
Performing Meta Experiments Using the

Sequential Parameter Optimization Toolbox

spot

Thomas Bartz-Beielstein

Department of Computer Science,

Cologne University of Applied Sciences,

51643 Gummersbach, Germany

August 24, 2010

Abstract

The sequential parameter optimization (spot) package for R (R De-

velopment Core Team, 2008) is a toolbox for tuning and understanding

simulation and optimization algorithms. Model-based investigations are

common approaches in simulation and optimization. Sequential parame-

ter optimization has been developed, because there is a strong need for

sound statistical analysis of simulation and optimization algorithms. spot
includes methods for tuning based on classical regression and analysis of

variance techniques; tree-based models such as CART and random forest;

Gaussian process models (Kriging), and combinations of di↵erent meta-

modeling approaches. The goal of classical tuning is the determination of

one good algorithm parameter setting for one specific problem instance.

Using spot’s meta mode, good parameter settings of one algorithm for

several problem instances can be determined. This article exemplifies how

meta experiments can be performed using the spot framework.

1 Introduction

This article describes the experimental setup which is necessary to perform
experiments using the spot framework. The spot package can be downloaded
from the comprehensive R archive network at http://CRAN.R-project.org/

package=SPOT. spot is one possible implementation of the sequential parameter
optimization (SPO) framework introduced in Bartz-Beielstein (2006). For a
detailed documentation of the functions from the spot package, the reader is
referred to the package help manuals.

The performance of modern search heuristics such as evolution strategies (ES),
di↵erential evolution (DE), or simulated annealing (SANN) relies crucially on
their parametrizations—or, statistically speaking, on their factor settings. The

1

http://CRAN.R-project.org/package=SPOT
http://CRAN.R-project.org/package=SPOT


Procedure 1: (1+1)-ES()

t := 0;
initialize(~x, �);
y

p

:= f( ~x
p

);
repeat

~x

o

:= ~x

p

+ �(N (0, 1),N (0, 1), . . . ,N (0, 1))T ;
y

o

:= f( ~x
o

);
if y

o

 y

p

then

~x

p

:= ~x

o

;
y

p

= y

o

;
end

modify � according to 1/5th rule;
t := t+ 1;

until TerminationCriterion() ;
return ( ~x

p

, y

p

)

term algorithm design summarizes factors that influence the behavior (perfor-
mance) of an algorithm, whereas problem design refers to factors from the op-
timization (simulation) problem. Population size in ES is one typical factor
which belongs to the algorithm design, the search space dimension belongs to
the problem design.

The paper is structured as follows: Section 2 presents an example how the
experimental setup for an optimization algorithm written in JAVA can be spec-
ified in the spot framework.

2 JAVA Algorithms

2.1 1+1 Evolution Strategy

2.1.1 1+1 Basics

We consider a simple evolution strategy (ES), the so-called (1+1)-ES, see
Procedure 1. The 1/5th rule states that � should be modified according to the
rule

�(t+ 1) :=

8
<

:

�(t)a, if P
s

> 1/5
�(t)/a, if P

s

< 1/5
�(t), if P

s

= 1/5
(1)

where the factor a is usually between 1.1 and 1.5 and P

s

denotes the success
rate (Beyer, 2001). The factor a depends particularly on the measurement
period g, which is used to estimate the success rate P

s

. During the measurement
period, g remains constant. For g = n, where n denotes the problem dimension,
Schwefel (1995) calculated 1/a ⇡ 0.817. Beyer (2001) states that the “choice

2



Table 1: (1 + 1)-ES parameters. The first three parameters belong to the algo-
rithm design, whereas the remaining parameters are from the problem design

Name Symbol Factor name in the algorithm design

Initial stepsize �(0) SIGMANULL
Stepsize multiplier a VARA
History g = n VARG

Name Symbol Name in the APD file1

Starting point ~x

p

xp0
Problem dimension n n
Objective function f(~x) =

P
x

2

i

f
Quality measure Expected performance, e.g., E(y) -
Initial seed s seed
Budget t

max

steps

of a is relatively uncritical” and that the 1/5th rule has a “remarkable validity
domain.” He also mentions limits of this rule.

