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Abstract This chapter comprises the essence of several years of tutorials
the authors gave on experimental research in evolutionary computation. We
highlight the renaissance of experimental techniques also in other fields to
especially focus on the specific conditions of experimental research in com-
puter science, or more concrete, metaheuristic optimization. The experimen-
tal setup is discussed together with the pitfalls awaiting the unexperienced
(and sometimes even the experienced). We present a severity criterion as a
meta-statistical concept for evaluating statistical inferences, which can be
used to avoid fallacies, i.e., misconceptions resulting from incorrect reasoning
in argumentation caused by floor or ceiling effects. The sequential parameter
optimization is discussed as a meta-statistical framework which integrates
concepts such as severity. Parameter tuning is considered as a relatively new
tool in method design and analysis, and it leads to the question of adapt-
ability of optimization algorithms. Another branch of experimentation aims
for attaining more concrete problem knowledge, we may term it ‘exploratory
landscape analysis’, containing sample and visualization techniques that are
often applied but not seen as being a methodological contribution. However,
this chapter is not only a renarration of well known facts. We also try a look
into the future to estimate what the hot topics of methodological research
will be in the next years and what changes we may expect for the whole
community.
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1 Introduction

As in many natural sciences, research on metaheuristics and especially evo-
lutionary computation (EC) mainly rests on two pillars: theory and practice.
Undoubtedly, theory in EC has made a good step forward during the last
decade. However, the larger part of published work in this area is still dealing
almost exclusively with the application of EC and related methods to real-
world and/or benchmark problems. Qualms regarding the meaningfulness of
theoretical approaches are rarely expressed, but doubts concerning the reli-
ability of experimental results are often raised, especially by practitioners.
This may lead to the question: “Can we get rid of experimentation in EC as
a whole and and resolve to theory only?”

Our experience is that this will not happen, because there are simply too
many different real-world applications of EC techniques. Moreover, theory
and practice have different rhythms, one may design and implement a useful
algorithm modification in minutes or hours, but adapting the existing theory
to it may take days or weeks. It may be worth noting that in other related
sciences and in philosophy of science, experimentation currently experiences
a renaissance [54].

If we presume that experimentation is necessary, we need to ponder how
to strengthen the experimental methodology in order to make experimental
results more reliable and thus also more useful for theoretical approaches. It
may help to make clear what experimental works in EC are actually about
and if they can be split into categories. It seems that during the last decades,
two motivations for experimental works have been predominant:

• Solving a real-world problem or at least showing that it could be solved
by some EC based method

• Demonstrating the ability of a (preferably new and self-defined) algorithm

These two form the extremes, and mixtures with various weights are fre-
quently encountered. They resemble a problem-centric and an algorithm-
centric view, respectively. The former is strongly leaning towards engineering
and often focusing on representations, simulating, modeling, long runtimes,
and technical issues, whereas the latter is much nearer to algorithmics and
mathematics. One deals with constructed problems that can be computed
fast and of which the most important properties are well known.

Setting up an experiment can be far from trivial as there are numerous
mistakes that may render an experiment useless. Rardin and Uszoy [71] state
the following: “No one who has ever tried it thinks conducting empirical
research on heuristics is easy”, and we would like to add that this stems from
the complexity of the systems dealt with. Many influences which are simply
ignored (or removed ‘by construction’) in theoretical investigations cannot be
removed but must rather be controlled in experimental studies, thereby at
least trying to avoid the most obvious mistakes.
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Performing experiments in computer science can address the following (re-
lated) tasks:

T-1 Find the best parameters or algorithms given k sets of random numbers
representing the outcome of some experiments

T-2 Find the best assignment for a set of real variables representing the
parameters of the algorithm (within a given range) for a problem class

T-3 Given m possible ways to modify algorithm a (e.g., by using extra oper-
ators) find the best combination for a problem class

Regarding task T-1, we will restrict our analysis to problems with k = 2. We
are using SPOT (introduced in Sec. 3.2) to find the best assignment. SPOT
can also be used to determine the best combination of algorithm operators
for a given problem class.

Although conceptually different, task T-3 can be tackled in the framework
of task T-2. In a complex experiment the experimenter might have to con-
sider, hierarchically, all three tasks (for example he might want to retune the
parameters for every different combination of operators in T-3). The tuning
procedure can be performed hierarchically, e.g., for every different combina-
tion of operators. However, we recommend an alternative approach which
includes the operators into the algorithm design. Settings for the operators
can be included as factors in the algorithm design and treated in a similar
way as numerical parameters, see Chapter 14 in [6] for an example.

We report on these methodological foundations in Sect. 2, also reflecting
on approaches in other fields, especially in algorithmics. This section also
describes how reports from experimental studies can be structured.

Section 3 introduces the framework of active experimentation. It describes
the sequential parameter optimization toolbox. Since the comparison of re-
sults plays a central role in experimentation, we discuss key elements from a
meta-statistical perspective.

The algorithm-centric research has made good progress during the last
years, two notable developments are different tuning techniques (e.g., F-
race [22], sequential parameter optimization (SPO) [8, 1] and the rele-
vance and calibration method (REVAC) [61]) and new benchmark compe-
titions/libraries as BBOB’09 [35] and the CEC’05 competition [75]. We high-
light SPO as one interesting tuning approach and its use for the experimen-
tal analysis of a simulated annealing (SANN) heuristic which is presented in
Sec. 4.

Hypothesis testing is discussed in Sec. 5. We present an introduction and
discuss problems related to hypothesis testing as well.

Some researchers claim that scientific progress is based on accepting high-
level theories, whereas others view progress “based on the growth of more
localized experimental knowledge”[54]. Actually, there is an interesting debate
about the importance of experimentation in the philosophy of science, e.g.,
[24] can be recommended as a good starting point. We will not detail this
discussion in this chapter, but will transfer some important results from this
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Fig. 1 Steps and contexts of performing an experiment from research question to
scientific result

on-going debate in the following. The focus of our work lies on severity as
a meta-statistical concept for evaluating statistical inferences, which can be
used to avoid fallacies, i.e., misconceptions resulting from incorrect reasoning
in argumentation caused by floor or ceiling effects. Severity, as an extension
of the power used in hypothesis testing, is introduced in Sec. 6.

Based on the considerations from the previous sections, meta-statistical
principles can be applied. Meta-statistical rules, as discussed in Sec. 7, are
necessary, because statistical results can be misleading and need some inter-
pretation. Here comes the concept of severity into play, which is one element
of the sequential parameter optimization.

For the problem-centric approach, it is often most important to collect
problem knowledge during design and test of an optimization method. This
resembles some kind of exploratory analysis and is dealt with in Sect. 8.

Finally, the chapter concludes with a summary and a view onto envisaged
future developments in Sect. 9.

2 Towards an Experimental Methodology

The following sections provide basic elements and fundamental considera-
tions, which are necessary for active experimentation in computer science.
Active experimentation, which implements a framework of the approach pre-
sented in this section, is visualized in Fig. 1.

Section 2.1 discusses the role of experiments in computer science. Gen-
erally, experiments should be based on well-founded research questions. We
present research questions related to demonstration, robustness, comparison,
understanding, and novelty detection in Sect. 2.2. The key problem which
occurs in nearly every experimental study is the selection of an appropriate
measure. The most prominent measures are introduced in Sec. 2.3. After an
adequate measure is selected, the pre-experimental planning phase can begin.
During this phase, which is described in Sec. 2.4, the experimental setup is
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calibrated. Problems, which are related to parameter settings, are briefly dis-
cussed in Sec. 2.5. Then, experiments can be performed, see Sec. 2.6. These
experiments can generate lots of data, which are use for the experimental
analysis. We consider key features of comparisons in Sec. 2.7. Findings from
these analyses should be presented, e.g., as articles. We propose a structured
report scheme in Sec. 2.8. We can conclude from our experience that mean-
ingful results require several experiments as discussed in Sec. 2.9. Finally, we
consider the determination of scientifically meaningful results in Sec. 2.10.

2.1 Performing Experiments in Computer Science

In theoretical computer science, one is usually interested in pessimistic gen-
eralizations, in knowing what an algorithm does in the worst possible case.
Experimental results are considered with a certain amount of skepticism. This
may have two reasons:

• Many experimental works of the past are not very well crafted. Different
from other sciences with very expensive (in time and financial effort)
experiments, computer science is in the luxurious position to allow for
nearly unlimited sampling. Thus, one shall not stop at the first results
but use the obtained knowledge to set up a refined experiment. Every
possible setup is like a simple point in a high-dimensional space, defined
by the many different factors that could influence the outcome. Sampling
just at one point will not allow for any conclusions about, e.g., the overall
quality of certain algorithms.

