space dimension (e.g. 22) d
evals maximum number of fitness function evaluations (e.g.

100000)
evals

f objective function index (e.g. 50, 10 is Sphere) f
frot objective function rotation (e.g. 0) frot
arot objective function axis rotation (e.g. 0.0) arot
tx typical X (e.g. 0.5) tx

spot provides an (1+1)-ESAPD template, which can be downloaded from
the workshop’s web site9.

3.4.2 Setup of the APD for the CMA-ES

The APD file for the CMA-ES contains information about the problem design.
The JAVACMA-ES algorithm uses the parameters from Tab. 4.

cmaEs0.apd: cmaEs problem design parameters

seed = 123

d = 10

evals = 100

f = 10

frot = 0

arot = 0.0

tx = 1.0

spot provides an CMA-ESAPD template, which can be downloaded from the
workshop’s web site10.

4 Running spot

Now that the interface has been setup, and the experimental setup has been
specified, the first spot run can be performed.

4.1 Automatic Tuning of the (1+1)-ES

Consider the following situation: The user has created a working directory for
running the experiments, say MyJavaExperiments. This directory contains the
following files.

9http://advm1.gm.fh-koeln.de/ bartz/SpotPerforming.d/java0.apd
10http://advm1.gm.fh-koeln.de/ bartz/SpotPerforming.d/cmaEs0.apd

11

http://advm1.gm.fh-koeln.de/~bartz/SpotPerforming.d/java0.apd
http://advm1.gm.fh-koeln.de/~bartz/SpotPerforming.d/cmaEs0.apd

• spot configuration (CONF), e.g., java0.conf11

• Region of interest (ROI), e.g., java0.roi12

• Algorithm and problem parameters (APD) java0.apd13

• The interface to the algorithm. spotInterfacingTemplate.R14

• The algorithm, i.e., the jar file. simpleOnePlusOneES.jar15

R is started in the working directory. The following command starts spot’s
automatic tuning procedure.

> library(SPOT)

> spot("java0.conf")

Sometimes is it required to start a clean R session, because data from previous
runs are in the workspace. Execute

rm(list=ls());

to perform a cleanup before spot is loaded and run.
The output from Fig. 1 is shown by default during the tuning process.
The tuning process terminates with the following output:

Best solution found with 507 evaluations:

Y SIGMANULL VARA VARG COUNT CONFIG

0.1029542 0.445661 1.050709 72 5 110

A short summary is also shown:

y SIGMANULL VARA VARG

Min. :0.01184 Min. :0.1035 Min. :1.023 Min. : 3.0

1st Qu.:0.11606 1st Qu.:0.2885 1st Qu.:1.064 1st Qu.:18.0

Median :0.19034 Median :0.4112 Median :1.096 Median :50.0

Mean :0.25662 Mean :0.6167 Mean :1.118 Mean :43.7

3rd Qu.:0.31951 3rd Qu.:0.7337 3rd Qu.:1.145 3rd Qu.:64.0

Max. :1.68859 Max. :4.5725 Max. :1.984 Max. :98.0

A result file (RES), which contains important information from the tuning
process, has been written to the working directory. It can be downloaded as
java0.res16 from the workshop’s web page.

11http://advm1.gm.fh-koeln.de/ bartz/SpotPerforming.d/java0.conf
12http://advm1.gm.fh-koeln.de/ bartz/SpotPerforming.d/java0.roi
13http://advm1.gm.fh-koeln.de/ bartz/SpotPerforming.d/java0.apd
14http://advm1.gm.fh-koeln.de/ bartz/SpotInterfacing.d/spotInterfacingTemplate.R
15http://advm1.gm.fh-koeln.de/ bartz/simpleOnePlusOneES.jar
16http://advm1.gm.fh-koeln.de/ bartz/SpotPerforming.d/java0.res

12

http://advm1.gm.fh-koeln.de/~bartz/SpotPerforming.d/java0.conf
http://advm1.gm.fh-koeln.de/~bartz/SpotPerforming.d/java0.roi
http://advm1.gm.fh-koeln.de/~bartz/SpotPerforming.d/java0.apd
http://advm1.gm.fh-koeln.de/~bartz/SpotInterfacing.d/spotInterfacingTemplate.R
http://advm1.gm.fh-koeln.de/~bartz/simpleOnePlusOneES.jar
http://advm1.gm.fh-koeln.de/~bartz/SpotPerforming.d/java0.res

0 10 20 30 40 50

0
.1

2
0
.1

8

Eval: 497 , Y: 0.11679978683501

step

Y

0 10 20 30 40 50

0
2

4

step

S
IG

M
A

N
U

L
L

0 10 20 30 40 50

1
.1

1
.4

step

V
A

R
A

0 10 20 30 40 50

1
0

4
0

7
0

step

V
A

R
G

Figure 1: Default output during the optimization run

4.2 Automatic Tuning of the CMA-ES

Consider the following situation: The user has created a working directory for
running the experiments, say MyJavaExperiments. This directory contains the
following files.

