
Article type: Overview

Evolutionary Algorithms1

Thomas Bartz-Beielstein

Cologne University of Applied Sciences

Jürgen Branke

Warwick University

Jörn Mehnen

Cranfield University

Olaf Mersmann

Cologne University of Applied Sciences

Keywords
Evolutionary algorithms, Bio-inspired search heuristics, Evolution strategies,
Genetic algorithms, Genetic programming

Abstract
Evolutionary algorithm is an umbrella term used to describe population based
stochastic direct search algorithms that in some sense mimic natural evolution.
Prominent representatives are genetic algorithms, evolution strategies, evolu-
tionary programming, and genetic programming. Based on the evolutionary
cycle, similarities and differences between theses algorithms are described.
We briefly discuss how evolutionary algorithms can be adapted to work well in
case of multiple objectives, dynamic or noisy optimization problems. We look
at the tuning of algorithms and present some recent developments from theory.
Finally, typical applications of evolutionary algorithms for real-world problems
are shown, with special emphasis on data mining applications.

Evolutionary Algorithms in a Nutshell

Invention and development of the first evolutionary algorithms is nowadays
attributed to a few pioneers who independently suggested four related ap-
proaches (Bartz-Beielstein et al., 2010b).

• Fogel et al. (1965) introduced evolutionary programming (EP) aiming at
evolving finite automata, later at solving numerical optimization problems.

1This is the pre-peer reviewed version of the following article: Bartz-Beielstein, T. and Branke, J. and
Mehnen, J. and Mersmann, O.: Evolutionary Algorithms. WIREs Data Mining Knowl Discov 2014, 4:178-
195. doi:10.1002/widm.1124

1

• Holland (1973) presented genetic algorithms (GA), using binary strings,
which were inspired by the genetic code found in natural life, to solve
combinatorial problems.

• Evolution strategies (ES) as proposed by Rechenberg (1971) and Schwe-
fel (1975) were motivated by engineering problems and thus mostly used
a real-valued representation.

• Genetic programming (GP), suggested by Koza (1992b) emerged in the
early 1990s. GP explicitly performs the optimization of programs.

Since about the same time, these four techniques are collectively referred to
as evolutionary algorithms (EAs), building the core of the evolutionary compu-
tation (EC) field.

Evolutionary algorithms are understood as population based stochastic direct
search algorithms that in some sense mimic the natural evolution. Points in
the search space are considered as individuals (solution candidates), which
form a population. Their fitness value is a number, indicating their quality for
the problem at hand. Besides initialization and termination as necessary con-
stituents of every algorithm, EAs can consist of three important factors: A set
of of search operators (usually implemented as ’recombination’ and ’mutation’),
an imposed control flow, and a representation that maps adequate variables to
implementable solution candidates (the so-called ’genotype-phenotype map-
ping’). A widely accepted definition reads as follows:

Evolutionary algorithm: collective term for all variants of (proba-
bilistic) optimization and approximation algorithms that are inspired
by Darwinian evolution. Optimal states are approximated by suc-
cessive improvements based on the variation-selection-paradigm.
Thereby, the variation operators produce genetic diversity and the
selection directs the evolutionary search (Beyer et al., 2002).

Although different EAs may put different emphasis on the search operators
mutation and recombination, their general effects are not in question. Mutation
means neighborhood based movement in the search space that includes the
exploration of the ’outer space’ currently not covered by a population, whereas
recombination rearranges existing information and so focuses on the ’inner
space’. Selection is meant to introduce a bias towards better fitness values.
It can be applied at two stages: When parents are selected from the population
to generate offspring (mating selection), and after new solutions have been
created and need to be inserted into the population, competing for survival
(environmental selection or survival selection). GAs primarily focus on mating
selection, ESs utilize only environmental selection.

A concrete EA may contain specific mutation, recombination, or selection op-
erators, or call them only with a certain probability, but the control flow is usu-
ally left unchanged. Each of the consecutive cycles is termed a generation.

2

Concerning the representation, it should be noted that most empiric studies
are based on canonical forms such as binary strings or real-valued vectors,
whereas many real-world applications require specialized, problem dependent
representations.

Bäck (1996) compares GAs, ES, and EP. For an in-depth coverage on the
defining components of an EA and their connection to natural evolution, see
Eiben & Schoenauer (2002) and Eiben & Smith (2003). Beyer et al. (2002)
provide a very useful glossary, which covers the basic definitions. De Jong
(2006) presents an integrated view.

The remainder of this article is structured as follows. After introducing promi-
nent representatives of EAs, namely evolutionary programming, genetic algo-
rithms, evolution strategies and genetic programming, the following special top-
ics are discussed: Multi-objective optimization, dynamic and stochastic opti-
mization, tuning, theory, and applications. The article concludes with a short
list of EA related software.