• Experimental investigations rarely care for worst cases. If the treated
problem has a real-world background, the worst case view is usually not
applicable: one simply does not know how it could look like, and as no
analytic formulation is available, there is no alternative way of approach-
ing the worst case. One therefore often follows an average case approach,
where the average consists of some reasonably likely cases or representa-
tives thereof. Thus, experiments can only lead to probabilistic reasoning
because it is not possible to give a conclusion that holds for every member
of a problem class. This approach generalizes neutrally over the samples
made and even if the experiment is bug-free and cleverly set up, exact
knowledge is only attained for the actually measured points. Performance
guarantees cannot be given for any deviating setting.

This said, we do not recommend to cease experimentation altogether. In
many situations, it is the only way to advance scientific progress. In others,
it can be a valuable addition to theory, as emphasized by the Algorithm En-
gineering approach [26]. However, it is necessary to be aware of the problems
one may run into and to follow a suitable experimental methodology instead
of doing ad-hoc tests.
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Several authors from different fields have cautioned against experimen-
tal mistakes and provided guidelines for scientifically meaningful experi-
mentation on algorithms, we name only a small subset here. Moret gives
a methodology overview from the viewpoint of algorithmics, also reporting
about testing heuristics [59]. Johnson [45] provides a comprehensive list of
pitfalls and solutions for experiments in algorithmics, mostly dealing with de-
terministic algorithms. However, a large part of the list also applies to meta-
heuristics/evolutionary algorithms. Nevertheless, there are problems stem-
ming from the non-deterministic nature of these algorithms. These are es-
pecially treated, e.g., by Hooker [40] and Eiben [29]. In the following, we
describe how to start an experimental investigation on metaheuristic opti-
mization methods and how to avoid the most commonly made mistakes.

2.2 Research Questions

Around two decades ago, Cohen [27] hinted at the fact that in artificial in-
telligence, experimental studies were often not well tasked. In evolutionary
computation or metaheuristics fields, the situation at that time was certainly
not better. Surprisingly, nowadays many experimental works still come with-
out a clear statement about the overall research question that is going to
be answered. Instead, the implicitly assumed task often is to show that any
new algorithm A is better than a standard method A∗ or many of them. Sam-
pling comparison data at a small number of points (defined by algorithms,
optimization problems, parameters, termination criteria etc.) does not neces-
sarily allow for general conclusions about the compared algorithms. Besides,
the tackled research question should not be that general. As an example, it
may make more sense to ask under which conditions (problems, runtimes,
etc.) A is better than A∗ and why. It goes without saying that the research
question must be stated in the paper, so that the reader gets a chance to
value the experimental findings.

In our view, the following questions or aspects of questions are fundamental
for experiments in computer science and may serve as a guideline for setting
up new experiments. The experimenter should clearly state if experiments
are performed to
1. demonstrate the performance of one algorithm,
2. verify the robustness of one algorithm on several problem instances,
3. compare two (or several) known algorithms,
4. explain and understand an observed behavior, or
5. detect something new.

Each of these five research goals, which can also be characterized as demon-
stration, robustness, comparison, understanding, and novelty detection, re-
quires a different experimental setup.
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We discourage mixing too many different aspects of an experimental in-
vestigation into one experiment. Rather, one shall consider if it makes sense
to split the investigation into multiple experiments, each one reported sep-
arately. This simplifies understanding the outcome and also enhances repro-
ducibility, which should be a primary concern when presenting exciting new
facts obtained by experiment. If we want to employ statistical techniques as
hypothesis tests to bolster up our confidence in the findings, it is necessary
to switch the context from a domain-specific scientific one to a statistical one
and back. We can first formulate one or several scientific claims. As an exam-
ple, we consider the claim:“Algorithm A is faster than algorithm A∗ under the
defined conditions (test problems, performance measure, parameter settings,
etc.).” These have then to be formulated as statistical hypotheses, which can
be tested by experimentation.

2.3 What to Measure?

Once the direction of the experimental investigation is set, one has to decide
how to measure. This may not be a trivial issue. McGeoch [55] demonstrates
that even for deterministic algorithms, the influence of the measure should
not be underestimated and that setting it up properly can be a decisive
factor for obtaining interesting results. When investigating nondeterministic
optimization algorithms on not too simple problems, there are two princi-
pal possibilities. We can employ a quality task and measure how long the
algorithm needs to get there, or we can set up a budget (usually regarded
as equivalent to runtime in black-box optimization) task and measure the
performance obtained under scarce resources. As discussed in the BBOB’09
setup [35], fixing a quality task (there also called horizontal measuring) of-
ten leads to a better understanding of algorithm performance than fixing a
budget task (vertical measuring). The competition was thus run under the
expected running time (ERT) measure:

ERT ( ftarget) =
#FEs( fbest(FE)≥ ftarget)

#succ
(1)

The number of ‘unsuccessful evaluations’ (where the observed objective func-
tion value is worse than a given target, fbest(FE) ≥ ftarget , restarts are as-
sumed) per repeat is summed up and divided by the number of successes
(#succ) of attaining the target function value ftarget . The ERT is certainly
good at capturing the performance of algorithms under relaxed resource con-
ditions. However, real-world problems often do not allow such generous con-
ditions so that only a few hundred or thousand function evaluations can be
invested. It is a philosophical question if one can justify applying the term
‘optimization’ in this context, but apart from that it is obvious that an al-
gorithm with a good final best function value does not necessarily provide
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a good approximation of this value fast. Thus it also makes sense to set a
budget task in the predicted range of allowed function evaluations under ap-
plication conditions and ask which algorithm provides the best solution and
how reliable it is.

Next to the ERT, some often used measures are the mean best fitness
(MBF) and the success rate (SR). However, these come with some difficulties.
Averaging is very sensitive regarding outliers, so it may be more suitable to
work with the median instead of the mean. Success rates were frequently
used in the past, but this measure removes the whole runtime information. A
fast method always reaching 100% becomes indistinguishable from a slow one
also reaching this success rate. For setting up proper conditions for measuring,
one may rely on runtime distributions as proposed by Hoos and Stützle [41].
Chapter 7 in [1] presents 18 different performance measures and mentions
relevant publications.

Sometimes however, the available base measures do not match the in-
tention of the experiment well. For example, if one has a certain, possibly
unusual tradeoff between quality and runtime in mind. In these cases, it may
be necessary to define a new measure as e.g. suggested by [71] (see [67] for
an example). However, this path should be walked with caution: it does not
make sense to stick to a measure that does not express what one actually
wants to investigate. But too many measures render results incomparable.

2.4 Pre-experimental Planning

If research question and measure are chosen, and the implementation issues
have been resolved, it is time for the first tests. We name this phase pre-
experimental planning and its main purpose is to check if the envisioned
experimental setup is meaningful. This may apply to the selection of ftarget
values for measuring, or the maximum allowed number of function evalua-
tions, or the set of benchmark problems one is going to investigate.

During the pre-experimental planning phase, several practical problems
have to be considered, e.g., how many comparisons should be performed?
How many repeat runs of each algorithm should be done? Should a one-stage
or multi-stage procedure be used? Classical textbooks on statistics provide
useful answers to these questions, which are related to pre-data information,
i.e., before the experimental data is available. We highly recommend Bech-
hofer et al.’s comprehensive work “Design and Analysis of Experiments for
Statistical Selection, Screening, and Multiple Comparisons”.[20]

Additionally, one shall try to make sure that other possible problems that
could influence the outcome of an experiment are found and remedied. As
Knight [47] argues, one should apply common sense concerning setup and
results. Are the first results plausible? Or do they hint to a possible code
problem? What makes a meaningful difference in my test cases? We would
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explicitly suggest to use as much visualization as possible at this stage. A
problem revealed only after the experiment is finished is much more annoying
than one found early, especially if time constraints do not allow for redoing
the whole experiment.

At the end of the pre-experimental phase, one should be able to set up an
experiment in a way that it leads to results finally tackling the given research
question. We may assume that not all possible problems with the setup can
be identified during this first phase, but it serves as a filter preventing the
most obvious mistakes, some of which we highlight in the following.

2.5 Fair Parameter Settings

There are different opinions on how much effort shall be put into obtaining
good parameters for the algorithms which are to be compared. It certainly
makes sense to compare algorithms under default parameters. This resembles
an application setting where parameter adaptation to a problem is not possi-
ble, e.g., due to time restrictions. On the other hand, it may also be important
to know how the algorithm would perform under good parameter settings. In
this case, tuning algorithms can be applied before running the comparison.
In either case, the comparison shall be fair, meaning that the same amount
of tuning should go into setting up each algorithm. It is clear that a tuned
algorithm will perform better than an algorithm running under default pa-
rameters in most cases, this is hardly worth an experimental investigation.
For newly invented algorithms, a robust set of default parameters may not be
available, thus the ad-hoc parameter values chosen to make it run can serve
as such. However, it is even more necessary to explore parameter effects and
interactions in this case, e.g. by applying tuning. Regardless of the statements
above, it may be a viable research question to ask if any parameter setting for
a new algorithm leads to a performance advantage over a standard algorithm,
but then the next question should be: how robust are these parameters, or is
the advantage only achieved for very specific problems, and if so, for which
ones?