• spot configuration (CONF), e.g., cmaEs0.conf17

• Region of interest (ROI), e.g., cmaEs0.roi18

• Algorithm and problem parameters (APD) cmaEs0.apd19

• The interface to the algorithm. spotAlgStartCmaEsJava.R20

• The algorithm, i.e., the jar file. cmaEs.jar21

R is started in the working directory. The following command starts spot’s
automatic tuning procedure.

17http://advm1.gm.fh-koeln.de/ bartz/SpotPerforming.d/cmaEs0.conf
18http://advm1.gm.fh-koeln.de/ bartz/SpotPerforming.d/cmaEs0.roi
19http://advm1.gm.fh-koeln.de/ bartz/SpotPerforming.d/cmaEs0.apd
20http://advm1.gm.fh-koeln.de/ bartz/SpotInterfacing.d/spotAlgStartCmaEsJava.R
21http://advm1.gm.fh-koeln.de/ bartz/cmaEs.jar

13

http://advm1.gm.fh-koeln.de/~bartz/SpotPerforming.d/cmaEs0.conf
http://advm1.gm.fh-koeln.de/~bartz/SpotPerforming.d/cmaEs0.roi
http://advm1.gm.fh-koeln.de/~bartz/SpotPerforming.d/cmaEs0.apd
http://advm1.gm.fh-koeln.de/~bartz/SpotInterfacing.d/spotAlgStartCmaEsJava.R
http://advm1.gm.fh-koeln.de/~bartz/cmaEs.jar

> library(SPOT)

> spot("cmaEs0.conf")

Sometimes is it required to start a clean R session, because data from previous
runs are in the workspace. Execute

rm(list=ls());

to perform a cleanup before spot is loaded and run.
The output from Fig. 2 is shown by default during the tuning process.

0 10 20 30 40 50

0
5
0
0

1
5
0
0

Eval: 492 , Y: 58.8028411008532

step

Y

0 10 20 30 40 50

8
1
0

1
2

1
4

step

S

0 10 20 30 40 50

3
4

5
6

7

step

R
E

S
TA

R
T

S

0 10 20 30 40 50

2
.0

3
.0

4
.0

step

IP
S

F

0 10 20 30 40 50

0
.1

5
0
.2

5

step

IS
D

0 10 20 30 40 50

0
.7

8
0
.8

2
0
.8

6

step

L
S

0 10 20 30 40 50

1
.5

5
1
.6

5
1
.7

5

step

U
S

P
R

O
P

Figure 2: Default output during the optimization run

The tuning process terminates with the following output:

Best solution found with 502 evaluations:

Y S RESTARTS IPSF ISD LS USPROP COUNT CONFIG

82 117.2177 10 3 2.790516 0.1132285 0.7860233 1.846407 5 82

A short summary is also shown:

y S RESTARTS IPSF

Min. : 27.96 Min. : 2.00 Min. : 1.000 Min. :1.103

1st Qu.: 819.95 1st Qu.: 9.00 1st Qu.: 4.000 1st Qu.:1.865

14

Median : 2445.59 Median :19.00 Median : 6.000 Median :2.648

Mean : 10084.99 Mean :22.90 Mean : 5.703 Mean :2.625

3rd Qu.: 9162.28 3rd Qu.:36.00 3rd Qu.: 7.000 3rd Qu.:3.221

Max. :430195.03 Max. :49.00 Max. :10.000 Max. :4.859

ISD LS USPROP

Min. :0.1006 Min. :0.05975 Min. :1.040

1st Qu.:0.1717 1st Qu.:0.67164 1st Qu.:1.610

Median :0.2611 Median :0.78602 Median :1.682

Mean :0.3317 Mean :0.75616 Mean :1.684

3rd Qu.:0.4081 3rd Qu.:0.86056 3rd Qu.:1.774

Max. :2.7564 Max. :0.97134 Max. :1.980

A result file (RES), which contains important information from the tuning
process, has been written to the working directory. It can be downloaded as
cmaEs0.res22 from the workshop’s web page.

5 A Closer Look at spot’s Tasks

In Sect. 4, spot was run as an automatic tuner. Steps from the automatic mode
can be used in an interactive manner. spot can be started with the command

spot (<configurationfile>, <task>)

where configurationfile is the name of the spot configuration file (String)
and task is a STRING and can be one of the tasks init, seq, run, rep or auto.
spot can also be run in a meta mode to perform tuning over a set of problem
instances.

spot provides tools to perform the following tasks:

1. Initialize. An initial design is generated. This is usually the first step
during experimentation. The employed parameter region (ROI) and the
constant algorithm parameters (APD) have to be provided by the user.
spot’s parameters are specified in the CONF file. Although it is rec-
ommended to use the same basename for CONF, ROI, and APD files
in order to define a project, this is not mandatory. spot allows a flexi-
ble combination of di↵erent filenames, e.g., one APD file can be used for
di↵erent projects.

2. Run. This is usually the second step. The optimization algorithm is
started with configurations of the generated design. Additionally infor-
mation about the algorithms problem design are used in this step. The
algorithm writes its results to the result file.