The Family of Evolutionary Algorithms

Starting with its oldest member, namely EP, the family of EAs is described in the fol-
lowing paragraphs. Although EP, GA, ES, and GP have been invented independently
and are described separately, it is unquestioned that these algorithms are specific in-
stances of the more general class of EAs (De Jong, 2006) and that it is nowadays dif-
ficult to distinguish theses algorithms from each other (Beyer, 2001). Only one differ-
entiation is possible even today: EP algorithms do not use recombination. Today, there
is a huge set of very sophisticated and problem-specific EA implementations, and this
article can only scotch the surface.

Evolutionary Programming

Evolutionary programming uses a fixed program structure, while its numerical param-
eters are allowed to evolve. The essential steps of the EP approach can be described
as follows (Yao et al., 1999): (i) generate offspring by mutating the individuals in the
current population and (ii) select the next generation from the offspring and parent pop-
ulation. These key ideas are similarly used in ES, GP, and GAs. However, while ES
often used deterministic selection, selection is often probabilistic in EP. EP operates
on the natural problem representation, thus no genotype-phenotype mapping is used.
Contrary to GAs and ES, recombination (crossover) is not used in EP. Only mutation
is used as the variation operator.

Algorithm 1 provides a pseudocode listing of an EP algorithm. The steps of an EA
are implemented as follows: first, individuals, which form the population, are ran-
domly generated (line 1). Random initialization is probably the simplest initialization

3

Algorithm 1: Evolutionary programming algorithm

1 population = InitializePopulation(populationSize, problemDimension);
2 evaluatePopulation(population);
3 bestSolution = getBestSolution(population);
4 while testForTermination == false do
5 offspring = ∅;
6 for parenti ∈ population do
7 offspringi = mutate(parenti);
8 offspring = {offspring} ∪ offspringi;

9 evaluatePopulation(offspring);
10 bestSolution = getBestSolution(offspring,bestSolution);
11 population = {population} ∪ {offspring};
12 population = environmentalSelection(population);

13 Return(bestSolution);

method. Other, more problem specific initialization methods are possible. For exam-
ple, already known good solutions can be used as seeds (starting points) for the initial
population. The evaluation function (line 2) assigns a quality measure or fitness value
to each individual. If the original problem to be solved is an optimization problem, the
term objective function is used. Mutation is a stochastic variation operator, which is
applied to one individual (line 7). Before the next round in the evolutionary cycle is
started, the environmental (or survivor) selection is performed (line 12) that removes
some individuals in order to keep the population size constant. The decision which
individuals to include in the next generation is usually based on fitness values. This
evolutionary cycle continues until the termination criterion is fulfilled (line 4).

Fogel (1999) summarizes experiences from forty years of EP, and Fogel & Chellapilla
(1998) revisit and compare EP with other EA approaches.

Genetic Algorithms

Genetic algorithms are a variant of EA, which, in analogy to the biological DNA alpha-
bet, originally focused on (bit) string representations. However, alternative encodings
have been considered for the representation issue, such as real-coded GAs (Goldberg,
1990; Herrera et al., 1998).

Binary strings can be decoded in many ways to integer or real values. The string cor-
responds to the genotype of the individual. The phenotype of the individual is realized
by a mapping onto the object parameters, the so-called ’genotype-phenotype mapping’.
For example, a binary string that is eight bits long can encode integers between 0 and
255. The genotype ’00000011’ decodes the integer value 3. The fitness of the individ-
ual depends on the optimization problem.

4

A typical (mating) selection method in GAs is fitness-proportional selection. The prob-
ability that an individual is selected for mating depends on its fitness. For example, if
a population consists of an individual with fitness value 1 and a second individual with
fitness 3, then there is a probability of 1/(1+3) = 1/4 for selecting the first individual
and of 3/(1+3) = 3/4 of selecting the second individual. Many other selection meth-
ods have been developed for GAs, such as tournament selection. A tournament is a
simple comparison of the fitness values of a small randomly chosen set of individuals.
The individual with the best fitness is the winner of the tournament and will be selected
for the recombination (crossover) step.