2.6 Performing the Experiments

Now that the research question and the performance measure for a given
problem and algorithm are fixed, experiments can be performed. It is impor-
tant to set up the scientific claims and their matching statistical hypotheses
before looking at the obtained results [59] to achieve as much objectivity as
possible. Otherwise, one could set up hypotheses in a way so that they are al-
ways supported, which renders the scientific contribution insignificant. On the
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other hand, this requires a change in how experimental results are received.
More than the raw numbers or outcomes of statistical tests, the knowledge
gain is important. Do the results contain previously unknown facts? This
may also happen if two well-known algorithms, neither of which is new, are
compared on a new set of benchmark functions; it is not necessary to always
invent new algorithms. Or do they support or even refute known facts?

Additionally, we would like to give a practical hint here: “Never watch a
running experiment.” Once one can be sure that the experiment is indead
going to produce useful data, one shall wait with the analysis until the ex-
periment is finished. The reason is simply that one is easily mislead by the
first results coming in and may get a wrong impression that is later on hard
to get rid of, even in the face of the full data set, so that the experimenter is
in danger of losing the necessary neutrality.

2.7 Key Features of Comparisons

Many experimental studies are based on comparisons. Consider, e.g., tuning
procedures which can be used to improve algorithm’s performance. Obviously,
each tuning procedure itself requires comparisons, because the performance
of the algorithm before, say

x = perf(A), (2)

and after the tuning, say x∗ = perf(A∗) has to be compared. Many tuning
procedures are based on stochastic data, i.e., noisy data. This noise can be
caused by

1. the algorithm, e.g., evolutionary algorithms,
2. the problem, e.g., simulation model,
3. or both.

Therefore, the comparison of two real values x and x∗ is not sufficient and
multiple runs of the algorithm have to be performed. We are considering (at
least) two data vectors: x and x∗, where x denotes the vector of n performance
values of the untuned algorithm A and x∗ the vector of m runs of the tuned
algorithm A∗. Note, a similar situation might occur even if algorithm and
problem are purely deterministic when multiple problem instances are tested.

In many cases we are facing the following fundamental problem after all
the experiments were performed, i.e., post-data: given two data sets, x and x∗,
representing data from associated algorithms A and A∗, respectively. Decide,
whether A is better than A∗.

In order to answer this question, performance has to be measured. Al-
though simple statistics such as the mean or median of the run time are
adequate to gain a first impression of the algorithm’s performance, a sound
statistical analysis requires more sophisticated measures. At this stage, sta-
tistical tests can be are carried out.
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R-1: Research question. State in short the general objective of the experiment.
R-2: Pre-experimental planning. Report the results of first tests which are im-

portant for setting up the main experiment, e.g. for choosing problems,
parameter settings, termination criteria.

R-3: Task. Formulate one or several scientific claims (only applicable if more
concrete than the research question) and give matching statistical hypothe-
ses, together with significance conditions.

R-4: Setup. Here goes everything that is needed to replicate the experiment,
if not previously described. This consists of the applied algorithms, test
problems, parameter settings, important outer conditions (e.g., if relevant,
details of the employed hardware). Now, experiments can be performed.

R-5: Results/Visualization. This holds numerical results or links to the tables
or figures made of them and also reports on the outcome of the hypothesis
tests.

R-6: Observations. Unexpected or otherwise notable behavior that has been
detected by reviewing the results, without interpretation.

R-7: Discussion of the statistical relevance. Statistical hypotheses from step R-3
are reconsidered (accepted/rejected).

R-8: Discussion of the scientific meaning. Attempts to give explanations for the
results/observations obtained and puts the results of the experiment in a
context with other scientific findings. This paragraph is meant to contain
subjective statements which might lead to new hypotheses or research
questions based on the results from current experiments.

Fig. 2 Structured report

2.8 Reporting Results

After the results are in, they should be visualized to enable a basic consis-
tency check. Figures are much easier to interpret than tables, so this effort
is not wasted and greatly helps when looking for interesting effects. For con-
ducting the experiment as well as to obtain a structured report of it, it may
be helpful to work alongside the eight-step procedure presented in Fig. 2
and to write down decisions, setups and results as they are obtained during
the experiment. This structure is largely similar to the one often applied in
natural sciences for many decades.

Note that we separate observations from discussion. This may seem arti-
ficial and the distinction is not in all cases obvious. However, the intention
is to keep objective differences apart from their interpretation. If e.g. an al-
gorithm is surprisingly good on specific problem instances, this is surely an
observation. Giving a presumed reason why this is the case belongs to the
discussion, as another author may come up with another explanation even if
the observation can be replicated.
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2.9 Iterating the Experimental Process

As already stated by [55] and others, experimentation with algorithms should
not limit itself to a one-shot event but rather be regarded as an iterated
process where the results obtained from the first experiment lead to new
hypotheses and a refined experimental setup for the next. E.g., it may happen
that the first experiment revealed some unexpected facts and one has an
intuition concerning the causing factors which can be tested in a second
experiment.

In order to support the incremental experimentation process, we recom-
mend to keep an experimental journal of all experiments undertaken in a
specific context. The journal should contain at least a list of running num-
bers, time stamps, names/research questions, and a short description of the
outcome and is helpful for obtaining an overview of the progress of an inves-
tigation and keeping the data well organized.

2.10 Scientifically Meaningful Results?

Finally, after performing all these tests as described in Sec. 2.7, one funda-
mental qualm remains: “How can we guarantee that results are scientifically
meaningful?” This question is related to post-data information—it includes
data which is available after the experiments were performed. We will focus
on this question in the following by introducing the concept of severity. A
technical treatment of the concept of severity is given in Sec. 6.

In the severe testing philosophy, the quantitative assessment offered by er-
ror statistics provides tools to test how well probed hypotheses are. Mayo [53]
introduces the concept of severity as follows: “Stated simply, a passing result
is a severe test of hypothesis H just to the extent that it is very improbable
for such a passing result to occur, were H false.”

Although this approach is based on classical hypothesis testing, i.e., the
Neyman-Pearson statistical paradigm, it is relevant to different statistical
frameworks, e.g., non parametric approaches. Classical hypotheses testing
dominates today’s scientific publications, therefore this first approach is jus-
tified by everyday’s practice.

3 Active Experimentation

Section 3.1 presents active experimentation as a framework, which imple-
ments features of the experimental methodology introduced in Sec. 2. This
framework can be used for demonstration, robustness, comparison, under-
standing, and novelty detection. In Sec. 3.2 the sequential parameter opti-
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mization toolbox is introduced. It comprehends the computational steps of
the active experimentation framework, i.e., design of experiments, response
surface methods, or statistical analysis and visualization. Automated exper-
imentation has gained much attention in the last years. Several automated
approaches were proposed, especially in the context of demonstration and
robustness, e.g., automated tuning of algorithms. Therefore, we will compare
automated and interactive approaches in Sec. 3.3.

3.1 Definition

Definition 1 (Active Experimentation). Active experimentation (AEX)
is a framework for tuning and understanding of algorithms. AEX employs
methods from error statistics to obtain reliable results. It comprises the fol-
lowing elements:

AEX-1: Scientific questions
AEX-2: Statistical hypotheses

AEX-3: Experiments
AEX-4: Scientific meaning

�

These elements can be explained as follows. Starting point of the investigation
is a scientific question (AEX-1). This question often deals with assumptions
about algorithms, e.g., influence of parameter values or new operators. This
(complex) question is broken down into (simple) statistical hypotheses (AEX-
2) for testing. Next, experiments can be performed for each hypothesis:

a) Select a model, e.g., a linear regression model to describe a functional
relationship.

b) Select an experimental design.
c) Generate data, i.e., perform experiments.
d) Refine the model until the hypothesis can be accepted/rejected.

Finally, to assess the scientific meaning of the results from an experiment,
conclusions are drawn from the hypotheses. This is step (AEX-4) in the active
experimentation framework. Here, the concept of severity as introduced in
Sect. 6 comes into play.

3.2 Sequential Parameter Optimization Toolbox

We introduce the sequential parameter optimization toolbox (SPOT) as one
possible implementation of the experimental approach in the AEX frame-
work. The SPO toolbox was developed over recent years by Thomas Bartz-
Beielstein, Christian Lasarczyk, and Mike Preuss [8]. Main goals of SPOT
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are (i) the determination of improved parameter settings for optimization al-
gorithms and (ii) to provide statistical tools for analyzing and understanding
their performance.

Definition 2 (Sequential Parameter Optimization Toolbox). The se-
quential parameter optimization toolbox implements the following features,
which are related to step AEX-3.
SPOT-1: Use the available budget (e.g., simulator runs, number of function

evaluations) sequentially, i.e., use information from the exploration
of the search space to guide the search by building one or several
meta models. Choose new design points based on predictions from
the meta model(s). Refine the meta model(s) stepwise to improve
knowledge about the search space.

SPOT-2: If necessary, try to cope with noise (see Sect. 2.7) by improving
confidence. Guarantee comparable confidence for search points.

SPOT-3: Collect information to learn from this tuning process, e.g., apply
exploratory data analysis.