Based on these theoretical results, we can derive certain scientific hypotheses.
One might be formulated as follows: Given a spherical fitness landscape, the
(1+1)-ES performs optimally, if the step-sizes � is modified according to the
1/5th rule as stated in Eq. 1. This statement is related to the primary model.

In the experimental model, we relate primary questions or statements to
questions about a particular type of experiment. At this level, we define an
objective function, a starting point, a quality measure, and parameters used by
the algorithm. These parameters are summarized in Table 1.

Note, the quality measure is defined in the CONF file.

2.1.2 The JAVA Implementation of the 1+1 ES

We are using a JAVA implementation of the (1+1) ES described in Sect. 2.1.1.
The corresponding jar file can be downloaded from the workshop’s web site2.

The JAVA (1+1)-ES algorithm uses the parameters from Tab. 2. The (1+1)-
ES can be started using the jar file from the command line with the following
arguments.

java -jar simpleOnePlusOneES.jar 1 100 1.0E-6

de.fhkoeln.spot.objectivefunctions.Ball

3 "c(1.0,1.0,1.0)" 1.0 1.2239 3 0 2

The following command-line parameters were used:

1. seed = 1;

2. the algorithm has a budget of one hundred function evaluations;

2http://advm1.gm.fh-koeln.de/ bartz/simpleOnePlusOneES.jar

3

http://advm1.gm.fh-koeln.de/~bartz/simpleOnePlusOneES.jar


Table 2: JAVA ( 1 + 1)-ES: Parameters as reported by the algorithm
Name Parameter
seed random seed ( e.g. 12345 )
steps maximum number of evolution steps ( e.g. 10000 )
target objective function threshold for preliminary evolution

end (e.g. 0.0001 )
f objective function class name (e.g.

de.fhkoeln.spot.objectivefunctions.Ball)
n problem dimension (e.g.12 )
xp0 starting point

(uniform = uniformly distributed random vector from
[0.0, 1.0]n,
gaussian = normally distributed random vector from
N(0,1),
c(xp0

0

, ..., xp0
n

) = the vector [xp0
0

, ..., xp0
n

])
sigma0 initial step size ( e.g. 1.0)
a step size muliplier ( e.g. 1.2239 )
g history length (e.g. 12 = n )
px individual printing mode

(0 = do not print individuals, 1 = only print best in-
dividual, 2 = only print improving step numbers and
individuals, 3 = print every individual )

py objective function value printing mode
(0 = do not print objective function values, 1 = only
print best objective function value, 2 = only print im-
proving step numbers and objective function values, 3
= print every objective function value )

4



3. it terminates, if the function value is smaller than 1e-6;

4. the sphere function is used as the objective function;

5. a three dimensional search space is used;

6. (1, 1, 1) was chosen as the starting point;

7. the initial step size was set to one;

8. as a step size multiplier, the value 1.2239 was chosen;

9. the history length was set to three;

10. no information about individuals is printed;

11. and the best objective function value is reported at the end.

This algorithm run produces the following output:

1 0.3732544130302741

13 0.2268318386083562

20 0.19052464589633564

25 0.17090575193950355

31 0.14554127695687402

37 0.08943630492465122

38 0.07890216216826802

47 0.07318808722843884

53 0.0573032759515119

61 0.001451451919883614

68 0.0010101618142669604

79 1.89432721043702E-4

93 8.645160644753755E-5

2.2 CMA-ES

2.2.1 CMA-ES Basics

We are using Hansen’s CMA-ES, see http://www.lri.fr/~hansen/javadoc/
index.html for details.

3 Experimental Setup

spot allows the user to specify the region of interest ROI. In addition, spot
can be configured (CONF) and additional parameters can be passed to the al-
gorithm (APD). To enable spot’s meta mode, a META file has to be specified.

5

http://www.lri.fr/~hansen/javadoc/index.html
http://www.lri.fr/~hansen/javadoc/index.html


3.1 Files Used During the Tuning Process

Each configuration file belongs to one spot project, if the same basename is
used for corresponding files. spot uses simple text files as interfaces from the
algorithm to the statistical tools.