Mutation adds new information to the population and guarantees that the search process
never stops. A simple mutation method is bit-flipping for binary encoded individuals:
at a randomly chosen position, a ’0’ is changed to a ’1’ and vice-versa. For example,
the genotype ’00000011’ can be mutated to ’00000010’, if the eighth bit is flipped.
Mutation can be performed with a certain probability, which can be decreased during
the search. Besides mutation, crossover is an important variation operator for GAs. It
has the following two purposes: (i) reduction of the search to more promising regions
and (ii) inheritance of good gene properties. One-point crossover is a very simple
form of crossover. At a randomly chosen position, segments from two individuals are
exchanged. Consider two individuals, say ’10101010’ and ’11110000’. One-point
crossover at the third position results in two new individuals. The first is ’10110000’
(with bits one to three from the first parent and bits four to eight from the second
parent) and the second is ’11110000’, respectively. Other popular crossover methods
are two-point crossover and uniform crossover (Sywerda, 1989). Instead of a fitness-
based environmental selection, often a simple generational replacement procedure is
used where the newly generated offspring replaces their parents independent of fitness.

Algorithm 2 provides a pseudocode listing of an GA. Note that in addition to the
operators used by EP, GAs apply mating selection (line 6) and crossover (or recombi-
nation). Crossover combines information from two or more individuals (line 8). The
newly generated offspring replaces the parental individuals in the replacement proce-
dure (line 14).

Goldberg (1989) and Whitley (1994) are classical introductions to GAs.

Evolution Strategies

The first ES, the so-called (1+1)-ES or two membered evolution strategy, uses one par-
ent and one offspring only. Two rules have been applied to these candidate solutions:
Apply small, random changes to all variables simultaneously. If the offspring solu-
tion is better (has a better function value) than the parent, take it as the new parent,
otherwise retain the parent. Schwefel (1995) describes this algorithm as ’the mini-
mal concept for an imitation of organic evolution.’ The first (1+1)-ES used binomially
distributed mutations (Schwefel, 1965). These have been replaced by continuous vari-
ables and Gaussian mutations, which enable the (1+1)-ES to generate larger mutations
and thereby possibly escape from local optima. Rechenberg (1971) presented an ap-
proximate analysis of the (1+1)-ES. His analysis showed that the optimal mutation

5

Algorithm 2: Genetic algorithm

1 pop = InitializePopulation(populationSize, problemDimension);
2 evaluatePopulation(population);
3 bestSolution = getBestSolution(population);
4 while testForTermination == false do
5 offspring = ∅;
6 parents = matingSelection(population);
7 for parent1, parent2 ∈ parents do
8 (offspring1,offspring2) = crossover(parent1, parent2);
9 offspring1 = mutate(offspring1);

10 offspring2 = mutate(offspring2);
11 offspring = {offspring} ∪ offspring1 ∪ offspring2;

12 evaluatePopulation(offspring);
13 bestSolution = getBestSolution(offspring);
14 population = replace(population, offspring);

15 Return(bestSolution);

rate corresponds to a success probability that is independent of the problem dimen-
sion. The optimal success probability is approximately 1/5 for a linear and also for
a quadratic objective function. These results inspired the famous one-fifth rule: In-
crease the mutation rate if the success rate is larger than 1/5, otherwise, decrease the
mutation rate. Schwefel’s evolution strategy (ES) is a variant of EA, which generally
operates on the natural problem representation and thus uses no genotype-phenotype
mapping for object parameters. In addition to the usual set of decision variables, the
individual also contains a set of so-called strategy parameters that influence the mu-
tation operator (e.g., the step size). The ES employs mutation and recombination as
variation operators. Beyer & Schwefel (2002) present a comprehensive introduction to
ES. Algorithm 3 provides a pseudocode listing of an ES. Please not that the strategy
parameters are also subject to recombination (line 8) and mutation (line 9).

The covariance matrix adaptation evolution strategy (CMA-ES) is a variant of ES,
which was developed for difficult non-linear non-convex optimization problems in con-
tinuous domains (Hansen & Ostermeier, 1996). To motivate the development of the
CMA-ES, consider the following black-box optimization problem

minimize
x∈Rn

f(x) (1)

and the related problem

minimize
x∈Rn

f̃(x) := f(Rx). (2)

Here R is an n×n rotation matrix2. Clearly we would like an optimization algorithm to
show similar performance characteristics when solving problem (1) or (2). But neither

2A rotation matrix is an orthogonal matrix (RT = R−1) with determinant (detR = 1). The set of all
n× n rotation matrices forms the special orthogonal group SO(n).

6

Algorithm 3: Evolution strategy.

1 population = InitializePopulation(populationSize, problemDimension);
2 evaluatePopulation(population);
3 bestSolution = getBestSolution(population);
4 while testForTermination == false do
5 offspring = ∅;
6 for i = 0 to offspringSize do
7 matingPop = matingSelection(population);
8 offspringi = recombination (matingPop);
9 offspringi = mutate(offspringi);

10 offspring = {offspring} ∪ offspringi;

11 evaluatePopulation(offspring);
12 population = environmentalSelection(population);
13 bestSolution = getBestSolution(population);

14 Return(bestSolution);

the (1 + 1)-ES nor Schwefel’s ES are invariant under rotation and therefore will per-
form quite differently when solving the two problems. To illustrate this, let us consider
a simple example. Let

n = 2, f(x) = x21 + 10x22 and R =

(
cos(π/4) − sin(π/4)
sin(π/4) cos(π/4)

)
.

