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Questions

Q-1: How to generate test problems?

Q-2: How to generalize results?
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Motivation

Benchmarking: General Rules

I Validity

I Reproducibility

I Comparability

I Commons rules:
I Use statistics
I Documentation
I Comparisons

I On-going discussion

Computational Intelligence: State-of-the-Art
Methoden und Benchmarkprobleme

Frank Hoffmann1, Ralf Mikut2, Andreas Kroll3,
Markus Reischl2, Oliver Nelles4, Horst Schulte5,

Torsten Bertram1

1Technische Universität Dortmund, Lehrstuhl für
Regelungssystemtechnik

E-Mail: {frank.hoffmann}{torsten.bertram}@tu-dortmund.de
2Karlsruher Institut für Technologie, Institut für Angewandte Informatik

E-Mail: {ralf.mikut}{markus.reischl}@kit.edu
3Universität Kassel, FB Maschinenbau, FG Mess- und Regelungstechnik

E-Mail: andreas.kroll@mrt.uni-kassel.de
4Universität Siegen, Mess- und Regelungstechnik - Mechatronik

Department Maschinenbau
E-Mail: oliver.nelles@uni-siegen.de

5 HTW Berlin, FB Ingenieurwissenschaften I, FG Regelungstechnik und
Systemdynamik

E-Mail: schulte@htw-berlin.de

Zusammenfassung: Dieser Beitrag gibt einen Überblick über den Stand
der Technik in der Computational Intelligence für Methoden zur Klassifi-
kation, zum Text Mining, zur nichtlinearen Regression, nichtlinearen Sy-
stemidentifikation und Regelung. Im Fokus steht eine systematische, wis-
senschaftlichen Ansprüchen genügende Vorgehensweise bei der verglei-
chenden Bewertung und Analyse alternativer Ansätze. Die einzelnen Ab-
schnitte geben praktikable Hinweise auf vorhandene, möglichst frei ver-
fügbare Implementierungen, Benchmarkdatensätze und -probleme als Hil-
festellung für den Methodenvergleich zukünftiger Publikationen innerhalb
des CI-Workshops.

1 Einführung

Die Methodik und Vorgehensweise bei der Bewertung, dem Vergleich und
systematischen Analyse neuartiger Methoden der Mustererkennung und
Funktionsapproximation hat auf vergangenen Computational Intelligence
Workshops zu Kritik und Diskussionen geführt. In einigen Beiträgen fehlte
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Motivation

Benchmarking: Features

I Difficult to solve using simple methods such as hill climbers

I Nonlinear, non separable, non symmetric

I Scalable with respect to
I problem dimensionality
I evaluation time

I Tunable by a small number of user parameters

See,e.g, [4]
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Motivation

Benchmarking: Current Situation

I Authors report parameter values which seem to work reasonably well

I Each algorithm will be run for some number, say ten, on each problem.
Statistics are reported, e.g., mean, standard deviation

I One expert compares his new algorithm with establishes approaches.
Subjective (unfair?) comparison

I Many experts compare their algorithms on several, standardized data.
Objective (fair) comparison

I Use accepted data bases, e.g., UCI

I Divide data into train, validation, and test data

I What is the problem of this approach?
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Motivation

Benchmarking: Open Questions

I Algorithms are trained for this specific set of benchmark functions
I Who defines this set of functions?
I Fixed set of test data?

I In practice, I do not need an algorithm which performs good on a set of test
problems (which was developed by some experts)

I Really wanted:
I An algorithm, which performs very good on my set of real-word test problems
I Not only demonstrating
I Understanding!