3. Sequential step. A new design, based on information from the result file,
is generated. A prediction model is used in this step. Several generic pre-
diction models are available in spot by default. To perform an e�cient

22http://advm1.gm.fh-koeln.de/ bartz/SpotPerforming.d/cmaEs0.res

15

http://advm1.gm.fh-koeln.de/~bartz/SpotPerforming.d/cmaEs0.res

analysis, especially in situations when only few algorithms runs are possi-
ble, user-specified prediction models can easily be integrated into spot.

4. Report. An analysis, based on information from the result file, is generated.
Since all data flow is stored in files, new report facilities can be added very
easily. spot contains some scripts to perform a basic regression analysis
and plots such as histograms, scatter plots, plots of the residuals, etc.

5. Automatic mode. In the automatic mode, the steps run and sequential
are performed after an initialization for a predetermined number of times.

6. Meta mode. In the meta mode, the tuning process is repeated for several
configurations. For example, tuning can be performed for di↵erent starting
points ~x

0

, several dimensions, or randomly chosen problem instances.

5.1 The Init Task

The command

> spot("java0.conf", "init")

invokes spot’s init step. Based on information from the CONF and ROI files,
a design file (DES) is generated. This file is shown here:

SIGMANULL VARA VARG CONFIG REPEATS STEP SEED

4.50189721501898 1.98423853812274 81 1 1 0 1235

4.57246683350997 1.33011866996530 55 2 1 0 1235

0.845961183127947 1.40626377388835 63 3 1 0 1235

3.36020042322343 1.68839243145194 15 4 1 0 1235

1.87136912634131 1.17582192602567 8 5 1 0 1235

2.44399118965725 1.22097277157009 75 6 1 0 1235

0.406022209986113 1.5474003639305 31 7 1 0 1235

3.66735229385784 1.89343050755560 43 8 1 0 1235

1.20762449005153 1.72775872701313 98 9 1 0 1235

2.7426001026202 1.0844767608447 40 10 1 0 1235

5.1.1 Choosing an Alternative Design for spot’s Init Task

Many designs generators are available in R. This is one of the main reasons why
spot is implemented in R. The user can use state of the art design generators
for tuning his algorithm. Or, he can write his own design plugin and use it as a
plugin for spot.

The default spot installation contains several design plugins (and further de-
sign plugins will be added in forthcoming versions). Table 5 summarizes design
plugins from the current spot version (0.1.888). The command spotVersion()

displays the actual version of your local spot package.
A Latin hypercube design was chosen as the default initial design, because

it is easy to implement and understand.

16

Table 5: spot initial design plugins
Type Name of the spot plugin R package
Fractional factorial design (Resolution III) spotCreateDesignDoe3 FrF2
Factorial design spotCreateDesignBasicDoe AlgDesign
Latin hypercube spotCreateDesignLhd SPOT
Latin hypercube spotCreateDesignLhs lhs

These plugins should be considered as templates. They were implemented
in order to demonstrate how the interfaces should look like. We strongly rec-
ommend an adaptation of these plugins to your specific needs.

Automatic Tuning of the (1+1)-ES with Gaussian process models To
select a Gaussian process model for the tuning process, simply modify the line

seq.predictionModel.func = "spotPredictRandomForest"

to

seq.predictionModel.func = "spotPredictMlegp"

Note, spot options are summarized in the spotGetOptions23 file. Meta
models are use the prefix spotPredict*.

5.2 The Run Task

The command

> spot("java0.conf", "run")

invokes spot’s run step. The algorithm, e.g., simpleOnePlusOneES.jar is ex-
ecuted. Each line of the DES file contains one parameter configuration for the
(1+1)-ES. The corresponding results are written to the result file (RES). The
result file from executing the DES file from above looks as follows.

Y SIGMANULL VARA VARG Function MAXITER DIM TARGET SEED CONFIG STEP

1.6878752317589363 4.50189721501898 1.98423853812274 81 Ball 100 10 1e-10 1236 1 0

0.19435389671821338 4.57246683350997 1.3301186699653 55 Ball 100 10 1e-10 1236 2 0

0.19614961385471452 0.845961183127947 1.40626377388835 63 Ball 100 10 1e-10 1236 3 0

1.1336280907965832 3.36020042322343 1.68839243145194 15 Ball 100 10 1e-10 1236 4 0

0.20147814905430297 1.87136912634131 1.17582192602567 8 Ball 100 10 1e-10 1236 5 0

0.10938976591467603 2.44399118965725 1.22097277157009 75 Ball 100 10 1e-10 1236 6 0

0.19260197240195384 0.406022209986113 1.5474003639305 31 Ball 100 10 1e-10 1236 7 0

1.628667713635999 3.66735229385784 1.8934305075556 43 Ball 100 10 1e-10 1236 8 0

0.5800269409368702 1.20762449005153 1.72775872701313 98 Ball 100 10 1e-10 1236 9 0

0.4935194326825984 2.7426001026202 1.0844767608447 40 Ball 100 10 1e-10 1236 10 0

23http://advm1.gm.fh-koeln.de/ bartz/spotGetOptions.html

17

http://advm1.gm.fh-koeln.de/~bartz/spotGetOptions.html

5.3 The Sequential Task

Now that results have been written to the result file, the meta model can be
build.

spot("java0.conf","seq")

The sequential call generates a new design file (DES), which is shown here.