SPOT-4: Provide mechanisms both for interactive and automated tuning.
�

The article entitled “sequential parameter optimization” [8] was the first at-
tempt to summarize results from tutorials and make this approach known
to and available for a broader audience. Since 2004, a series of tutorials was
presented during the leading conferences in the field of computational intel-
ligence, e.g.,[19, 18, 16, 15, 14, 13, 11, 10].

SPOT was successfully applied in the fields of bioinformatics [79, 33, 32],
environmental engineering [48, 30], shipbuilding [72], fuzzy logic [82], mul-
timodal optimization [68], statistical analysis of algorithms [50, 78], mul-
ticriteria optimization [80], genetic programming [51], particle swarm opti-
mization [9, 49], automated and manual parameter tuning [31, 74, 42, 43],
graph drawing [77, 65], aerospace and shipbuilding industry [63], mechanical
engineering [56], and chemical engineering [39]. Bartz-Beielstein [3] collects
publications related to the sequential parameter optimization.

SPOT employs a sequentially improved model to estimate the relationship
between algorithm input variables and its output. This serves two primary
goals. One is to enable determining good parameter settings, thus SPOT
may be used as a tuner. Secondly, variable interactions can be revealed that
help to understand how the tested algorithm works when confronted with
a specific problem or how changes in the problem influence the algorithm’s
performance. Concerning the model, SPOT allows the insertion of virtually
every available meta model. However, regression and Kriging models or a
combination thereof are most frequently used as prediction models (as defined
as F in Algorithm 1). Bartz-Beielstein [4, 5] describes integration and usage
of theses prediction models in SPOT.

Algorithm 1 presents a formal description of the SPOT scheme. This
scheme consists of two phases, namely the first construction of the model
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Algorithm 1: SPOT

// phase 1, building the model:

1 let A be the tuned algorithm;

2 generate an initial population P = {p1, . . . ,pm} of m parameter vectors;
3 let k = k0 be the initial number of tests for determining estimated utilities;
4 foreach p ∈ P do
5 run A with p k times to determine the estimated utility x of p;

// phase 2, using and improving the model:

6 while termination criterion not true do
7 let a denote the parameter vector from P with best estimated utility;
8 let k′ the number of repeats already computed for a;

9 build prediction model F based on P and {x1, . . . ,x|P|};
// (alternatively: use several prediction models in parallel)

10 generate a set P′ of l new parameter vectors by random sampling;
11 foreach p ∈ P′ do
12 calculate f (p) to determine the predicted utility F(p);

13 select set P′′ of d parameter vectors from P′ with best predicted utility
(d� l);

14 run A with a k−k′+1 times and recalculate its estimated utility using all
k + 1 test results; // (improve confidence)

15 let k = k + 1;
// (alternatively: use more enhanced update schemes like OCBA)

16 run A k times with each p ∈ P′′ to determine the estimated utility F(p);
17 extend the population by P = P∪P′′;

(lines 1–5) and its sequential improvement (lines 6–17). Phase 1 determines
a population of initial designs in algorithm parameter space and runs the al-
gorithm k times for each design. Phase 2 consists of a loop with the following
components:

1. Update the model by means of the obtained data.
2. Generate a (large) set of design points and compute their utility by sam-

pling the model.
3. Select the seemingly best design points and run the algorithm for these.
4. The new design points are added to the population and the loop starts

over if the termination criterion is not reached.

A counter k is increased in each cycle and used to determine the number of
repeats that are performed for each setting to be statistically sound in the
obtained results. Consequently, this means that the best design points so far
are also run again to obtain a comparable number of repeats. SPOT provides
tools to perform the following tasks:

1. Initialize. An initial design is generated. This is usually the first step
during experimentation. The employed parameter region and the constant
algorithm parameters have to be provided by the user.
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2. Run. This is usually the second step. The optimization algorithm is
started with configurations of the generated design. Additionally infor-
mation about the algorithms problem design are used in this step. The
algorithm provides the results to SPOT.

3. Sequential step. A new design is generated. A prediction model is used
in this step. Several generic prediction models are available in SPOT
already. To perform an efficient analysis, especially in situations when
only few algorithms runs are possible, user-specified prediction models
can easily be integrated into SPOT. Prediction models can also be used
in parallel [7], which results in the so-called ensemble-based modeling ap-
proach. To improve confidence, the number of repeats can be increased.
Optimal computational budget allocation (OCBA) [25, 12] is implemented
as the default method for assigning new evaluations to algorithm config-
urations.

4. Report. An analysis, based on information from the results, is generated.
Since all data flow is stored in files, new report facilities can be added very
easily. SPOT contains some scripts to perform a basic regression analysis
and plots such as histograms, scatter plots, plots of the residuals, etc.

5. Automatic mode. In the automatic mode, the steps run and sequential
are performed after an initialization for a predetermined number of times.

3.3 Comparison of Automated and Interactive Tuning

SPOT can be run in an automated and in an interactive mode. The auto-
mated mode might be of interest for the user, who is primarily interested
in the result and who can afford a tuning procedure which is not restricted
to a very small number of algorithm runs. Similar to microscopes in biology,
SPOT can be used as a “datascope” to gain insight into algorithm behavior,
by revealing factor effects and their importance to the experimenter. Such
insights can not only be used to guide the interactive parameter optimization
process, but also be of intrinsic value to the developer or end user of a target
algorithm.

The classical response surface methodology (as discussed in Chap. 15
of [23]) underlying our interactive approach was developed not only for finding
parameter settings that achieve improved performance, but also to provide
insights into how the performance of a target algorithm is affected by param-
eter changes. This latter question is related to the analysis of the response
surface in the region of interest. Contour plots, which can easily be obtained
in the SPOT framework, are useful tools to answer it.

We recommend using classical regression models at the first stage of an
interactive approach, because these models can be interpreted quite easily;
features of the response surface can be seen directly from the regression equa-
tion Y = Xβ . This is not the case for more sophisticated prediction models,
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such as neural networks or Gaussian process models. Furthermore, as demon-
strated in [42], it is possible to obtain competitive results using such simple
models. Nevertheless, in principle, more complex regression models could be
used in the context of the interactive sequential parameter optimization ap-
proach. Furthermore, we note that observations and hypotheses regarding the
dependence of a given target algorithm’s performance on its parameter set-
tings could also be obtained by analyzing more complex models, including the
Gaussian process models constructed by the automatic sequential parameter
optimization procedures.

Clearly, the interactive approach makes it easy to use results from early
stages of the sequential parameter optimization process to effectively guide
decisions made at later stages. For example, looking back at the initial stages
of the process, the experimenter can detect that the set of variables studied
at this stage was chosen poorly, or that inappropriate ranges were chosen
for certain variables. We note that the models used in early stages of the
automated procedures also provide guidance to later stages of the process.
However, the interactive process leaves room for expert human judgment,
which can often be more effective in terms of the improvement achieved based
on a small number of target algorithm runs.

The human expertise required to use the interactive approach successfully
can be seen as a drawback compared to fully automated approaches. However,
by providing dedicated support for the various operations that need to be
carried out in this context, SPOT eases the burden on the experimenter and
lowers the barrier to using the interactive approach effectively.

4 Case Study: Tuning Simulated Annealing

This section presents a working example to demonstrate essential principles
of AEX introduced in Sec. 3. The following study will be referred at later
on in Sec. 7, which discusses meta-statistical principles. This case study was
set up to illustrate key elements of the AEX framework. It does not present
a complete analysis of the simulated annealing, but can serve as a starting
point for an experimental analysis.

Our goal is to determine an improved parameter setting for a simulated
annealing search heuristic. This goal can be formulated as the following sci-
entific question(this refers to AEX-1):

Can we modify the algorithm design in such a manner that SANN’s perfor-
mance and robustness is improved?

Furthermore, we are seeking for tools which provide support in deciding
whether this improvement is scientifically (or in practice) meaningful.
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4.1 Simulated Annealing

SANN belongs to the class of stochastic global optimization methods. The
R implementation, which was investigated in our study, uses the Metropo-
lis function for the acceptance probability. It is a variant of the simulated
annealing algorithm given in [21]. SANN uses only function values but is
relatively slow. It will also work for non-differentiable functions. By default
the next candidate point is generated from a Gaussian Markov kernel with
scale proportional to the actual temperature. Temperatures are decreased ac-
cording to the logarithmic cooling schedule as given in [21]; specifically, the
temperature is set to temp/ log(((t−1)/tmax)×tmax+exp(1)), where t is the
current iteration step and temp and tmax are specifiable via control. SANN
is not a general-purpose method but can be very useful in getting to a good
value on a very rough surface.

SANN uses two design variables, which were tuned during our study:

temp is the starting temperature for the cooling schedule. Defaults to 10.
tmax is the number of function evaluations at each temperature. Defaults

to 10.

The interval from 1 to 50 was chosen as the region of interest (ROI) for both
design variables in our experiments. The total number of function evalua-
tions (of the Branin function, see Sect. 4.2) was set to maxit = 250 for all
experiments. The starting point, i.e., the initial value for the parameters to
be optimized over, was x0 = (10,10).