1. The user has to provide the following files:

(i) Region of interest (ROI) files specify the region over which the al-
gorithm parameters are tuned. Categorical variables such as the
recombination operator in ES, can be encoded as factors, e.g., “in-
termediate recombination” and “discrete recombination.”

(ii) Algorithm design (APD) files are used to specify parameters used by
the algorithm, e.g., problem dimension, objective function, starting
point, or initial seed.

(iii) Configuration files (CONF) specify spot specific parameters, such
as the prediction model or the initial design size.

(iv) Meta files (META) specify parameters from the problem design.
The algorithm is separately tuned for each setting of the meta pa-
rameters. For example, consider tuning a (1+1)-ES on the sphere
function for varying problem dimensions, say n = 10, 20, . . . , 100.
The problem dimension n is a meta parameter in this case.

2. spot will generate the following files:

(i) Design files (DES) specify algorithm designs. They are generated
automatically by spot and will be read by the optimization algo-
rithms.

(ii) After the algorithm has been started with a parametrization from
the algorithm design, the algorithm writes its results to the result
file (RES). Result files provide the basis for many statistical evalu-
ations/visualizations. They are read by spot to generate prediction
models. Additional prediction models can easily be integrated into
spot.

(iii) During the meta mode, the algorithm is tuned on several problem
instances. The best configuration from each problem instance is
written to the final best solution file (FBS).

3.2 Implementation of spot’s Meta Mode

The implementation of the meta mode is straightforward. For each problem
instance, a new sub directory is generated. spot is run in this sub directory
and the best algorithm configuration from the tuning process is copied to the
FBS file in the working directory.

6



3.3 spot Configuration

A configuration (CONF) file, which stores information about spot specific set-
tings, has to be set up. For example, the number of (1+1)-ES algorithm runs,
i.e., the available budget, can be specified via auto.loop.nevals. spot imple-
ments a sequential approach, i.e., the available budget is not used in one step.
Evaluations of the algorithm on a subset of this budget, the so-called initial
design, is used to generate a coarse grained meta model F . This meta model
is used to determine promising algorithm design points which will be evaluated
next. Results from these additional (1+1)-ES runs are used to refine the meta
model F . The size of the initial design can be specified via init.design.size.
To generate the meta model, we use random forest (Breiman, 2001). This can
be specified via seq.predictionModel.func = "spotPredictRandomForest".

Random forest was chosen, because it is a robust method which can handle
categorical and numerical variables.

3.3.1 Setup of the CONF for the (1+1)-ES

The CONF file to be used in the META mode is very similar to the CONF file
from the regular mode. For each problem instance, spot generates a subdirec-
tory. Therefore, the path to the algorithm has to be specified, i.e., the variable
alg.path must contain the absolute path to the algorithm. In our example,
alg.path is set to
/home/bartz/workspace/SvnSpot/trunk/ExperimentsBartz.d/Java0Meta.d.

The corresponding CONF file for the (1+1)-ES looks as follows. Note, all
spot options are summarized in the spotGetOptions3 file.

alg.path = "/home/bartz/workspace/SvnSpot/trunk/ExperimentsBartz.d/Java0Meta.d"

alg.func = "spotInterfacingTemplateMeta"

alg.seed = 1235

spot.seed = 125

auto.loop.steps = 50;

init.design.func = "spotCreateDesignLhd";

init.design.size = 10;

init.design.repeats = 1;

seq.design.maxRepeats = 5;

seq.design.size = 250

seq.predictionModel.func = "spotPredictRandomForest"

io.verbosity=3

The settings can be explained as follows.