SIGMANULL VARA VARG CONFIG REPEATS repeatsLastConfig STEP SEED

2.44399118965725 1.22097277157009 75 6 1 1 1 1236

0.893540025975183 1.16118876079656 65.1960384295396 11 2 2 1 1235

0.946482443374582 1.38916710264608 68.2101951118447 12 2 2 1 1235

In order to improve confidence, the best solution found so far is evaluated again.
To enable fair comparisons, new configurations are evaluated as many times as
the best configuration found so far. Note, other update schemes are possible.

If spot’s budget is not exhausted, the new configurations are evaluated, i.e.,
run is called again, which updates the result file. In the following step, seq is
called again etc.

To support exploratory data analysis, spot also generates a best file. The
content of the BST file after the run is finished is shown here.

Y SIGMANULL VARA VARG COUNT CONFIG

0.109389765914676 2.44399118965725 1.22097277157009 75 1 6

0.185522132969328 2.44399118965725 1.22097277157009 75 2 6

0.192601972401954 0.406022209986113 1.5474003639305 31 1 7

0.194353896718213 4.57246683350997 1.3301186699653 55 1 2

0.155270353688288 0.810298690075241 1.07694991343189 74 5 18

0.150488510690188 0.137167671956401 1.05063784049824 71 5 20

0.150488510690188 0.137167671956401 1.05063784049824 71 5 20

0.150488510690188 0.137167671956401 1.05063784049824 71 5 20

0.150488510690188 0.137167671956401 1.05063784049824 71 5 20

0.150488510690188 0.137167671956401 1.05063784049824 71 5 20

0.150488510690188 0.137167671956401 1.05063784049824 71 5 20

0.150488510690188 0.137167671956401 1.05063784049824 71 5 20

0.150488510690188 0.137167671956401 1.05063784049824 71 5 20

0.150488510690188 0.137167671956401 1.05063784049824 71 5 20

0.133442747019774 0.390411197773647 1.06283169919532 58 5 38

0.133442747019774 0.390411197773647 1.06283169919532 58 5 38

0.133442747019774 0.390411197773647 1.06283169919532 58 5 38

0.133442747019774 0.390411197773647 1.06283169919532 58 5 38

0.133442747019774 0.390411197773647 1.06283169919532 58 5 38

0.133442747019774 0.390411197773647 1.06283169919532 58 5 38

0.133442747019774 0.390411197773647 1.06283169919532 58 5 38

0.119941727061402 0.322729802686907 1.06848478622735 8 5 51

0.119941727061402 0.322729802686907 1.06848478622735 8 5 51

0.119941727061402 0.322729802686907 1.06848478622735 8 5 51

18

0.119941727061402 0.322729802686907 1.06848478622735 8 5 51

0.119941727061402 0.322729802686907 1.06848478622735 8 5 51

0.119941727061402 0.322729802686907 1.06848478622735 8 5 51

0.119941727061402 0.322729802686907 1.06848478622735 8 5 51

0.119941727061402 0.322729802686907 1.06848478622735 8 5 51

0.119941727061402 0.322729802686907 1.06848478622735 8 5 51

0.119941727061402 0.322729802686907 1.06848478622735 8 5 51

0.116799786835010 0.380922899061162 1.06452080560755 46 5 71

0.116799786835010 0.380922899061162 1.06452080560755 46 5 71

0.116799786835010 0.380922899061162 1.06452080560755 46 5 71

0.116799786835010 0.380922899061162 1.06452080560755 46 5 71

0.116799786835010 0.380922899061162 1.06452080560755 46 5 71

0.116799786835010 0.380922899061162 1.06452080560755 46 5 71

0.116799786835010 0.380922899061162 1.06452080560755 46 5 71

0.116799786835010 0.380922899061162 1.06452080560755 46 5 71

0.116799786835010 0.380922899061162 1.06452080560755 46 5 71

0.116799786835010 0.380922899061162 1.06452080560755 46 5 71

0.116799786835010 0.380922899061162 1.06452080560755 46 5 71

0.116799786835010 0.380922899061162 1.06452080560755 46 5 71

0.116799786835010 0.380922899061162 1.06452080560755 46 5 71

0.116799786835010 0.380922899061162 1.06452080560755 46 5 71

0.116799786835010 0.380922899061162 1.06452080560755 46 5 71

0.116799786835010 0.380922899061162 1.06452080560755 46 5 71

0.116799786835010 0.380922899061162 1.06452080560755 46 5 71

0.116799786835010 0.380922899061162 1.06452080560755 46 5 71

0.116799786835010 0.380922899061162 1.06452080560755 46 5 71

0.102954222434145 0.445660976006463 1.05070910971053 72 5 110

The best file is updated after each spot iteration and can be used for an on-line
visualization tool, e.g., to illustrate search progress or stagnation. The variable
COUNT reports the number of REPEATS used for this specific configuration.