Here R is a clockwise rotation of x ∈ Rn around the origin by 45 degrees. Both f and
f̃ reach their global minimum in x∗ = 0. Their respective function landscape is shown
in Figure 1.

The optimal sampling distribution for f(x) should have a covariance structure that
(locally) matches the contours of the function landscape. If we restrict ourselves to the
multivariate Normal distribution, then the optimal sampling distribution for f around
the point x is given by

N
(
x, σ

(
1 0
0 10

))
.

This distribution is clearly covered by both the (1 + 1)-ES and Schwefel’s ES. The
optimal sampling distribution for f̃ on the other hand is not within the scope of either
algorithm:

N
(
x, σR

(
1 0
0 10

))
.

Here, we need to adapt not just the individual’s variances for each parameter but also
the covariance structure which models the interdependence between the parameters so
that the contour lines of our function and the contour of the search distribution are
(locally) similar.

It was this insight that gave rise to the development of the original CMA-ES algo-
rithm (Hansen et al., 1995). Instead of only adapting the individual variances in each

7

f(x)

x1

x 2

 1

 4

 9

 9

 16

 16

 25

 25

 36

 36

−2 −1 0 1 2

−
2

−
1

0
1

2

f
~(x) = f(Rx)

x1

x 2

 1

 4

 9

 9

 16

 16

 25

 25

 36

 36

 49

 49

 64

 64

−2 −1 0 1 2

−
2

−
1

0
1

2
Figure 1: Contour plot of f(x) and f̃(x) illustrating the effect of rotation on the func-
tion landscape.

iteration, a full covariance matrix update is performed based on an estimate of the
covariance structure from the current population.

In the canonical CMA-ES, offspring is generated by mutating the (sometimes weighted)
center of the µ parent individuals, which is usually denoted as (µ/µ, λ)-ES. The strat-
egy parameters include the full covariance matrix instead of just the variance for each
dimension of the search space. The update of the strategy parameters is calculated us-
ing a maximum-likelihood approach. Here the the mean of the search distribution is
updated such that the likelihood of selected offsprings is maximized. The covariance
matrix is incrementally adapted such that the likelihood of successful search steps is
maximized.

Because of its richer class of sampling distributions compared to a regular ES and its in-
variance to rotations of the search space, it is not surprising that the CMA-ES has been
very successful at solving both synthetic as well as real-world black-box optimization
problems (Kern et al., 2004). It is well suited for problems that are non-convex, non-
separable, ill-conditioned, multi-modal, or if the objective function is noisy. If the
objective function is separable, the CMA-ES may not be ideal because it will attempt
to learn a covariance structure where there is none to exploit. In such cases a classic
ES may outperform the CMA-ES. Recently the update mechanism of the CMA-ES has
been recast as a form of natural gradient descent (Wierstra et al., 2008). This has made
it possible to adapt the core ideas to other types of continuous search distributions. The
tutorial ’Evolution Strategies and CMA-ES’ (Auger & Hansen, 2013) might serve as
an introduction to the recent developments in the field of CMA-ES.

8

Genetic Programming

Genetic programming is a collection of EA techniques for the automatic generation
of computer programs that perform a user-defined task (Koza, 1992a). Starting with
a high-level problem definition, GP creates a population of random programs that are
progressively refined through variation and selection until a satisfactory solution is
found. GP can be considered as an extension of GAs, because GP does not use fixed-
length representations (Koza & Poli, 2003).

One popular GP encoding uses symbolic expressions (S-expressions). An S-expression
can be defined as (1) an atom, or (2) an expression of the form (a b) where a and b are
S-expressions. Atoms can be Latin letters or digits (McCarthy, 1960). The expression
(a b) represents an ordered pair so that S-expressions can be equivalently represented
as binary trees. The first element of an S-expression is usually an operator or function
name. For example, ’(sin x)’ and ’(+ (1 2))’ are valid S-expressions in prefix-notation.

After specifying the function and terminal set, an initialization method has to be cho-
sen to generate individuals (Luke & Panait, 2001). Several ways of constructing a col-
lection of random trees are discussed in Poli et al. (2008). The ramped-half-and-half
initialization proposed by Koza (1992a) is one popular method. In contrast to GAs and
ES, GP allows a variable-length representation, i.e, binary trees with different node
depth are member of the same population.