I Let’s have a short look at the problem
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Motivation Problem Classes and Instances

A Taxonomy of Algorithm and Problem Designs

I Classify parameters

I Parameters may be qualitative, like for the presence or not of an
recombination operator or numerical, like for parameters that assume real
values

I Our interest: understanding the contribution of these components

I Statistically speaking: parameters are called factors

I The interest is in the effects of the specific levels chosen for these factors

Bartz-Beielstein (CUAS) Beyond Particular Problem Instances November 16, 2012 9 / 41



P TS

Motivation Problem Classes and Instances

Problems and Algorithms

Tuning

multiple
algorithms
single

problems

multiple
algorithms
multiple
problems

single
algorithm
multiple
problems

single
algorithm
single
problem

I How to perform comparisons?
I Adequate statistics and models?
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Motivation SASP

SASP: Algorithm and Problem Designs

I Basic design: assess the performance of an optimization algorithm on a single
problem instance π

I Randomized optimization algorithms ⇒ performance Y on one instance is a
random variable

I Experiment: On an instance π algorithm is run r times ⇒ collect sample data
Y1, . . . ,Yr (independent, identically distributed)

I One instance π, run the algorithm r times ⇒ r replicates of the performance
measure Y , denoted by Y1, . . . ,Yr

I Samples are conditionally on the sampled instance and given the random
nature of the algorithm, independent and identically distributed (i.i.d.), i.e.,

p(y1, . . . , yr |π) =
r∏

j=1

p(yj |π). (1)
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Motivation MASP and SAMP

MASP and SAMP: Algorithm and Problem Designs

I MASP
I Several optimization algorithms are compared on one fixed problem instance π
I Experiment: collect sample data Y1, . . . ,YR (independent, identically

distributed)
I Goal: comparison of algorithms on one (real-world) problem instance π
I No generalization

I SAMP
I Generalization!
I Goal: Drawing conclusions about a certain class or population of instances Π
I This is Q-1: How to generate a population of problem instances?
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How to Generate Problem Instances

Test Problem Generators

I Artificial

I Natural

I Three fundamental steps for generating natural problem instances, namely
Describing the real-world system and its data
Feature extraction
Instance generation
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How to Generate Problem Instances

Example: Test Problem Generators

I Describing the real-world system and its data

I Classic Box and Jenkins airline data [2]

I Monthly totals of international airline passengers, 1949 to 1960
I > str(AirPassengers)

Time-Series [1:144] from 1949 to 1961: 112 118 132 129 121 135 148 148 136 119 ...
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How to Generate Problem Instances

Example: Test Problem Generators

I Feature extraction based on methods from time-series analysis

I Multiplicative Holt-Winters (HW) prediction function (for time series with
period length p) is

Ŷt+h = (at + hbt)st−p+1+(h−1) mod p,

where at , bt and st are given by

at = α(Yt/st−p) + (1− α)(at−1 + bt−1)

bt = β(at − at−1) + (1− β)bt−1

st = γ(Yt/at) + (1− γ)st−p

I The optimal values of α, β and γ are determined by minimizing the squared
one-step prediction error
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How to Generate Problem Instances

Example: Test Problem Generators

I Instance generation

I HW parameters α, β, and γ are estimated from original time-series data Yt

I To generate new problem instances, these parameters can be slightly modified

I Based on these modified values, the model is re-fitted

I Extract the new time series. Here, we plot the original data, the Holt-Winters
predictions and the modified time series.
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How to Generate Problem Instances

Example: Test Problem Generators

> generateHW <- function(a,b,c){
+ ## Estimation
+ m <- HoltWinters(AirPassengers, seasonal = "mult")
+ ## Extraction
+ alpha0<-m$alpha
+ beta0<-m$beta
+ gamma0<-m$gamma
+ ## Modification
+ alpha1 <- alpha0*a
+ beta1 <- beta0*b
+ gamma1 <- gamma0*c
+ ## Re-estimation
+ m1 <- HoltWinters(AirPassengers, alpha=alpha1
+ , beta = beta1, gamma = gamma1)
+ ## Instance generation
+ plot(AirPassengers)
+ lines(fitted(m)[,1], col = 1, lty=2, lw=2)
+ lines(fitted(m1)[,1], lty = 3, lw =2, col = 2)
+ }
> generateHW(a=.05,b=.025,c=.5)
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How to Generate Problem Instances