5.3.1 Choosing an Alternative Meta Model for spot’s Sequential

Task

spot processes data sequentially, i.e., starting from a small initial design, further
design points (parameter settings for the algorithm) are generated using a meta
model. Many meta models are available in R. This is one of the main reasons
why spot is implemented in R. The user can use state of the art meta models
for tuning his algorithm. Or, he can write his own meta model and use it as a
plugin for spot.

The default spot installation contains several meta models (and further
meta models will be added in forthcoming versions). Table 6 summarizes meta
models from the current spot version (0.1.888). The command spotVersion()

displays the actual version of your local spot package.
randomForest was chosen as the default meta model, because it is quite

robust and can handle categorical and numerical values.

19

Table 6: spot meta models
Type Name of the spot plugin R package
Linear model spotPredictLm base
Response surface methodology spotPredictLmOptim rsm

Regression trees spotPredictTree rpart

Random forest spotPredictRandomForest random forest

Gaussian processes (Kriging) spotPredictMlegg mlegp

Tree based Gaussian processes spotPredictTgp tgp

These plugins should be considered as templates. They were implemented
in order to demonstrate how the interfaces should look like. We strongly rec-
ommend an adaptation of these plugins to your specific needs.

Automatic Tuning of the (1+1)-ES with Gaussian process models To
select a Gaussian process model for the tuning process, simply modify the line

seq.predictionModel.func = "spotPredictRandomForest"

to

seq.predictionModel.func = "spotPredictMlegp"

Note, spot options are summarized in the spotGetOptions24 file. Meta
models are use the prefix spotPredict*.

Automatic Tuning of the (1+1)-ES with User-defined meta models

The user can define additional meta models (and she will hopefully send her
model to the spot developers).

To set the path to the user defined meta model, the variable seq.design.path
can be modified.

5.4 The Report Task

If spot’s termination criterion is fulfilled, a report is generated. By default,
spot provides as simple report function which reads data from the RES file
and produces the following output:

Best solution found with 507 evaluations:

Y SIGMANULL VARA VARG COUNT CONFIG

0.1029542 0.445661 1.050709 72 5 110

The best solution found by spot has an average function value Y = 0.1029542.
The automatic tuning process found an initial stepwidth SIGMANULL = 0.445661,
the value VARA = 1.050709 for the stepsize multiplier, and the history length
VARG = 72 . The average function value Y = 0.1029542 is based on five

24http://advm1.gm.fh-koeln.de/ bartz/spotGetOptions.html

20

http://advm1.gm.fh-koeln.de/~bartz/spotGetOptions.html

(COUNT = 5) algorithm runs. This configuration is the 110th configuration
used in the spot run.

The output from Fig. 3 is shown by default after the tuning process is fin-
ished.

VARA <> 1.23908060492854

SIGMANULL <> 1.09953810365736

VARA <> 1.16717661893554

0.2095
410 obs

1SIGMANULL <> 0.498797924172924

0.2939
15 obs

2

0.5453
10 obs

3

VARA >< 1.03805701555312

0.3126
30 obs

4

0.5558
10 obs

5

VARA <> 1.42300203956384

0.4792
22 obs

6

0.8878
10 obs

7

Figure 3: Default output after the tuning process is finished

The user can choose alternative report functions or even add new report
functions to spot.

5.4.1 Choosing an Alternative Report Function

The user can change the name of the default report function in the CONF file,
e.g., java0.conf. spot options are summarized in the spotGetOptions25 file.
The variable report.func has the default value spotReportDefault.

Table 7 summarizes report plugins from the current spot version (0.1.888).
The command spotVersion() displays the actual version of your local spot
package.

spotReportDefault determines a regression tree, because it is quite robust
and can handle categorical and numerical values.

25http://advm1.gm.fh-koeln.de/ bartz/spotGetOptions.html

21

http://advm1.gm.fh-koeln.de/~bartz/spotGetOptions.html

Table 7: spot report plugins
Type Name of the spot plugin R package
Regression trees spotReportDefault rpart

Random forest spotPredictSens random forest

These plugins should be considered as templates. They were implemented
in order to demonstrate how the interfaces should look like. We strongly rec-
ommend an adaptation of these plugins to your specific needs.

Report Generation with Random Forest The user can change the value of
the report.func from spotReportDefault to spotReportSens in the java0.conf
file. The corresponding line in the java0.conf looks as follows:

report.func = "spotReportSens"

Executing the command

> spot("java0.conf", rep)

produces the result shown in Fig. 4
Note, the spotReportSens is included in the spot package.