4.2 Description of the Objective Function

The Branin function

f (x1,x2) =

(
x2−

5.1
4π2 x2

1 +
5
π

x1−6
)2

+ 10×
(

1− 1
8π

)
cos(x1)+ 10,

with
x1 ∈ [−5,10] and x2 ∈ [0,15]. (3)

was chosen as a test function, because it is well-known in the global opti-
mization community, so results are comparable. It has three global minima,
x∗1 = [3.1416,2.2750], x∗2 = [9.4248,2.4750] and x∗3 = [−3.1416,12.2750] with
y∗ = f (x∗i ) = 0.3979, (i = 1,2,3).

Results from the corresponding tuning experiments will be used in Sec. 7.1
to discuss particular aspects of the active experimentation framework.
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5 Hypothesis Testing

We will describe the classical Neyman-Pearson statistical framework, which
includes pre-data statistics such as significance levels, errors of the first and
second kind, and power.

5.1 Neyman-Pearson Tests

To illustrate the concept of hypothesis testing, we introduce some basics from
statistics. Hypothesis testing is the key element of step AEX-2 in the active
experimentation framework.

Following the definition in Mayo [53], Neyman and Pearson (N-P) tests
can be described as follows. The set of all possible values of the sample
X = (X1,X2, . . . ,Xn) with realizations x = (x1,x2, . . . ,xn) is X and Θ is the
set of all possible values of the unknown parameters θ . A statistical model is
represented as a pair (X ,Θ).

A null hypothesis, H0, and an alternative hypothesis, H1 are stated. These
hypotheses partition the parameter space of the statistical model. The generic
form of the null and alternative hypotheses is

H0 : θ ∈Θ0 versus H1 : θ ∈Θ1, where (Θ0,Θ1) is a partition of Θ .

We will use P(x;H) for the probability of x under H to avoid confusion with
conditional probabilities, P(x|H), where H denotes a random variable (Bayes’
rule).

A test statistic d(X) reflects the distance from H0 in the direction of H1.
To simplify the following discussion, we consider a sample X = (X1,X2, . . .Xn)
where the Xi’s are assumed to be normal, independent, and identically dis-
tributed with known standard deviation σ , i.e., Xi ∼ N (µ,σ2). Here, the
unknown parameter θ is the mean µ of the normal distribution. The test
statistic is

d(X) =
X−µ0

σ/
√

n
=

X−µ0

σx
, (4)

where X is the sample mean, µ0 is the hypothesized population mean under
the null hypothesis, and σx denotes the standard error. We will consider one-
sided tests in the following. Based on the pre-specified α value, the critical
value c1−α , which partitions Θ into the region of acceptance, C0(α) and the
region of rejection, C1(α) of the null hypothesis, can be determined as the
quantile z1−α of the standard normal distribution.

C0(α) = {x ∈ X : d(x)≤ c1−α}
C1(α) = {x ∈ X : d(x) > c1−α}.
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The type I error probability (or error of the first kind, α error) is

P(d(X) > c1−α ;H0)≤ α,

and represents the probability that the null hypothesis is rejected erroneously.
The type II error probability (or error of the second kind, β error) is

P(d(X)≤ c1−α ;H1) = β (µ1),

where µ1 is the hypothesized population mean under the alternative hypothe-
sis, Error-statistical methods describe methods using error probabilities based
on the relative frequencies of errors in repeated sampling. Probability is used
to quantify how frequently methods are able of discriminating between al-
ternative hypotheses and their reliability of error detection [54]. Following
Mayo [53], we will use the term error statistics for hypothesis tests, statisti-
cal significance tests, and related error probability methods.

Example 1. We consider one particular test T (x;α;θ) = T (α) about the
mean with significance level α = 0.025. The null hypothesis H0 : µ ≤ µ0
is tested versus the alternative hypothesis H1 : µ > µ0. Here, c1−α can be
determined as the quantile z1−α of the standard normal distribution, e.g.,
c1−0.025 = z1−0.025 = 1.96, therefore

C0(α) = {x ∈ X : d(x)≤ 1.96},
C1(α) = {x ∈ X : d(x) > 1.96}.

Furthermore, let µ0 = 12, σ = 2, and n = 100. The null hypothesis H0 : µ ≤ 12
is tested versus the alternative hypothesis H1 : µ > 12. The test rule derived
from this test reads: Reject H0 if d(x0)> 1.96, or if x = µ0 +d(x0)×σx > 12.39,
see Fig. 3. If the observed value of the test statistic falls into the rejection
region, we will reject the null hypothesis at a 2.5% significance level. �

Acceptance and rejection are associated with certain actions, e.g., pub-
lishing a result about effects of modifying the recombination operator of an
evolutionary algorithm. But, how can we be sure that this action is justified,
e.g., scientifically correct or meaningful? The behavioristic rationale answers
this as follows:

We are justified in ‘accepting/rejecting’ hypotheses in accordance with tests
having low error probabilities because we will rarely err in repeated applications.[64]

This rationale, which was formulated by J. Neyman and E.S. Pearson in
1933, is based on the idea that error probabilities are means to determine
“the evidence a set of data x0 supplies for making warranted inferences about
the process giving rise to data x0.” [53, p.5]
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Fig. 3 One-sided hypotheses test. Based on the null and alternative hypotheses and
α, the significance level, a test can be performed. We assume a known standard
deviation, say σ = 2 and a sample size of n = 100. If the mean value x is larger than
12.39, the null hypothesis is rejected, otherwise it is accepted. The dark gray shaded
region represents the Type I error probability. The alternative hypothesis reads µ1 =
12.2. The light gray shaded region (which includes also the dark gray shaded region)
represents the power of the test, i.e., 1−β

5.2 Power of a Test

The severity concept, which will be introduced in Sect. 6, is related to the
power of a test. The power of a test is a standard concept in hypotheses
testing. It is the test’s probability of correctly rejecting the null hypothesis,
i.e., the complement of the false negative rate, β . The power of a test is
defined as

POW(T (α); µ1) = P(d(X) > c1−α ; µ1), for µ1 > µ0. (5)

Power curves illustrate the effect on power of varying the alternate hypothesis.
Severity, which uses post-data information, was introduced by Mayo [53] as
“the attained power”. Severity can be seen as an extension of the power of a
test, cf. Sec.6.2.

Example 2. The power of the test specified in Example 1, where the null
hypothesis H0 : µ ≤ 12 is tested versus the alternative hypothesis H1 : µ > 12
can be determined with (5) as follows:

POW(T (α); µ1) = P(d(X) > c1−α ; µ = µ1) = P
(

X−µ0

σx
> c1−α ; µ = µ1

)
(6)

Since µ = µ1,
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X−µ0

σx
follows a N

(
µ−µ0

σx
,1
)

distribution. Therefore

POW(T (α); µ1) = 1−Φ

(
c1−α +

µ0−µ1

σx

)
, (7)

where Φ denotes the cumulative distribution of the probability density
function of the standard normal distribution, i.e.,

Φ(x) = P(t < x) =
1√
2π

∫ t=x

t=−∞

exp
(
− t2

2

)
dt.

We are using the values from Example 1, i.e., α = 0.025, c1−0.025 = z1−0.025 =
1.96, µ0 = 12, σ = 2, and n = 100. Power depends on the value of the alter-
native, i.e., µ1. For µ1 = 12.2, we determine:

POW(T (α = 0.025); µ1 = 12.2)

= P
(

Z > 1.96 +
12−12.2

0.2

)
= 1−Φ(0.96) = 0.1685.

To determine the power for various µ1 values, we obtain

POW(T (α = 0.025); µ1) = P
(

Z > 1.96 +
12−µ1

0.2

)
with Z ∼N (0,1), (8)

see Fig. 4. �

Very significant results can be obtained with high power, even if the size
of the effect is of no practical relevance: The effect is there, but its magnitude
is of little value. This is similar to the situation with p values, see [17]. On
the other extreme, a study with low power will have indecisive results, even
if the effect is real and relevant.

N-P theory has been under attack, basically for the following three prob-
lems.
P-1: N-P tests are too coarse, because they tell us to reject or accept a certain

hypothesis H, but do not indicate the level of rejection or acceptance.
P-2: Since statistical significance and not scientific importance is considered,

N-P test give rise to fallacies of rejection and of acceptance.
P-3: N-P tests focus on pre-data, i.e., information from new data is not

considered.
The power of a test does not depend on the experimental result x0, it remains
the same for different outcomes. Even if the experimental result gives better
evidence for accepting or rejecting the null hypothesis, the power will be
identical. Power is no solution to problems P-1 to P-3, because the power of
a test retains its coarseness, it does not consider its scientific importance, and
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Fig. 4 Power of a test. We are using the values from Example 1, i.e., α = 0.025,
c1−0.025 = z1−0.025 = 1.96, µ0 = 12, σ = 2, and n = 100. Power depends on the alternative,
i.e., µ1. For µ1 = 12.2, we determine: POW(T (α = 0.025); µ1 = 12.2) = 0.1685

it relies on pre-experimental data. This applies to confidence intervals as well,
because they do not consider the experimental outcome. Mayo introduces
severity as a basic concept for post-data inference. Example 4 on page 26
illustrates the difference between power and severity.