Example: Test Problem Generators

Time

A
irP

as
se

ng
er

s

1950 1952 1954 1956 1958 1960

10
0

20
0

30
0

40
0

50
0

60
0

I HW problem instance generator: solid line: real data, dotted line: predictions
from the Holt-Winters model, fine dotted red line: modified predictions
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Algorithm

Evolution Strategy

mating selection

recombination

initialization
and evaluation

mutationevaluation

test for termination

environmental
    selection

crossoverreplacement
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Algorithm

Evolution Strategy

Parameter Symbol Name Range Value

mue µ Number of parent individuals N 5
nu ν = λ/µ Offspring-parent ratio R+ 2

sigmaInit σ
(0)
i Initial standard deviations R+ 1

nSigma nσ Number of standard deviations. d
denotes the problem dimension

{1, d} 1

cτ Multiplier for mutation R+ 1
tau0 R+ 0
tau R+ 1
rho ρ Mixing number {1, µ} 2
sel κ Maximum age R+ 1
sreco rσ Recombination: strategy vars {1, 2, 3, 4} 3
oreco rx Recombination: object vars {1, 2, 3, 4} 2
mutation Mutation {1, 2} 2
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Case Study: SAMP

SAMP: Fixed Algorithm and Randomized Problem Designs

I SAMP-1: Algorithm and Problem Instances

I SAMP-2: Validation of the Model Assumptions

I SAMP-3: Building the Model and ANOVA

I SAMP-4: Hypothesis Testing

I SAMP-5: Confidence Intervals and Prediction
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Case Study: SAMP

SAMP-1: Problem Instances
I Nine problem instances, which were randomly drawn from an infinite number

of instances: fSeed
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Case Study: SAMP

SAMP-1: Algorithm and Problem Instances

I ES, run r = 5 times on a set of randomly generated problem instances

'data.frame': 45 obs. of 5 variables:

$ y : num 0.2036 0.0557 0.0979 0.7142 4.3018 ...

$ mut : Factor w/ 2 levels "1","2": 2 2 2 2 2 2 2 2 2 2 ...

$ fSeed : Factor w/ 9 levels "1","2","3","4",..: 1 1 1 1 1 2 2 2 2 2 ...

$ algSeed: Factor w/ 5 levels "1","2","3","4",..: 1 2 3 4 5 1 2 3 4 5 ...

$ yLog : num -1.592 -2.887 -2.324 -0.337 1.459 ...
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Case Study: SAMP

SAMP-2 Validation of the Model Assumptions

I Quantile plots (QQ plots) to validate normality assumptions
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Case Study: SAMP

SAMP-3 Building the Model and ANOVA

I Linear statistical model

Yij = µ+ τi + εij

{
i = 1, . . . , q
j = 1, . . . , r ,

(2)

where µ is an overall mean and εij is a random error term for replication j on
instance i

I Note, in contrast to the fixed-effects model, τi is a random variable
representing the effect of instance i

I The stochastic behavior of the response variable originates from both the
instance and the algorithm

I This is reflected in (2), where both τi and εij are random variables

I The model (2) is the so-called random-effects model, cf. [6, p. 512] or [3,
p. 229].
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Case Study: SAMP

SAMP-3: The classical ANOVA

I Similar to classical ANOVA: variability in the observations can be partitioned
into a component that measures the variation between treatments and a
component that measures the variation within treatments

I Based on ANOVA identity SStotal = SStreat + SSerr, we define

MStreat =
SStreat

q − 1
=

r
∑q

i=1(Ȳi. − Ȳ..)
2

q − 1
,

MSerr =
SSerr

q(r − 1)
=

∑q
i=1

∑r
j=1(Yij − Ȳi.)