3http://advm1.gm.fh-koeln.de/ bartz/spotGetOptions.html

7

http://advm1.gm.fh-koeln.de/~bartz/spotGetOptions.html


alg.path: Specify the path to the algorithm to be tuned. Type: STRING

alg.func: Specify the name of the algorithm to be tuned. Type: STRING

alg.seed: Seed passed to the algorithm. Type INT

spot.seed: Seed used by spot, e.g., for generating LHD. Type: INT

auto.loop.steps: spot Termination criterion. Number of meta models to be
build by spot. Type: INT

init.design.func: Name of the function to create an initial design. TYPE:
STRING

init.design.size: Number of initial design points to be created. Type: INT

init.design.repeats: Number of repeats for each design point from the initial
design. Type: INT

seq.design.maxRepeats: Maximum number of repeats for design points. Type:
INT

seq.design.size: Number of design points evaluated by the meta model. Type:
INT

seq.predictionModel.func: Meta model. Type: STRING

io.verbosity: Level of verbosity of the programm. TYPE: INT.

spot provides an meta CONF template, which can be downloaded from the
workshop’s web site4.

3.4 The Region of Interest

A region of interest (ROI) file specifies algorithm parameters and associated
lower and upper bounds for the algorithm parameters. There is no di↵erence
between the ROI file used in spot’s regular and spot’s META mode.

3.4.1 Setup of the ROI for the (1+1)-ES

• Values for sigmanull are chosen from the interval [.1; 5].

• Values for vara are from the interval [1; 2] and

• Values for varg are from the interval [2; 100].

The corresponding ROI file looks as follows.

4http://advm1.gm.fh-koeln.de/ bartz/SpotMeta.d/java0Meta.conf

8

http://advm1.gm.fh-koeln.de/~bartz/SpotMeta.d/java0Meta.conf


name low high type

SIGMANULL 0.1 5 FLOAT

VARA 1 2 FLOAT

VARG 2 100 INT

spot provides an ROI template, which can be downloaded from the workshop’s
web site5.

3.5 The Algorithm and Problem Design File

Parameters related to the algorithm or the optimization problem are stored in
the APD file. This file contains information about the problem and might be
used by the algorithm. For example, the starting point
xp0 = "[1.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0]" can be specified in
the APD file.

3.5.1 Modifications of the spot Interface to the (1+1)-ES

The meta mode requires a small modification of the interface to the algorithm,
because each spot run of the meta mode is performed in a new sub directory.
Therefore, the call string of the algorithm has to be modified. Replace

callString <- paste("java -jar simpleOnePlusOneES.jar"

,seed, steps, target, f, n, xp0, sigma0, a, g, px, py, sep = " ")

with

callString <- paste("java -jar

/home/bartz/workspace/SvnSpot/trunk/ExperimentsBartz.d/Java0Meta.d/simpleOnePlusOneES.jar"

, seed, steps, target, f, n, xp0, sigma0, a, g, px, py, sep = " ")

Note, you have to replace

/home/bartz/workspace/SvnSpot/trunk/ExperimentsBartz.d/Java0Meta.d/simpleOnePlusOneES.jar

with the path to your local simpleOnePlusOneES.jar file.

3.5.2 Modifications of the APD file for the meta mode

In general, it is not necessary to modify the APD file for the META mode.
However, here we are facing a special situation, because we are modifying the
problem dimension n. These variations of the n values require an update of the
specification of the starting point xp0 of the (1+1)-ES. A ten dimensional prob-
lem requires a ten dimensional starting point, whereas a hundred dimensional
problem requires a hundred dimensional starting point. Therefore, a few lines
of code were added to the interfacing procedure of the (1+1)-ES:

if(length(xp0) != n){

elem <- xp0[[1]]

xp0 <- paste('"',"[", elem, sep="")

5http://advm1.gm.fh-koeln.de/ bartz/SpotMeta.d/java0Meta.roi

9

http://advm1.gm.fh-koeln.de/~bartz/SpotMeta.d/java0Meta.roi


if(n>1){

for (kk in 2:n){

xp0 <- paste(xp0, elem, sep=",")

}

}

xp0 <- paste(xp0, "]",'"', sep="")

}

The setting of the starting point xp0 in the APD file is modified accordingly.
Now, we use xp0 = 1.0 instead of
xp0 = "[1.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0]" which gives more flex-
ibility. This new setting can be used for any dimension. The modified APD file
is shown in Sect. 3.5.3.