6 Severity

6.1 Motivation

Severity provides a meta-statistical principle for evaluating proposed statisti-
cal inferences. It tells us how “well probed” (not “how probable”) hypotheses
are and is an attribute of the test procedure as a whole. That is, severity
should be calculated after the test procedure is finished. Once the data x0 of
the test T (α) are available, they enable us to evaluate the severity of the test
and the resulting inference.

Example 3. In order to exemplify the concept of severity, we consider the
following situation (see also [52, p.183]): a randomized search algorithm, say
(A), has scored high success rate on a test problem. It is able to detect the
optimum in 96.3 percent of the runs. Consider the following situations:

1. First, suppose that it would be extraordinary for an algorithm, say A∗,
who has no domain knowledge at all to have a score as high, or higher,
than A. Is this score good evidence that A is well suited for solving this
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problem? Based on A’s and A∗’s test results, the severity rationale would
be in this case that this inference is warranted.

2. Next, suppose that it would be no problem for an algorithm A∗ who has
no domain knowledge, e.g., random search, to have a score as high as
96 percent. Again, we may ask the same question: is this score of 96.3
percent good evidence that A is well suited for this test problem? Based
on information about A’s and A∗’s high score results, the severity rationale
would be in this case that this inference is not warranted. The severity
concept should provide tools for detecting ceiling effects.

�

6.2 Severe Tests

These considerations lead to the definition of severity as a concept for post-
data inference. Here, we are facing the situation that a test has been per-
formed and a decision “accept” or “reject” hypothesis H) has been made. The
following definition of a severe test is presented in [53, p.7]:

Definition 3 (Severe Test). A statistical hypothesis H passes a severe test
T with data x0 if,
S-1 x0 agrees with H, and
S-2 with very high probability, test T would have produced a result that

accords less well with H than x0 does, if H were false.
�

Instead of calculating the power, which does not include information from
the test result,

POW(T (α); µ1) = P(d(X) > c1−α ; µ = µ1),

for µ1 > µ0, see (5), Mayo [53] introduces the attained power or severity

SEV(T (α);d(x0); µ ≤ µ1) = P(d(X) > d(x0); µ > µ1) (9)

in case of acceptance of the null and

SEV(T (α);d(x0); µ > µ1) = P(d(X)≤ d(x0); µ ≤ µ1) (10)

in case of rejection of the null. In order to simplify notation, we suppress
the arguments T (α) and d(x0) in the following and use the abbreviations
SEV(µ ≤ µ1) and SEV(µ > µ1), respectively.

Equation 9 states that µ ≤ µ1 passes the test with high severity if there
is a very high probability that d(x0) would have been larger than it is, were
µ > µ1. And Equation 10 states that µ > µ1 passes the test with high severity
if there is a very high probability that d(x0) would have been smaller than it
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is, were µ ≤ µ1. Note, severity depends on the test and the test result, i.e.,
it includes post-data information from d(x0) instead of c1−α . Similar to the
calculation of the power, the severity can be determined. Note, that based
on severity criterion S-1, we have to determine whether data from the test
result lead to an acceptance or an rejection of the hypothesis H.

6.2.1 Severity in the Case of Acceptance of the Null

First, the determination of severity of acceptance for test T (α) is considered.
For example, this situation arises if no difference in means can be found.
Based on the outcome d(x0) ≤ c1−α , H0 has survived the test. In this case,
a statistically insignificant result ( “accept H0” or “µ ≤ µ1”) is considered.
Severity can be calculated as follows

SEV(µ ≤ µ1) =P(d(X) > d(x0); µ ≤ µ1 is false )

=P(d(X) > d(x0); µ > µ1)

=P
(

X−µ0

σx
>

x0−µ0

σx
; µ > µ1

)
=P
(

Z >
x0−µ

σx

)
with Z ∼N (0,1)

=1−Φ

(
x0−µ

σx

)
. (11)

�
Note, a t distribution is used if σ is unknown. In this case, the test statistic

(4) reads

d(x0) =
X−µ0

Sn/
√

n
,

where Sn is defined as

Sn =

√
1

n−1 ∑(Xi−X)2.

6.2.2 Severity in the Case of Rejection of the Null Hypothesis

Severity can be calculated as

SEV(µ > µ1) = 1−SEV(µ ≤ µ1),

because
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SEV(µ > µ1) =P(d(X)≤ d(x0); µ > µ1 is false )

=Φ

(
x0−µ

σx

)
.

�
A comparison of (7) and (11) shows that severity does not directly use

the information from the critical value c1−α and from the significance level
α. This information is used indirectly, because the inference (accept/reject)
is used to calculate severity.

Example 4. Similar to the calculation of the power of a test in Example 2
we will determine the severity. We are using the values from Example 1,
i.e., α = 0.025, c1−0.025 = z1−0.025 = 1.96, µ0 = 12, σ = 2, and n = 100. Again,
the null hypothesis H0 : µ ≤ 12 is tested versus the alternative hypothesis
H1 : µ > 12. Similar to power, severity is evaluated at a point µ1 = µ0 + γ,
where γ denotes the difference from µ0 which is considered meaningful. Here,
we have chosen γ = 0.2 which results in µ1 = 12 + 0.2 = 12.2. As can be
seen from (11) severity depends on the experimental outcome, i.e., x0. For
x0 = 11.8, we obtain:

SEV(µ ≤ µ1) =P
(

Z >
11.8−12.2

0.2

)
=P(Z >−2) with Z ∼N (0,1)

=1−Φ(−2) = 0.977.

�

In case of a rejection of the alternative, the power of a test provides a lower
bound for the severity. This can be seen from (6) and (9). Power and severity
are the same, if d(x0) equals c1−α .

6.2.3 Usage of the Severity Concept

The framework presented in this section can be used as a meta-statistical
check to evaluate which inferences are warranted. Figure 5 illustrates this
check. The severity for three different outcomes x0 is shown. Severity increases
for smaller values of x0. Power curve and severity curve coincide for x0 = 12.39,
i.e., d(x0) = c1−α or x0 = µ0 + c1−α ×σx.

The curves from Fig. 5 can be used to compare the severity of the assertion
µ ≤ 12.4 for different experimental outcomes: First, x0 = 12.1 is considered.
Here, we obtain

SEV(T (α = 0.025);d(x0) = 12.1; µ ≤ 12.4)

= P
(

Z >
12.1−12.4

0.2

)
= 1−Φ(−1.5) = 0.9332.
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Fig. 5 Severity for three different results x0: 12.1, 12.3, and 12.39. These curves can
be interpreted as follows: consider, e.g., x0 = 12.3, which gives d(x0) = 1.5: the assertion
that µ ≤ 13 severely passes because SEV(µ ≤ 13) = 0.9998

So, the assertion µ ≤ 12.4 passes with high severity. Next, the experimental
outcome x0 = 12.39 is considered. Here, we obtain

SEV(T (α = 0.025);d(x0) = 12.39; µ ≤ 12.4)

= P
(

Z >
12.39−12.4

0.2

)
= 1−Φ(−0.05) = 0.5199,

i.e., this experimental result decreases severity.
The severity curves from Fig. 5 can also be used in the following way:

Let x0 = 12.1. The practitioner selects a relatively high severity value, say
0.9. The related µ value is calculated, say 12.4. That is, the assertion that
“µ ≤ 12.4” severely passes with the result x0 = 12.1.

In addition, we present one useful application of the severity criterion for
the experimental analysis of algorithms.

Example 5. Comparing a newly developed algorithm A∗ to the best known al-
gorithm A might lead to a situation where the result is interpreted too readily
as positive evidence of no difference in their performances. Here, we are using
the following values: α = 0.025, c1−0.025 = z1−0.025 = 1.96, µ0 = 0.0, σ = 2, and
n = 100. The null hypothesis H0 : µ ≤ 0 is tested versus the alternative hy-
pothesis H1 : µ > 0. Let the test T (α) yield a statistically insignificant result
x0 = 0.3, i.e., the alternative is rejected. The experimenter states that “any
discrepancy from µ0 = 0 is absent or no greater than 0.1.” How severely does
µ ≤ 0.1 pass with x0 = 0.3? We obtain
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SEV(T (α = 0.025);d(x0) = 0.3; µ ≤ 0.1)

= P
(

Z >
0.3−0.1

0.2

)
= 0.1587.

So, even if a difference of 0.1 exists, such a result would occur 84 % of the
time. Clearly, severity does not support the experimenter’s statement in this
case. �

Severity was developed as an error statistical tool in the framework of the new
experimentalism. The new experimentalists claim that theories present only
heuristic rules, leading us to experimental knowledge [24]. They view progress
in terms of the accumulation of experimental discoveries. These findings are
independent of high-level theory. How to produce scientifically meaningful
results is the central theme in the research of the new experimentalists. Bartz-
Beielstein [1, 2] demonstrates how these concepts can be transferred from the
philosophy of science to computer science.