2

q(r − 1)

I It can be shown [6] that

E (MStreat) = σ2 + rσ2
τ and E (MSerr) = σ2, (3)

I Estimators of variance components

σ̂2 = MSerr and σ̂2
τ =

MStreat −MSerr

r
(4)
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Case Study: SAMP

SAMP-3: The classical ANOVA

Table : ANOVA table for a one-factor fixed and random effects models

Source Sum Degrees Mean EMS EMS
of Variation of Squares of freedom Square Fixed Random

Treatment SStreat q − 1 MStreat σ2 + r
∑q

i=1 τ
2
i

q−1 σ2 + rσ2
τ

Error SSerr q(r − 1) MSerr σ2 σ2

Total SStotal qr − 1

I Expected mean squares differ
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Case Study: SAMP

SAMP-3: ANOVA Calculations in R (1/2)

I Extract mean squared values MSA (treatment) and MSE (error) from
ANOVA model

I Calculate estimators of variance components from (4): σ̂2 as the mean
squared error and the second component σ̂2

τ
> samp.aov <- aov(yLog ~fSeed, data=samp.df)
> (M1 <- anova(samp.aov))

Analysis of Variance Table

Response: yLog

Df Sum Sq Mean Sq F value Pr(>F)

fSeed 8 48.832 6.1040 1.0707 0.4048

Residuals 36 205.230 5.7008

> (MSA <- M1[1,3])

[1] 6.10401

> (MSE <- M1[2,3])

[1] 5.700838

> r <-length(unique(samp.df$algSeed)); q <- nlevels(samp.df$fSeed)
> (var.A <- (MSA - MSE)/(r))

[1] 0.0806345

> (var.E <- MSE)

[1] 5.700838
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Case Study: SAMP

SAMP-3: ANOVA Calculations in R (2/2)

I Finally, the mean µ from (2) can extracted
> coef(samp.aov)[1]

(Intercept)

-1.136131

I The p value in the ANOVA table is calculated as
> 1-pf(MSA/MSE,q-1,q*(r-1))

[1] 0.4047883

I Store ANOVA MSA for later:
> MSA.anova <- MSA

Bartz-Beielstein (CUAS) Beyond Particular Problem Instances November 16, 2012 29 / 41



P TS

Case Study: SAMP

SAMP-3: ANOVA Problems?

I In some cases, the standard ANOVA, which was used in our example,
produces a negative estimate of a variance component

I This can be seen in (4): If MSerr > MStreat, negative values occur

I By definition, variance components are positive

I Methods, which always yield positive variance components have been
developed: restricted maximum likelihood estimators (REML)

I The ANOVA method of variance component estimation, which is a method
of moments procedure, and REML estimation may lead to different results
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Case Study: SAMP

SAMP-3: Restricted Maximum Likelihood

I Based on same data: fit the random-effects model (2) using function Rlmer

from R package Rlmefour [1]:

> library(lme4)
> samp.lmer <- lmer(yLog~ 1 +(1|fSeed),data=samp.df)
> print(samp.lmer, digits = 4, corr = FALSE)

Linear mixed model fit by REML

Formula: yLog ~ 1 + (1 | fSeed)

Data: samp.df

AIC BIC logLik deviance REMLdev

211.8 217.2 -102.9 205.6 205.8

Random effects:

Groups Name Variance Std.Dev.

fSeed (Intercept) 2.6192e-11 5.1179e-06

Residual 5.7741e+00 2.4029e+00

Number of obs: 45, groups: fSeed, 9

Fixed effects:

Estimate Std. Error t value

(Intercept) -1.3528 0.3582 -3.776
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Case Study: SAMP

SAMP-4 Hypothesis Testing

I Testing hypotheses about individual treatments (instances) is useless, because
problem instances πi samples from some larger population of instances Π

I We test hypotheses about the variance component σ2
τ , i.e., the null

hypothesis

H0 : σ2
τ = 0 is tested versus the alternative H1 : σ2

τ > 0. (5)

I Under H0, all treatments are identical, i.e., rσ2
τ is very small

I Conclude from (3): E (MStreat) = σ2 + rσ2
τ and E (MSerr) = σ2 are similar

I Under the alternative, variability exists between treatments.
I Standard analysis shows: SSerr/σ