Similar to GAs, the generation of an offspring by combining randomly chosen informa-
tion from two or more parent programs is referred to as crossover, whereas the creation
of an offspring by randomly altering a randomly chosen part of a selected parent pro-
gram is called mutation. Simple mutation in GP modifies an atom, e.g., replacing
’+’ with ’−’. Subtree mutation is one possible extension, which randomly selects one
subtree, which is deleted and regrown in a random manner.

Crossover via sub-tree exchanging is illustrated in Fig. 2. Crossover is applied to two
GP individuals, which are represented as binary trees. The first tree represents the
S-expression ’(− (11x))’, which is equivalent to the algebraic expression 11 − x, the
second tree represents ’(+ (1 (∗ (x 3))))’, which is equivalent to 1+3x. Two offspring
are created: ’(− (11 (∗(x 3))))’ which is equivalent to 11−3x and ’(+ (1x))’, which is
equivalent to 1+x. In addition to mutation and crossover, reproduction and architecture
altering operations can be performed.

An important advantage of GP is that no prior knowledge concerning the solution struc-
ture is needed, and solutions can be become arbitrarily complex. Another advantage is
the representation of solutions in terms of a formal language (symbolic expressions),
i.e., in a form accessible to human reasoning. The main drawback of GP is its high
computational cost, due to the potentially infinitely large search space of programs.
On the other hand, the recent availability of fast multi-core systems has enabled the
practical exploitation of GP in many real-world application areas. A common problem
of GP is the so-called ’bloat’, the growth of solution complexity without benefits in
quality. Pareto-GP, which uses solution quality, e.g., prediction error, and model com-
plexity, e.g., the sum of all nodes in all subtrees of the tree, applies an efficient strategy
for avoiding bloat (Laumanns et al., 2002; Smits & Kotanchek, 2005).

9

+

*1

3x

-

x11

+

x1

-

11

3x

*

(a) (b)

(d)(c)

Figure 2: Crossover via sub-tree exchanging applied to two GP individuals (a) and
(b), which are represented as binary trees. The first tree represents the S-expression
’(− (11x))’, the second tree represents ’(+ (1 (∗ (x 3))))’. The dashed lines denote the
positions, where crossover takes place. Two offspring are created: (c), which represents
’(− (11 (∗(x 3))))’ and (d) , which represents the S-expression ’(+ (1x))’.

Algorithm 4 provides a pseudocode of a GP algorithm. The basic GP algorithm
randomly selects the genetic operation (line 7) in its main loop (6). One of the fol-
lowing operations is performed with a certain probability: crossover (line 8), mutation
(line 12), or reproduction (line 16).

Poli et al. (2008) presents a very comprehensive introduction to GP and can be recom-
mend as a first reading. Koza & Poli (2003) is a nice GP tutorial.

Special Topics

Evolutionary Multi-objective Optimization (EMO)

Many real-world applications require the consideration of multiple objectives, for ex-
ample in information retrieval, where precision (fraction of retrieved instances that are
relevant) and recall (fraction of relevant instances retrieved) are common performance
criteria. If the objectives f1, . . . , fn are conflicting, then there is usually not a sin-
gle optimal solution, but a large set of so-called ’efficient’ or ’Pareto optimal’ solutions

10

Algorithm 4: Genetic programming algorithm. ‖ · ‖ denotes the size of a certain set.

1 population = InitializePopulation(populationSize);
2 evaluatePopulation(population);
3 bestSolution = getBestSolution(population);
4 while testForTermination == false do
5 offspring = ∅;
6 while ‖ offspring ‖ < ‖ population ‖ do
7 genOp = selectGeneticOperation;
8 if genOp == crossover then
9 (parent1, parent2) = matingSelection(population);

10 (offspring1,offspring2) = crossover(parent1, parent2);
11 offspring = {offspring} ∪ offspring1 ∪ offspring2;

12 if genOp == mutation then
13 parent = matingSelection(population);
14 offspring1 = mutate(parent);
15 offspring = {offspring} ∪ offspring1;

16 if genOp == reproduction then
17 parent = matingSelection(population);
18 offspring = {offspring} ∪ parent;

19 evaluatePopulation(offspring);
20 bestSolution = getBestSolution(offspring,bestSolution);
21 population = replace(population, offspring);

22 Return(bestSolution);

with different trade-offs of the objectives. An important concept in case of multiple ob-
jectives is that of Pareto dominance: a solution x dominates another solution y (written
as x � y) iff x is better in at least one objective and not worse in all the others. If a
solution x is not dominated by any other solution in the search space, it is said to be
Pareto optimal, the set of Pareto optimal solutions is called Pareto optimal set.