7 Meta-statistical Principles

This section refers to the third and fourth step (AEX-3 and AEX-4, respec-
tively) of the active experimentation framework. As introduced in Sec. 4, we
will present a working example to illustrate particular aspects of the active
experimentation framework. Next, experiments will be performed. The cor-
responding results are shown in Sec. 7.1. These results will be used to discuss
differences between statistical significant and scientifically meaningful results
in Sec. 7.2. Finally, ceiling effects will be revisited in Sec. 7.3.

7.1 Results from Default, Random, and Tuned Settings

Experiments are performed at this stage, i.e., SPOT is used to execute al-
gorithm runs in an objective and reproducible manner. This is step AEX-3
from the active experimentation framework. As a baseline for our exper-
iments, we run SANN one hundred times—first, with default parameters
(tmax = temp = 10), and second, with randomly chosen parameter values
from the interval [1,50].1 These experiments were performed to quantify the
benefit of tuning for our experiments. Results from these two experiments
are shown in the first and second result row from Tab. 1. SANN was not

1 SPOT can generate one hundred randomly chosen design points of the SANN
by using the following setting in the CONF file: init.design.size = 100 and
init.design.repeats = 1.
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able to determine the optimal function value with these settings. Now that
the baseline results are available, we can examine SANN’s tunability.

Table 1 SANN results. Results from n = 100 repeats. Smaller values are better. The
optimal function value is y∗ = 0.3979

Model Min. 1st Qu. Median Mean 3rd Qu. Max.
Default 0.3982 0.4037 0.4130 0.8281 0.5032 6.1120
Random 0.3988 0.5326 1.2160 2.0720 2.9820 8.8800
Tuned 0.3979 0.3987 0.4000 0.4010 0.4022 0.4184

The final best configuration found by SPOT reads temp = 1.115982 and
tmax = 38.

Now that these results are available, we would like to determine their
statistical significance and scientific meaning.

7.2 Spurious Effects

As mentioned in Sect. 2.7, our focus lies on meta-statistical principles that can
be applied after the experiments are performed. These principles are necessary
to avoid fallacies, i.e., misconceptions resulting from incorrect reasoning in
argumentation caused by spurious effects. Following Cohen [28], we define
spurious effects as effects that suggest that a treatment is

• effective when it is not or
• not effective when it is.

One prominent example for spurious effects is the ceiling effect. If one wants
to investigate performance differences between different methods, it is impor-
tant to select the test problems/settings so that these differences indeed can
occur. It is of little interest to see result tables with nearly all the methods
always obtaining success rates of 100%. This would be a ceiling effect : the test
problems are too easy, all algorithms “crash into the ceiling”. On the other
hand, test problems can also be too hard, then we have a floor effect because
most measured algorithms never obtain a measurable progress: all remain“on
the floor”. Especially quality tasks that may not be reached (and thus not
counted for success rates) have to be set up with care. When floor/ceiling
effects occur, there is almost no variability in the data and thus all com-
pared algorithms appear to obtain similar performance. Ceiling effects occur
when test problems are not sufficiently challenging. In the hypothesis testing
framework from statistics, the situation can be formulated as the following
claim.

Claim 1 Let A and A∗ denote two algorithms and consider the hypothesis
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H : perf(A)≥ perf(A∗).

If A and A∗ achieve a performance which is close to the maximum level of
performance, H should not be confirmed due to a ceiling effect. �

Claim 1 describes a situation in which there is a high probability that
algorithms A and A∗ reach a similar high performance, i.e., the difference in
their performances perf(A∗)−perf(A) is small. This corresponds to S-1 and
S-2 from Definition 3: With very low probability, the comparison of perf(A)
with perf(A∗) would have produced a result that accords with the hypothesis
“H: there is no difference in their performances”as well or better than the test
result does, if H were false and a given difference were present. Consequently,
severity can be used to detect ceiling effects.

7.3 Ceiling Effects Revisited

Now the necessary tools for performing a post-data analysis are available
and can be applied to the results from the SANN case study (see Sect. 4).
This refers to the fourth step of the active experimentation framework, i.e.,
AEX-4. The function spotSeverity() and a related plotting functions are
implemented in the R version of the SPO toolbox2 which is available via
CRAN [4].

Summary statistics from these two run configurations were shown in
Tab. 1. These results indicate that SANN with tuned parameters outper-
forms SANN with default parameters. We will apply error statistical tools
to analyze the scientific meaning of this result. Based on results from this
case study, a power and a severity plot is generated, see Fig.6. A histogram
illustrates the importance of EDA tools:

In a second experiment, we increased the number of SANN function evalua-
tions from maxit = 250 to 1,000,000. This problem design is used to illustrate
a ceiling effect (the problem is too easy, because of the large number of func-
tion evaluations): again, each configuration is run one hundred times. First,
we will compare simple summary statistics from these two run configurations,
see Tab. 2.

Both algorithms show the same behavior (up to four digits after the dec-
imal) if the number of function evaluations is set to 10e6. However, a t-test
claims that there is a statistical significant difference in means. In addition,
we generate a t-test:

2 R is a freely available language and environment for statistical computing and
graphics which provides a wide variety of statistical and graphical techniques. CRAN
is a network of ftp and web servers around the world that store identical, up-to-date,
versions of code and documentation for R, see http://cran.r-project.org.
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Fig. 6 Comparison of the tuned and the default SANN configuration on the Branin
function with 250 function evaluations. Each run configuration was run one hundred
times. The null hypothesis“there is no difference in means” is rejected. The dotted line
illustrates the power of the test, whereas the solid line represents the severity. This
plot was generated with the function spotPlotSeverity() from R’s SPOT package

Table 2 SANN results. Results from n = 100 repeats. Smaller values are better. The
optimal function value is y∗ = 0.3979

Model maxit Min. 1st Qu. Median Mean 3rd Qu. Max.
Tuned 250 0.3979 0.3987 0.4000 0.4010 0.4022 0.4184
Default 250 0.3982 0.4037 0.4130 0.8281 0.5032 6.1120
Tuned 1e6 0.3979 0.3979 0.3979 0.3979 0.3979 0.3979
Default 1e6 0.3979 0.3979 0.3979 0.3979 0.3979 0.3979

Paired t-test

t = -8.8975, df = 99, p-value = 1.384e-14

alternative hypothesis: true difference in means is less than 0

In this situation, error statistical tools and tools from exploratory data
analysis might be helpful. Figure 8 shows the corresponding plots of power
and severity. The severity interpretation of rejection shows that only very
small differences in mean ( µ < 2e−6) pass with high severity.

A histogram (see Fig. 9) illustrates the importance of EDA tools. Results
from the tuned SANN have a smaller standard deviation. However, it is up
to the practitioner to decide whether a difference as small as 1e− 6 is of
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Fig. 7 Comparison of the tuned and the default SANN configuration on the Branin
function with 250 function evaluations. Each run configuration was run one hundred
times. The null hypothesis “there is no difference in means” is rejected

importance for this kind of problem instance. Error statistical tools provide
support for this decision.

Now, we can answer the question from Sec. 4:

SANN’s performance and robustness could be improved. Severity and EDA
provide useful decision support tools.

8 Exploratory Landscape Analysis

If the treated problem is not a constructed benchmark and thus most of
its properties are unknown, it makes sense to use the test runs done with
the optimization algorithm of choice for acquiring some additional problem
knowledge. If one evaluation of the optimization problem takes on the order
of minutes or more to compute, one cannot simply apply standard tuning
techniques (as documented in Sect. 3). Instead, one could generate a surrogate
model from the evaluated points and tune on this surrogate problem [69], or
integrate the tuning process within the algorithm itself, which is e.g. easily
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Fig. 8 Comparison of the tuned and the default SANN configuration on the Branin
function with 1e6 function evaluations. Each run configuration was run one hundred
times. The null hypothesis “there is no difference in means” is rejected. The dotted
line illustrates the power of the test, whereas the solid line represents the severity

possible when restarts are performed [81]. Exploratory Landscape Analysis
(ELA) [58, 57] follows another approach, namely to detect problem properties
first in order to to make a reasonably informed decision for some optimization
algorithm.

8.1 Important Problem Properties

Problem properties which need to be determined for setting up an optimiza-
tion algorithm matching the problem well are (more than these may be suit-
able, depending on the problem and the optimization algorithm):

Multimodality Most classic optimization algorithms inherently expect a
unimodal (convex) problem. However, experience shows that most simulator-
based problems are multimodal. But how multimodal? Does it have few
local optima (as Schwefel’s problem 2.13), or many (as Rastrigin’s prob-
lem)? In the first case, a niching or time parallel method may be useful,
in the latter case, one has to rely on multistarts (see [66] for a discussion)
or on using large populations to inherently average out the many peaks in
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Fig. 9 Comparison of the tuned and the default SANN configuration on the Branin
function with 1e6 function evaluations. Each run configuration was run one hundred
times. The null hypothesis “there is no difference in means” is rejected

order to detect the global basin structure. If indeed a convex problem is
found, classic optimization methods as BFGS (see e.g. [62]) are most likely
more effective than evolutionary ones.