2 is distributed as chi-square with q(r − 1)
degrees of freedom. Under H0, the ratio

F0 =

SStreat

q−1

SSerr

q(r−1)

=
MStreat

MSerr
∼ Fq−1,q(r−1)

I Requirements for testing hypotheses in (2): τ1, . . . , τq are i.i.d. N (0, σ2
τ ), εij ,

i = 1, . . . , q, j = 1, . . . , r , are i.i.d. N (0, σ2), and all τi and εij are
independent of each other
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Case Study: SAMP

SAMP-4 Hypothesis Testing and Decision Rules

I Considerations lead decision rule to reject H0 at the significance level α if

f0 > F (1− α; q − 1, q(r − 1)), (6)

where f0 is the realization of F0 from the observed data

I Intuitive motivation for the form of statistic F0 can be obtained from the
expected mean squares:

I Under H0 both MStreat and MSerr estimate σ2 in an unbiased way, and F0 can
be expected to be close to one

I On the other hand, large values of F0 give evidence against H0
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Case Study: SAMP

SAMP-4 Hypothesis Testing and Decision Rules in R

I Based on (3), we can determine the F statistic and the p values:
> VC <- VarCorr(samp.lmer)
> (sigma.tau <- as.numeric(attr(VC$fSeed,"stddev")))

[1] 5.117856e-06

> (sigma <- as.numeric(attr(VC,"sc")))

[1] 2.402944

> q <- nlevels(samp.df$fSeed); r <- length(unique(samp.df$algSeed))
> (MSA <- sigma^2+r*sigma.tau^2)

[1] 5.774142

> (MSE <- sigma^2)

[1] 5.774142

Determine p value based on (6):
> 1-pf(MSA/MSE,q-1,q*(r-1))

[1] 0.4529257

I Since p value is large, the null hypothesis H0 : σ2
τ = 0 from (5) can not be

rejected, i.e., this indicates that there is no instance effect

I A similar conclusion was obtained from the ANOVA method of variance
component estimation
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Case Study: SAMP

SAMP-5 Confidence Intervals and Prediction

I Unbiased estimator of the overall mean µ is

q∑
i=1

r∑
j=1

yij
qr

I Its estimated standard error is given by se(µ̂) =
√

MStreat/qr and

Ȳ·· − µ√
MStreat/qr

∼ t(q − 1)

I Hence, [3, p. 232] show that confidence limits for µ can be derived as

ȳ·· ± t(1− α/2; q − 1)
√
MStreat/qr (7)
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Case Study: SAMP

SAMP-5 Confidence Intervals and Prediction in R (MLE)

I Prediction of the algorithm’s performance on a new instance

I Based on (7), the 95% confidence interval can be calculated as follows.
> s <- sqrt(MSA/(q*r))
> Y.. <- mean(samp.df$yLog)
> qsr <- qt(1-0.025,r)
> c( exp(Y.. - qsr * s), exp(Y.. + qsr * s))

[1] 0.1029441 0.6492394

I Since we performed the analysis on log data, the exp() function was applied
to the final result.

I Hence, 95% confidence interval for µ is [0.10; 0.65].
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Case Study: SAMP

SAMP-5 Confidence Intervals and Prediction in R

(ANOVA)

I Using the ANOVA results from above, we obtain the following confidence
interval for the performance of the ES:
> s <- sqrt(MSA.anova/(q*r))
> Y.. <- mean(samp.df$yLog)
> qsr <- qt(1-0.025,5)
> c( exp(Y.. - qsr * s), exp(Y.. + qsr * s))

[1] 0.1003084 0.6662989
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Summary

Summary

Q-1: How to generate test problems?
I Randomization!

Q-2: How to generalize results?
I Randomization!
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Outlook MAMP

Outlook
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Suggested Readings

Suggested Reading

I Experimental Methods for the
Analysis of Optimization Algorithms

I See also Kleijnen [5], Saltelli et al.

I http://www.spotseven.org
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