The standard approach to deal with multiple objectives is to somehow reduce the prob-
lem to a single objective problem. Examples include aggregation (e.g., to a weighted
sum f(x) =

∑
i wifi(x)), and turning all but one of the objectives into constraints

(min f1(x) s.t. fi ≤ ci ∀i = 2 . . . n). However, this puts a heavy burden on the de-
cision maker (DM), and often the DM is unable to make such a transformation before
knowing the alternatives.

A completely different approach is possible with EAs. Because EAs work with a pop-
ulation of solutions, they can be used to generate a set of solutions in one run, such
as an approximation to the Pareto optimal set. That is, rather than the DM having to
reduce the problem to a single-objective before optimization, optimization is done on
the original multi-objective problem, and the DM is provided with a set of Pareto op-
timal alternatives to choose from. While an approximation of the Pareto set could also

11

be obtained by running an algorithm multiple times, with different weights for the ob-
jectives or different constraint settings, running a single multi-objective EA is usually
much more efficient. This ability to search for a representative set of Pareto optimal so-
lutions is appealing to many researchers and practitioners, and has made evolutionary
multi-objective optimization (EMO) one of the most active research areas in EC.

All that needs to be changed when moving from a single objective EA to a multi ob-
jective EA is the selection process and how individuals in the population are ranked. If
there is only one objective, individuals are naturally ranked according to this objective,
and it is clear which individuals are the best and should be selected as parents or sur-
vive to the next generation. In case of multiple objectives, it is still necessary to rank
the individuals, but it is no longer obvious how to do this, and many different ranking
schemes have been developed. The two most popular multi-objective EAs are probably
NSGA-II (Deb et al., 2002) and SMS-EMOA (Beume et al., 2007).

The ranking procedure in NSGA-II is called ’non-dominated ranking’. The proce-
dure determines all non-dominated solutions and assigns them to the first (best) class.
Then, it iteratively removes these solutions from the population, again determines all
non-dominated solutions, and assigns them the next best class, until the population is
empty. Within a class, the algorithm gives the highest rank to the extreme solutions
in any objective in order to maintain a wide range of solutions. Then, with the aim of
producing an even distribution of solutions, individuals in the same class except for the
extreme solutions are sorted according to crowding distance. The crowding distance is
the sum of differences between an individual’s left and right neighbor, in each objec-
tive, where large distances (i.e., individuals in a less populated area of the Pareto front)
are preferred.

SMS-EMOA uses a concept called hypervolume (HV), which measures the volume of
the dominated portion of the objective space, bounded by a reference point, see Fig-
ure 3. HV has become a popular performance measure in EMO, because it combines
in one measure the convergence to the Pareto-optimal front and a sensible distribution
of solutions along the front. SMS-EMOA ranks individuals according to their marginal
contribution to the HV. If HV (P) is the hypervolume of population P , the marginal
HV of individual i would be calculated asMHV (i) = HV (P)−HV (P \{i}), where
individuals with larger MHV are preferred. In the example of Fig. 3, solution B has
the largest marginal hypervolume and would be ranked first.

An excellent on-line repository on EMO is maintained by Coello (2013b)

Innovization

Being able to generate the Pareto-optimal set of solutions allows new types of anal-
yses. It is now possible to look at the set of generated solutions, and try to uncover
underlying design principles. For example, one can ask what Pareto optimal solutions
have in common, or which design variables influence the trade-off of objectives, and in
what way. This aspect has been promoted and termed ’innovization’ (short for innova-
tion through optimization) by (Deb & Srinivasan, 2006), and it seems to be a field of
opportunities for Data Mining and Knowledge Discovery.

12

Reference point p

A

B

C

D

Figure 3: Illustration of (marginal) Hypervolume.

Interactive EMO

While it may be impractical for a DM to completely specify his or her preferences
before any alternatives are known (and turn the multi-objective (MO) problem into a
single-objective (SO) problem as described above), it makes sense to assume that the
DMs have at least a rough idea about their preferences, or that partial preference in-
formation can be elicited during the optimization by interacting with the DM. This
information should be used to speed up the EMO and quickly guide the search towards
the solution most preferred by the DM. It also helps in the case of more than three ob-
jectives, when the standard EMO algorithms break down because dominance becomes
less useful as a criterion for ranking.

Preference information can be elicited in various forms, including, but not limited to, a
reference point (desired solution) (Fonseca & Fleming, 1998), pairwise comparisons of
solutions (Branke et al., 2009), or maximum/minimum trade-offs (Branke et al., 2001).
Recent surveys on integrating user preferences in EMO can be found in Branke (2008);
Jaszkiewicz & Branke (2008).

Dynamic and Stochastic Optimization Problems

While most academic papers on optimization deal with fully defined deterministic
problems, in the real world, many problems need to deal with uncertainty.