3.5.3 Setup of the APD for the (1+1)-ES

px = 0

py = 1

steps = 100

target = 1e-10

f = "de.fhkoeln.spot.objectivefunctions.Ball"

n = 10

xp0 = 1.0

seed = 123

sigma0 = 1

a = 1.2

g = 10

spot provides an (1+1)-ESAPD template, which can be downloaded from
the workshop’s web site6.

3.6 The Meta File

The configuration of the meta file is simple and similar to the APD file. Each
line defines settings for one variable. These settings are defined as a list. Since
we are modifying the problem dimension n, the META file looks as follows:

n = list(1:50)

Note, the user can add more lines to the META file. Each combination of
these parameter settings are used. spot provides an (1+1)-ESMETA template,
which can be downloaded from the workshop’s web site7.

6http://advm1.gm.fh-koeln.de/ bartz/SpotMeta.d/java0Meta.apd
7http://advm1.gm.fh-koeln.de/ bartz/SpotPerforming.d/java0Meta.meta

10

http://advm1.gm.fh-koeln.de/~bartz/SpotMeta.d/java0Meta.apd
http://advm1.gm.fh-koeln.de/~bartz/SpotPerforming.d/java0Meta.meta


4 Running spot’s Meta Mode

Now that the interface has been setup, and the experimental setup has been
specified, the first spot meta run can be performed.

4.1 Meta Runs with the (1+1)-ES

Consider the following situation: The user has created a working directory for
running the experiments, say MyJavaExperiments. This directory contains the
following files.

• spot configuration (CONF), e.g., java0Meta.conf8

• Region of interest (ROI), e.g., java0Meta.roi9

• Algorithm and problem parameters (APD) java0Meta.apd10

• The interface to the algorithm. spotInterfacingTemplateMeta.R11

• The algorithm, i.e., the jar file. simpleOnePlusOneES.jar12

R is started in the working directory. The following command starts spot’s
meta tuning procedure.

> library(SPOT)

> spot("java0Meta.conf", "meta")

Sometimes is it required to start a clean R session, because data from previous
runs are in the workspace. Execute

rm(list=ls());

to perform a cleanup before spot is loaded and run.
The meta process terminates with the following output:

[1] "java0Meta_n50.des"

y SIGMANULL VARA VARG

Min. :22.71 Min. :0.1199 Min. :1.007 Min. : 7.00

1st Qu.:31.13 1st Qu.:2.7788 1st Qu.:1.056 1st Qu.:58.00

Median :34.49 Median :3.2686 Median :1.088 Median :72.00

Mean :35.46 Mean :3.2226 Mean :1.124 Mean :67.73

3rd Qu.:39.07 3rd Qu.:3.8006 3rd Qu.:1.102 3rd Qu.:83.00

Max. :50.00 Max. :4.6745 Max. :1.939 Max. :94.00

Best solution found with 103 evaluations:

Y SIGMANULL VARA VARG COUNT CONFIG

23 30.76017 2.509786 1.062909 83 5 23

8http://advm1.gm.fh-koeln.de/ bartz/SpotMeta.d/java0Meta.conf
9http://advm1.gm.fh-koeln.de/ bartz/SpotMeta.d/java0Meta.roi

10http://advm1.gm.fh-koeln.de/ bartz/SpotMeta.d/java0Meta.apd
11http://advm1.gm.fh-koeln.de/ bartz/SpotMeta.d/spotInterfacingTemplateMeta.R
12http://advm1.gm.fh-koeln.de/ bartz/simpleOnePlusOneES.jar

11

http://advm1.gm.fh-koeln.de/~bartz/SpotMeta.d/java0Meta.conf
http://advm1.gm.fh-koeln.de/~bartz/SpotMeta.d/java0Meta.roi
http://advm1.gm.fh-koeln.de/~bartz/SpotMeta.d/java0Meta.apd
http://advm1.gm.fh-koeln.de/~bartz/SpotMeta.d/spotInterfacingTemplateMeta.R
http://advm1.gm.fh-koeln.de/~bartz/simpleOnePlusOneES.jar


A final best solution file (FBS), which contains important information from
the meta run, has been written to the working directory. It can be downloaded
as java0.res13 from the workshop’s web page.