Integrating New Report Plugins The user can define her own report plu-
gins as follows. The default report plugin can be used as a starting point.
Entering the name of the default report plugin at R’s command line will display
the R source code. So,

> spotReportDefault

produces the following output.

spotReportDefault <- function(spotConfig) {

spotWriteLines(spotConfig,2," Entering spotReportDefault");

rawB <- spotGetRawDataMatrixB(spotConfig);

print(summary(rawB));

mergedData <- spotPrepareData(spotConfig)

mergedB <- spotGetMergedDataMatrixB(mergedData, spotConfig);

C1 = spotWriteBest(mergedData, spotConfig);

C1 = C1[C1$COUNT==max(C1$COUNT),]; # choose only among the solutions with high repeat

cat(sprintf("\n Best solution found with %d evaluations:\n",nrow(rawB)));

print(C1[1,]);

fit.tree <- rpart(y ~ ., data= rawB)

if (!is.null(fit.tree$splits)){

if(spotConfig$report.io.pdf==TRUE){ #if pdf should be created

pdf(spotConfig$io.pdfFileName) #start pdf creation

spotPlotBst(spotConfig)

par(mfrow=c(1,1))

22

−1.0 −0.5 0.0 0.5 1.0

0
.2

0
.3

0
.4

0
.5

0
.6

normalized ROI

Y

SIGMANULL

VARA

VARG

Figure 4: User specified output from the report task after the tuning process
is finished

draw.tree(fit.tree, digits=4)

dev.off() #close pdf device

}

if(spotConfig$report.io.screen==TRUE) #if graphic should be on screen

{

x11()

par(mfrow=c(1,1), xpd=NA)

draw.tree(fit.tree, digits=4)

}

}

}

This output can be copied and pasted into a new R file. First, we choose a new
name for this plugin, say myReport. This file has to be saved as myReport.R. We
choose the actual working directory, i.e., where the java0.* project files reside
and whereR is started, to save this file. spot’s function spotGetRawDataMatrixB
is used to read the data from the RES file.

myReport <- function(spotConfig) {

23

rawB <- spotGetRawDataMatrixB(spotConfig);

...

}

Assuming the user wants to fit a linear regression model to the data, she has
to modify the report plugin as follows. In addition to the standard plot of the
linear model, she adds a plot of the e↵ects. This plot requires R functions from
the effects package, which is loaded via library effects.

myReport <- function(spotConfig) {

rawB <- spotGetRawDataMatrixB(spotConfig);

my.lm <- lm(y ~ ., data= rawB)

print(summary(my.lm))

par(mfrow=c(2,2))

plot(my.lm)

library(effects)

x11()

plot(allEffects(my.lm), ask=FALSE)

}

Since the new report plugin is located in the actual working directory, the
user has to add the line report.path = "." to the CONF file java0.conf.
The corresponding lines in the java0.conf has to be modified as follows:

report.func = "myReport"

report.path = "."

That’s all. For your convenience, the plugin myReport.R can be downloaded
from the workshop’s web site26.

Executing the command

> spot("java0.conf", rep)

produces the following output.

Call:

lm(formula = y ~ ., data = rawB)

Residuals:

Min 1Q Median 3Q Max

-0.55087 -0.11698 -0.04086 0.07470 1.11687

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.7773069 0.1107214 -7.020 7.20e-12 ***

SIGMANULL 0.0668264 0.0154612 4.322 1.86e-05 ***

VARA 0.8809139 0.1009097 8.730 < 2e-16 ***

26http://advm1.gm.fh-koeln.de/ bartz/SpotPerforming.d/myReport.R

24

http://advm1.gm.fh-koeln.de/~bartz/SpotPerforming.d/myReport.R

VARG 0.0001705 0.0003798 0.449 0.654

Residual standard error: 0.1982 on 503 degrees of freedom

Multiple R-squared: 0.2538, Adjusted R-squared: 0.2493

F-statistic: 57.02 on 3 and 503 DF, p-value: < 2.2e-16

Fig. 5 shows the output from the generic diagnostic plot on the linear model.

0.2 0.4 0.6 0.8 1.0 1.2

−
0

.5
0

.0
0

.5
1

.0

Fitted values

R
e

si
d

u
a

ls

Residuals vs Fitted

505507503

−3 −2 −1 0 1 2 3
−

2
0

2
4

6

Theoretical Quantiles

S
ta

n
d

a
rd

iz
e

d
 r

e
si

d
u

a
ls

Normal Q−Q

505507503

0.2 0.4 0.6 0.8 1.0 1.2

0
.0

0
.5

1
.0

1
.5

2
.0

Fitted values

S
ta

n
d

a
rd

iz
e

d
 r

e
si

d
u

a
ls

Scale−Location
505507503

0.00 0.05 0.10 0.15

−
2

0
2

4
6

Leverage

S
ta

n
d

a
rd

iz
e

d
 r

e
si

d
u

a
ls

Cook’s distance 0.5

0.5

1

Residuals vs Leverage

504
506

507

Figure 5: Diagnostic plot from the report task

Fig. 6 shows e↵ect plots related to this linear model. Note, since the new
report plugin is an R function, it has to be removed from R’s workspace, if mod-
ifications to the report plugin should have an e↵ect. This can be accomplished
by R’s rm() command. So, the following commands have to be executed if the
report plugin myReport.R is modified several times.

> rm(myReport)

> spot("java0.conf", rep)

Integrating New Report Plugins (Part 2) The report plugin myReport2.R,
which combines results from the previous paragraph can be downloaded from
the workshop’s web site27.