Dynamic Optimization Problems

A typical example are dynamic optimization problems, changing over time. In this
case, the goal is no longer to find an optimal solution, but to closely track the optimum
changing over time. Standard EAs struggle with this task as they tend to converge
around the best found solution. When the environment changes, the converged popu-
lation lacks the diversity required to explore new alternatives and track the optimum.

13

However, a wealth of EA variants has been proposed to deal with this topic. They usu-
ally ensure adaptability by maintaining diversity in the population, explicitly increasing
diversity after a change has been detected, or dividing the population into several sub-
populations to simultaneously explore and track several promising regions in the search
space. Recent surveys on this topic can be found in Jin & Branke (2005); Nguyen et al.
(2012)

Noisy Environments

Stochastic objective functions, e.g., because evaluation is done through a stochastic
simulation or subject to measurement noise, pose special challenges for all optimiza-
tion algorithms. Such noise makes it difficult even to compare solutions, because the
observation that one solution performs better than another could simply be a random
effect. However, it has been shown that EAs are relatively insensitive to noise and
outperform many other search heuristics on noisy environments (Arnold, 2002; Arnold
& Beyer, 2003). Furthermore, EAs can be enhanced, e.g., by integrating statistical
re-sampling techniques, the use of surrogate methods to exploit correlation of similar
solutions, or adjusting the selection pressure. For a survey of approaches in this area,
see Jin & Branke (2005).

Tuning

Many high-performance algorithms—and, in particular, many heuristic solvers such
as EAs for computationally challenging problems, and also many machine learning
algorithms—expose parameters to allow end users to adapt the algorithm to target ap-
plications. Optimizing parameter settings is thus an important task in the context of
developing, evaluating, and applying such algorithms. Recently, a substantial amount
of research has been aimed at defining effective procedures for parameter optimization
(also called parameter tuning) (Bartz-Beielstein et al., 2010a; Eiben & Smit, 2011; Mc-
Geoch, 2012).

Tuning approaches differ in whether or not explicit models (so-called response sur-
faces) are used to describe the dependence of target algorithm performance on param-
eter settings. Some notable model-free approaches include F-Race by Birattari et al.
(2002); Balaprakash et al. (2007), CALIBRA by Adenso-Diaz & Laguna (2006), and
ParamILS by Hutter et al. (2007). State-of-the-art model-based approaches use Gaus-
sian stochastic processes (also known as Kriging models) to fit a response surface
model. Two independent lines of work extended Kriging to noisy functions, which
in the context of parameter optimization, allow the consideration of randomized algo-
rithms: the sequential Kriging optimization (SKO) algorithm by Huang et al. (2006),
and the sequential parameter optimization (SPO) procedure by Bartz-Beielstein et al.
(2004, 2005). Eiben & Smit (2011) present a comprehensive overview on (off-line)
parameter tuning. Wagner (2010) discusses the current research on parameter opti-
mization based on experiences from an engineering background.

14

Parameter control (on-line) is used to change EA parameter values during a run and
offers the greatest flexibility and promises the best performance. However, it poses
great challenges to EA designers. Eiben et al. (1999) serves as a good starting point.

Theory

The theoretical analysis made some progress over the last decades, but still many open
problems are remaining. Rudolph (1997) investigated convergence properties of ES.
Beyer (2001) presents a framework and the first steps toward the theoretical analysis of
ES and a recent article by Auger & Hansen (2011) presents global convergence results
for ES. The Genetic Programming Theory and Practice (GPTP) Workshop series dis-
cuss the most recent developments in GP theory and practice (Yu et al., 2006). Reeves
& Rowe (2002) present theoretical results for GAs. The tutorial slides from Rowe
(2012) might serve as a good starting point to GA theory.

The existence of a population and the combination of several randomized procedures
(mutation, recombination, selection) make EA analysis difficult. Computational com-
plexity theory, which can be seen as the corner stone of computer science, is a popular
approach for the theoretical analysis of EAs (Wegener, 2005). In application to ran-
domized search heuristics it takes the form of black-box complexity. Jansen (2013)
discusses black-box optimization from a complexity-theoretical perspective. However,
complexity theory can give paradoxical results, such as assigning a low complexity
to very hard problems. New definitions such as parameterized complexity have been
recently proposed (Downey & Fellows, 1999). Parameterized complexity classifies
computational problems with respect to their number of input parameters. The com-
plexity of a problem is a function in those parameters. Because the complexity of a
problem is only measured by the number of bits in the input in classical complexity
theory, problems can be classified on a finer scale.

Much of the advances in the theory of evolutionary algorithms has studied simplified
algorithms on artificial (toy) problems. The application to real-world problems is much
more difficult. An interesting approach is based on landscape analysis, Kauffman &
Levin (1987) introduced NK fitness landscapes to capture the intuition that both the
overall size of the landscape and the number of its local ’hills and valleys’ influence
the complexity of objective functions. Computing these features can be used to guide
the EA search process.