Y SIGMANULL VARA VARG COUNT CONFIG n

1.66994929364791e-11 1.77243773721587 1.47313903401513 50 5 23 1

1.76974481621422e-08 4.13757762718033 1.59132047591917 58 5 17 2

0.000249949023120775 0.767797299823724 1.24111634415295 36 5 28 3

0.00381202963815855 1.87226565002762 1.57047875361983 45 5 19 4

0.0083062486475069 0.725049436075427 1.2164403182324 47 5 29 5

0.0204929156602843 1.60901337389555 1.0696734005278 20 5 15 6

0.0414125716487922 2.6420768151477 1.21203334785718 25 5 20 7

0.170030497403991 3.11775652743802 1.12311313991807 66 5 28 8

0.303833850226578 0.647755945593305 1.1481811835384 35 5 27 9

0.228793829315659 0.770315962409414 1.06917319222819 39 5 26 10

0.36032566622193 1.79691847858382 1.18159458260797 27 5 28 11

0.529091703473727 0.15483357580388 1.04816489817109 21 5 26 12

1.59017957171204 1.374371843467 1.22557020798698 100 5 21 13

1.53346841235075 0.88388465179829 1.08124839728046 82 5 30 14

1.66758926424082 3.36431918830862 1.13585389079526 73 5 16 15

2.80938651706311 3.22419239962334 1.07190223618876 89 5 27 16

1.81535398571898 0.408259528433532 1.06461427548435 30 5 21 17

3.75908073911434 1.62718580127852 1.06491679834202 78 5 26 18

2.30691487221778 0.174113577309996 1.00983339973167 70 5 11 19

4.36070376993907 3.79613268197458 1.1593797170762 34 5 15 20

3.98349143775901 0.322219615078066 1.09240018011723 86 5 22 21

4.59500657124994 0.594469441467989 1.05669404837769 51 5 23 22

5.73073754875688 1.44470423722174 1.05566112561524 67 5 27 23

5.52095265382445 0.162522591060773 1.00735978167411 34 5 17 24

6.42185007423266 0.193069812484458 1.06613574731536 69 5 25 25

8.2245623079002 3.69819622882549 1.10985683534481 97 5 19 26

8.3078065049788 0.161955996157322 1.05821049421187 37 5 19 27

11.4679870926236 3.82484304474983 1.08829998440947 7 5 19 28

12.4512753858261 3.05403130636755 1.10779903379455 44 5 16 29

9.64608770371497 0.284192788536847 1.04912395175919 41 5 17 30

9.73772022960643 0.10114390837783 1.00906914806087 62 5 24 31

10.5597011557683 1.72445825159233 1.07217559588514 87 5 14 32

10.3672357078329 0.134599235072359 1.01938627839554 93 5 19 33

18.1913106357228 1.58889361474207 1.03560492046829 51 5 29 34

14.1955885102874 0.568881144746486 1.01537999345176 94 5 19 35

14.7899472156359 0.111073942558374 1.06076744625717 97 5 15 36

18.8861950215593 2.07688707274152 1.09084986476228 50 5 10 37

23.6324271290547 0.698208594874013 1.68827389127109 67 5 5 38

17.1204625181177 0.262166819186881 1.02370456977002 51 5 21 39

22.2447438564846 3.6468800928615 1.06743559596874 9 5 24 40

20.3085146925552 0.817548313462362 1.03124808251765 6 5 16 41

23.2342172915281 3.80829033931 1.0696718550818 4 5 29 42

29.0779101086268 1.61163491582554 1.37209779803921 27 5 26 43

17.7119480987105 0.142815414902847 1.00902041078079 95 5 20 44

25.9085994525956 4.08213876903672 1.07963561266102 37 5 19 45

25.5711905535851 0.338241372768674 1.13696653940249 18 5 23 46

28.1548588619646 0.751029239553493 1.09044733802509 54 5 27 47

33.2487176101654 4.07324539682129 1.19218263512291 87 5 21 48

31.1223365561554 3.4563801769861 1.05835333938897 92 5 30 49

30.7601655678372 2.50978620407097 1.06290862832591 83 5 23 50

13http://advm1.gm.fh-koeln.de/ bartz/SpotMeta.d/java0Meta.fbs

12

http://advm1.gm.fh-koeln.de/~bartz/SpotMeta.d/java0Meta.fbs


4.2 The Report Task for the Meta Mode

If spot’s termination criterion is fulfilled, a meta report can be generated. A de-
fault meta report function is included in the spot package: spotReportMetaDefault.