27http://advm1.gm.fh-koeln.de/ bartz/SpotPerforming.d/myReport2.R

25

http://advm1.gm.fh-koeln.de/~bartz/SpotPerforming.d/myReport2.R

SIGMANULL effect plot

SIGMANULL

y

0.2

0.3

0.4

0.5

0.6

0 1 2 3 4

VARA effect plot

VARA

y

0.2

0.4

0.6

0.8

1

1.2

1.0 1.2 1.4 1.6 1.8 2.0

VARG effect plot

VARG

y

0.22

0.24

0.26

0.28

0.3

0 20 40 60 80 100

Figure 6: E↵ect plots from the report task myReport

myReport2 <- function(spotConfig) {

spotWriteLines(spotConfig,2," Entering spotReportDefault");

rawB <- spotGetRawDataMatrixB(spotConfig);

print(summary(rawB));

mergedData <- spotPrepareData(spotConfig)

mergedB <- spotGetMergedDataMatrixB(mergedData, spotConfig)

my.lm <- lm(y ~ ., data= rawB)

print(summary(my.lm))

par(mfrow=c(2,2))

plot(my.lm)

x11()

library(effects)

x11()

plot(allEffects(my.lm), ask=FALSE)

###

x11()

C1 = spotWriteBest(mergedData, spotConfig)

C1 = C1[C1$COUNT == max(C1$COUNT),]

xNames <- setdiff(names(rawB), c(spotConfig$alg.resultColumn,

26

"y"))

B <- NULL

nsens = 20

for (i in 1:nsens) {

B <- rbind(B, data.frame(C1[1, xNames]))

}

fit <- randomForest(rawB[, xNames], rawB$y, ntree = 100)

rwb <- cbind(spotConfig$alg.roi, t(B[1,]))

names(rwb)[length(rwb)] <- "BEST"

Y <- spotReportSensY(B, fit, spotConfig$alg.roi, nsens)

X = seq(-1, 1, length.out = nsens)

matplot(X, Y, type = "l", lwd = rep(2, ncol(Y)), col = 1:ncol(Y),

xlab = "normalized ROI")

XP = (rwb$BEST - rwb$low)/(rwb$high - rwb$low) * 2 - 1

XP = rbind(XP, XP)

YP = min(Y)

YP = rbind(YP, YP)

matpoints(XP, YP, pch = rep(21, ncol(Y)), bg = 1:ncol(Y),

cex = 2)

legend("topleft", legend = names(Y), lwd = rep(2, ncol(Y)),

lty = 1:ncol(Y), col = 1:ncol(Y), text.col = 1:ncol(Y))

cat(sprintf("\n Sensitivity plot for this ROI:\n"))

print(rwb)

cat(sprintf("\n Best solution found with %d evaluations:\n",

nrow(rawB)))

print(C1[1,])

spotWriteLines(spotConfig, 2, "\n Leaving spotReportSens")

}

Figs. 7 – 10 show some results from the report plugin myReport2.R.

6 Templates for Your Project

The following files can be downloaded to set up your own spot project (”myPro-
ject”).

• myProject.conf28.

myProject.conf: template for user defined configuration files

Basically, you have to enter the name of the R interface to your algorithm in line 4.

alg.path="."

alg.func = "startMyAlgorithm"

alg.seed = 1235

spot.seed = 125

28http://advm1.gm.fh-koeln.de/ bartz/SpotPerforming.d/myProject.conf

27

http://advm1.gm.fh-koeln.de/~bartz/SpotPerforming.d/myProject.conf

S effect plot

S

y

6000

8000

10000

12000

14000

10 20 30 40 50

RESTARTS effect plot

RESTARTS
y

6000

7000

8000

9000

10000

11000

12000

13000

2 4 6 8 10

IPSF effect plot

IPSF

y

4000

6000

8000

10000

12000

14000

16000

1 2 3 4

ISD effect plot

ISD

y

0

50000

1e+05

150000

2e+05

250000

3e+05

0.0 1.0 2.0

LS effect plot

LS

y

6000

8000

10000

12000

14000

16000

18000

0.2 0.4 0.6 0.8 1.0

USPROP effect plot

USPROP

y

4000

6000

8000

10000

12000

14000

16000

18000

1.0 1.2 1.4 1.6 1.8 2.0

Figure 7: E↵ect plots from the report task myReport2

auto.loop.steps = 50;

init.design.func = "spotCreateDesignLhd";

init.design.size = 10;

init.design.repeats = 1;

seq.design.maxRepeats = 5;

seq.design.size = 250

seq.predictionModel.func = "spotPredictRandomForest"

io.verbosity=3

• myProject.roi29.

myProject.roi: roi template for user defined region of interest files

Variables which should be optimized are listed here.