Global basin structure Rastrigin’s problem is not as difficult as it may
seem at first. It has a huge amount of local optima, but also a global basin
structure due to the quadratic term: seen from a large distance, it appears
as parabola. Problems without global structure are more difficult because
one virtually needs to “look in every corner.” As an example, one may refer
to the Gaussian mixture problem generator by Gallagher [34]. See [36] for
more examples.

Separability If a problem is fully or partly separable, it may be partitioned
into subproblems which are then of lower dimensionality and should be
considerably easier to solve. For benchmark problems, it is known that
separable problems get inseparable by simple geometric transformations
as rotation [73].

Variable scaling Even if the considered search space bounds are the same
for all variables, the problem may behave very different in the single di-
mensions. It can be essential to perform small steps in some dimensions,
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and large ones in others. Some algorithms as e.g. the CMA-ES [37] handle
such problems well, but most standard EA variants do not.

Search space homogeneity Most benchmark sets are created with a ho-
mogeneous problem structure in mind, which is expressed by a single,
relatively simple formula. However, real-world problems do not necessarily
behave like this. The CEC’05 benchmark set [75] contains hybrid problems
that consist of different ones blended into another, so that the resulting
problem behaves differently in different search space areas.

Basin size homogeneity As e.g. emphasized by Törn [76], the basin size
of the global optimum certainly influences the hardness of a problem. How-
ever, in the presence of many optima, the size relations of all encountered
basins can lead to additional difficulties. Many algorithms for multimodal
problems (e.g. most niching EA methods) assume similar basin sizes and
use appropriately adjusted distances for differentiating between basins. If
size differences are huge, these methods are doomed to fail.

Global to local optima contrast This property refers to the height (qual-
ity) differences between global and local peaks in comparison to the average
fitness level of a problem. It thus determines if very good peaks are easily
recognized as such. Together with basin size homogeneity, the influence of
this property on niching methods has been reviewed in [70].

Size of plateaus Plateaus make optimization problems harder as they
do not provide any information about good directions to turn to. Large
plateaus effectively cut the search space into parts that prevent path ori-
ented optimization algorithms from moving from one embedded peak area
(possibly also a multimodal landscape itself) to another one.

This set of properties is a rather phenomenologically (in the sense that
these features have been either explicitly modeled into benchmark problems
or observed in visualizations of existing ones) motivated collection which
stresses the importance of the global structure in real-valued search spaces.
Some time ago, many measures based on mathematical properties of mainly
bit-coded problems have been suggested and employed for expressing hard-
ness of problems for evolutionary algorithms. The most prominent of these
may be the fitness-distance correlation (FDC) [46]. However, further the-
oretical investigations of Jansen [44] and He et al. [38] have largely found
the existing measures unsuitable for predictive purposes, so watching out for
new properties surely makes sense. Furthermore, in exploratory landscape
analysis, one is especially interested in what can be achieved with only few
evaluations of the problem, as the ultimate goal usually is to set up a good
optimization algorithm for expensive problems with unknown properties.
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8.2 Exploratory Testing

Attempts of experimentally acquiring property knowledge on expensive func-
tions are usually performed manually, without a guiding algorithm, rather
following the intuition of the experimenter which during the process adapts
to the already known facts.

Sampling, dimension reduction techniques and especially visualization are
important techniques to obtain problem knowledge. Interestingly, search
points visited during stagnation phases may reveal interesting problem prop-
erties. We provide a real-world example as proof of concept. Figure 10 shows
a fitness distance correlation plot from the last best point of one optimization
run, using all successively sampled points (around 300). The treated problem
[72] is the 15-variable engineering task to construct a ship propulsion system
with high efficiency and low cavitation (low pressure bulbs at high velocity
spots that lead to noise and deterioration), formulated as constraint penalized
single objective problem. Simulation times are on the order of minutes. The
question we tackled here was to find out why optimization always got stuck
early. The plot shows several layers of fitness values, most likely stemming
from the penalization when hitting a constraint.

Fig. 10 Quality to search
space distance correla-
tion around a good solu-
tion, ∆quality (dF) over
∆search space distance
(dP). Obtained from the
last 300 samples per-
formed by an (1+1)-ES
on a mediocre expensive
engineering problem. All
sampled points are equal
or worse than the center
point. The plot reveals a
layered structure which
is most likely due to con-
straint penalties applied
to infeasible solutions.
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Exploratory testing (sampling) can focus either on global or local features
of a problem. Global sampling may employ any space-filling design as e.g.
a Latin hypercube design (LHD) which is useful for obtaining a rough idea
of the problem nature. Putting the sampled points into a model enables
visualizing the landscape, e.g. Kriging models as employed in Sect. 3 may be
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used. However, note that a model comes with certain assumptions (such as
smoothness of the landscape), so that some features as e.g. high-frequency
ruggedness may completely go unnoticed.

Testing locally makes sense if one needs to find out which properties of
the problem lead to stagnation in the optimization process, and then shall
be conducted in the neighborhood of the best yet obtained points. However,
for high-dimensional problems, running extensive grid tests in all possible
variable combinations around a best solution is infeasible. Nevertheless, one
may try grid tests in some combinations, especially if the variables can be
grouped according to domain knowledge.
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Fig. 11 Grid sample around a good search point identified in a prior optimization
run, 20% of the available search space in each of the 2 tested dimensions were covered
with 21x21 samples. Upper row: two different 2-variable combinations visualized as
contour plot. Lower row: histograms of same data. The variables on the left are
expected to interact strongly, the ones on the right should be nearly uncorrelated
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We investigate this for the ship propulsion problem described above, choos-
ing two variable pairs with different properties. The first two variables, c(x1)
and c(x05) both refer to the shape of the rotor and should interact strongly,
the other two (cStat(x05) and kr(x0)) are expected to interact only weakly.
Figure 11 shows the results of 21x21 point grid scans around the same best
found point as employed in figure 10, keeping all other variables constant.
The histograms help in assessing the frequency of encountering infeasible
solutions (fitness values around −1.5) which is surprisingly similar in both
situations, while the landscapes are completely different. For the two strongly
interacting variables, we obtain a highly rugged landscape, but for the weakly
interacting ones it is relatively flat with linear cliffs. We can safely assume
that this contrast makes the problem harder.

An alternative approach to grid scans would be a local model (e.g. gen-
eralized linear or kriging), generated from a space-filling sample around the
interesting point. However, even identifying the properties of optimization
problems near high fitness spots may keep other important properties secret.
Unless a rather complete scan of the problem in all dimensions is possible
(which would remove the necessity for an optimization algorithm), we can
not be sure to have revealed the information that could be helpful for setting
up an optimization process fully. Our landscape analysis remains exploratory.

9 Summary and Future Developments

In this chapter, we have run through the current state of experimental re-
search in evolutionary computation as we see it.

We presented severity as a meta-statistical rule for evaluating statistical
tests. Limitations of simply accepting or rejecting hypotheses are avoided,
which refers to Problem P-1 from Sect. 5. If an inference could only be said to
pass a test with low severity, then there fails to be evidence for this inference.
Summarizing, severity provides a method that quantifies the extend of the
difference from the null hypothesis that is (or is not) warranted by data
x0. This provides an answer to Problem P-2. One important feature of the
severity concept is the extension of significance level and power, which are pre-
data error probabilities. In contrast to the power of a test, severity uses values
from the test statistic, and enables a post-data interpretation of statistical
tests. This provides an answer to problem P-3.

Active experimentation is a flexible and general framework which can be
applied in many situations. Note, that we do not claim that AEX is the only
suitable way for tuning algorithms. Far from it! We state that AEX presents
only one possible way—which might not be the best for your specific problem.
We highly recommend other approaches in this field, namely F-race [22] and
REVAC [60].
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We have also elaborated on the specific problems when setting up an ex-
perimental investigation in evolutionary computation, and provided hints on
how to avoid the most common mistakes, next to suggestions for how to write
up and iterate experiments in order to concretize and validate the findings.

For cases where the problem properties are largely unknown, we suggest
employing an exploratory landscape analysis approach which is in a relatively
unstructured way often applied by practitioners already, without considering
it as a working scheme of its own. Better understanding of (optimization)
algorithm performance however needs to achieve some kind of parameter to
property matching and on this path, visualization may play the key role.

As a general conclusion, we feel that still, some more emphasis on experi-
mental methodology is needed and much work is still left undone in this area.
Especially, the cooperation between theory and practice shall be improved,
and moving towards each other may be an important task for the near fu-
ture: theory should consider current experimental results as starting point
for investigations, and established theory should be validated (e.g. concern-
ing assumptions made) by means of structured experimental analysis.
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