spot("java0Meta.conf","rep")

It generates the output shown in Fig. 1.

|||||||||||| ||| || || ||| || | || | ||| || ||| | || || | || || | |||

Y

0 10 20 30 40 50

0
5

10
15

20
25

30

●●●●●●●●●●●●
●●●

●
●

●

●

●●
●
●●

●

●●

●
●

●●
●●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●●

0 5 10 15 20 25 30

0
10

20
30

40
50

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●

●
●
●
●
●
●
●

●
●

●
●

●
●
●
●

●
●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |

n

Figure 1: Default meta report output

The user can choose alternative report functions or even add new report
functions to spot.

5 All Inclusive

The file allInclusive.zip14 contains all files used in this workshop, so you do not
have to download the files separately.

14http://advm1.gm.fh-koeln.de/ bartz/SpotPerforming.d/allInclusive.zip

13

http://advm1.gm.fh-koeln.de/~bartz/SpotPerforming.d/allInclusive.zip


6 Summary

spot requires the specification of the following files:

1. Region of interest (ROI) files specify the region over which the algorithm
parameters are tuned. Categorical variables such as the recombination op-
erator in ES, can be encoded as factors, e.g., “intermediate recombination”
and “discrete recombination.”

2. Algorithm design (APD) files are used to specify parameters used by the
algorithm, e.g., problem dimension, objective function, starting point, or
initial seed.

3. Configuration files (CONF) specify spot specific parameters, such as the
prediction model or the initial design size.

4. Meta file (META) to specify meta variables.

spot will generate the following files:

1. Design files (DES) specify algorithm designs. They are generated auto-
matically by spot and will be read by the optimization algorithms.

2. After the algorithm has been started with a parametrization from the al-
gorithm design, the algorithm writes its results to the result file (RES).
Result files provide the basis for many statistical evaluations/visualiza-
tions. They are read by spot to generate prediction models. Additional
prediction models can easily be integrated into spot.

3. (FBS) files contain information from the meta runs.

References

Bartz-Beielstein, T. (2006). Experimental Research in Evolutionary
Computation—The New Experimentalism. Natural Computing Series.
Springer, Berlin, Heidelberg, New York.

Beyer, H.-G. (2001). The Theory of Evolution Strategies. Springer, Berlin,
Heidelberg, New York.

Breiman, L. (2001). Random forests. Machine Learning, 45(1):5 –32.

R Development Core Team (2008). R: A Language and Environment for Statis-
tical Computing. R Foundation for Statistical Computing, Vienna, Austria.

Schwefel, H.-P. (1995). Evolution and Optimum Seeking. Sixth-Generation Com-
puter Technology. Wiley, New York NY.

14


	Introduction
	JAVA Algorithms
	1+1 Evolution Strategy
	1+1 Basics
	The JAVA Implementation of the 1+1 ES

	CMA-ES
	CMA-ES Basics


	Experimental Setup
	Files Used During the Tuning Process
	Implementation of spot's Meta Mode
	spot Configuration
	Setup of the CONF for the (1+1)-ES

	The Region of Interest
	Setup of the ROI for the (1+1)-ES

	The Algorithm and Problem Design File
	Modifications of the spot Interface to the (1+1)-ES
	Modifications of the APD file for the meta mode
	Setup of the APD for the (1+1)-ES

	The Meta File

	Running spot's Meta Mode
	Meta Runs with the (1+1)-ES
	The Report Task for the Meta Mode

	All Inclusive
	Summary