Each line describes one variable, its ranges, and type

Space (" ") is used as a separator

name low high type

29http://advm1.gm.fh-koeln.de/ bartz/SpotPerforming.d/myProject.roi

28

http://advm1.gm.fh-koeln.de/~bartz/SpotPerforming.d/myProject.roi

0 50000 150000 250000

−
5

0
0

0
0

0
5

0
0

0
0

1
5

0
0

0
0

Fitted values

R
e

si
d

u
a

ls

Residuals vs Fitted

502

501

500

−3 −2 −1 0 1 2 3

0
5

1
0

Theoretical Quantiles

S
ta

n
d

a
rd

iz
e

d
 r

e
si

d
u

a
ls

Normal Q−Q

502

501

500

0 50000 150000 250000

0
.0

1
.0

2
.0

3
.0

Fitted values

S
ta

n
d

a
rd

iz
e

d
 r

e
si

d
u

a
ls

Scale−Location
502

501

500

0.00 0.05 0.10 0.15 0.20

−
5

0
5

1
0

Leverage

S
ta

n
d

a
rd

iz
e

d
 r

e
si

d
u

a
ls

Cook’s distance 1

0.5

0.5

1

Residuals vs Leverage

502

501

500

Figure 8: Analysis of the linear model from the report task myReport2

VARA 0 1 INT

VARB 0 100 FLOAT

• myProject.apd30.

myProject.apd: template for user defined apf files

Define values from the problem design, e.g., dim = 10

var1 = value1

var2 = value2

var3 = value2

7 All Inclusive

The file allInclusive.zip31 contains all files used in this workshop, so you do not
have to download the files separately.

30http://advm1.gm.fh-koeln.de/ bartz/SpotPerforming.d/myProject.apd
31http://advm1.gm.fh-koeln.de/ bartz/SpotPerforming.d/allInclusive.zip

29

http://advm1.gm.fh-koeln.de/~bartz/SpotPerforming.d/myProject.apd
http://advm1.gm.fh-koeln.de/~bartz/SpotPerforming.d/allInclusive.zip

−1.0 −0.5 0.0 0.5 1.0

0
5

0
0

0
0

1
0

0
0

0
0

1
5

0
0

0
0

normalized ROI

Y

S

RESTARTS

IPSF

ISD

LS

USPROP

Figure 9: Analysis of the sensitivity analysis from the report task myReport2

8 Summary

spot requires the specification of the following files:

1. Region of interest (ROI) files specify the region over which the algorithm
parameters are tuned. Categorical variables such as the recombination op-
erator in ES, can be encoded as factors, e.g., “intermediate recombination”
and “discrete recombination.”

2. Algorithm design (APD) files are used to specify parameters used by the
algorithm, e.g., problem dimension, objective function, starting point, or
initial seed.

3. Configuration files (CONF) specify spot specific parameters, such as the
prediction model or the initial design size.

spot will generate the following files:

1. Design files (DES) specify algorithm designs. They are generated auto-
matically by spot and will be read by the optimization algorithms.

30

ISD <> 1.10294405575585

ISD <> 0.541933175422065

ISD <> 0.343688438048447

2075.6547
356 obs

1

10667.5046
98 obs

2

ISD <> 0.845099450860126

27788.1425
34 obs

3

75628.2402
7 obs

4

237153.6773
7 obs

5

Figure 10: Regression tree from the report task myReport2

2. After the algorithm has been started with a parametrization from the al-
gorithm design, the algorithm writes its results to the result file (RES).
Result files provide the basis for many statistical evaluations/visualiza-
tions. They are read by spot to generate prediction models. Additional
prediction models can easily be integrated into spot.

References

Bartz-Beielstein, T. (2006). Experimental Research in Evolutionary
Computation—The New Experimentalism. Natural Computing Series.
Springer, Berlin, Heidelberg, New York.

Beyer, H.-G. (2001). The Theory of Evolution Strategies. Springer, Berlin,
Heidelberg, New York.

Breiman, L. (2001). Random forests. Machine Learning, 45(1):5 –32.

R Development Core Team (2008). R: A Language and Environment for Statis-
tical Computing. R Foundation for Statistical Computing, Vienna, Austria.

31

Schwefel, H.-P. (1995). Evolution and Optimum Seeking. Sixth-Generation Com-
puter Technology. Wiley, New York NY.

32

	Introduction
	JAVA Algorithms
	1+1 Evolution Strategy
	1+1 Basics
	The JAVA Implementation of the 1+1 ES

	CMA-ES
	CMA-ES Basics

	Experimental Setup
	Files Used During the Tuning Process
	spot Configuration
	Setup of the CONF for the (1+1)-ES
	Setup of the CONF for the CMA-ES

	The Region of Interest
	Setup of the ROI for the (1+1)-ES
	Setup of the ROI for the CMA-ES

	The Algorithm and Problem Design File
	Setup of the APD for the (1+1)-ES
	Setup of the APD for the CMA-ES

	Running spot
	Automatic Tuning of the (1+1)-ES
	Automatic Tuning of the CMA-ES

	A Closer Look at spot's Tasks
	The Init Task
	Choosing an Alternative Design for spot's Init Task

	The Run Task
	The Sequential Task
	Choosing an Alternative Meta Model for spot's Sequential Task

	The Report Task
	Choosing an Alternative Report Function

	Templates for Your Project
	All Inclusive
	Summary