Exploring new methods for designing EAs is also subject of current research (Wierstra
et al., 2011; Rothlauf, 2011). And, last but not least, there are many fundamental ques-
tions on their working principles for multi-objective optimization problems, which still
remain unsolved (Coello et al., 2006).

15

Applications

Analyzing the papers published in the most popular EA conferences (i.e., GECCO,
WCCI, PPSN) reveals that the top four fields of EA applications are in engineering
(parameter optimization), medicine, scheduling, and image analysis. The following
paragraphs describe important considerations that are necessary for applying EAs in
practice.

Choosing the Right Model

Many classical algorithms require simplified problems (e.g., quadratic functions or dif-
ferentiability) to guarantee exact solutions, whereas EAs generate approximate solu-
tions on the natural problem. EAs are able to work on a model of the real problem, but
cannot guarantee convergence to the global optimum (Michalewicz & Fogel, 2004).

The design of a fitness function should be concise. Overly detailed functions may use
too many parameters which impact negatively on the performance of the search algo-
rithm. As a rule of thumb maybe a dimension of 30 is typically well manageable by
an EA while any number above 300 may be called high dimensional in evolutionary
terms. Linear programming such as CPLEX can easily deal with several thousand pa-
rameters while being limited to linear problems only. Kordon et al. (2005) describe a
methodology how to deal with problems in industry. They integrate EAs with statisti-
cal methods, neural networks, and support vector machines and describe applications
in the areas of inferential sensors, empirical emulators of mechanistic models, acceler-
ated new product development, complex process optimization, and effective industrial
design of experiments.

Constraints

When dealing with real-world problems constraints play a major role as almost all
real-world problems have to take some kind of limitations of the parameter space into
account. Evolutionary algorithms can deal with constraints though special techniques
such as the application of penalty functions, decoders, repair mechanisms, constraint
preserving operators, or other techniques need to be used. Sometimes it could be worth-
while reformulating a constraint as an objective and vice versa. This technique can be
particularly useful in multi-objective optimization where the algorithms are designed
to deal with several objectives at the same time. Constraints can also be imposed grad-
ually so that the algorithm may violate constraints in its early explorative stage while
getting constrained to the true feasible solution space as the population matures. Al-
though theoretically evolutionary algorithms can find solutions anywhere in the solu-
tion space, in reality constraints can direct the algorithms into a suboptimal area having
only a very slim chance to escape. Starting the algorithm near a known good solution
might help. Also interactive evolution could be a very powerful technique as the user
can interactively resolve some issues if the algorithm gets stuck.

16

Michalewicz & Schoenauer (1996) survey several EA based approaches for constrained
parameter optimization problems. Coello (2013a) has compiled a list of more than
1,000 references on constraint-handling techniques used with EAs.

Expensive Function Evaluations

In industrial applications, superior solutions have been found needing a minimum num-
ber of e.g. 150 fitness function evaluations only. Two approaches, which tackle this
problem, are considered next: (i) parallelization and (ii) meta-modeling.

Parallel evaluation of several individuals can speed up the algorithm or even increase
the probability of finding better solutions through utilizing multiple parallel popula-
tions that communicate sporadically through migrants. A discussion of these par-
allelization concepts goes far beyond the scope of this article, the reader is referred
to Cantú-Paz (2001) for an elementary introduction. Alba & Tomassini (2002) inves-
tigate parallelism and EAs. Hu et al. (2010) analyze the effect of variable population
size on accelerating evolution in the context of a parallel EA. Cantú-Paz (2007) reviews
parameter settings in parallel GAs.

Meta-modeling can be a very powerful tool in case the evaluation of a fitness function
is too expensive. Meta-modeling is a technique that replaces an expensive mathe-
matical model (such as FEM or CFD) or a complex physical experiment by a often
crude but very quick to evaluate model. Statistical approaches such as Design of Ex-
periments (DoE) from Taguchi type models to sophisticated Kriging are typical. Em-
merich (2005) describes the development of robust algorithms for optimization with
time-consuming evaluations. The main working principle of these techniques is to
combine spatial interpolation techniques with EAs. Current results from these demand-
ing real-world applications are presented during GECCO’s evolutionary computation in
practice trace, see, e.g., http://www.sigevo.org/gecco-2013/ecp.html.

Analyzing the Results

Because the output of an EA run is stochastic, a solution the algorithm finds in one run
may slightly or sometimes quite significantly differ from another run. A thorough anal-
ysis of EA results needs statistical analysis. Any critical EA analysis should contain at
least box-and-whiskers plots to illustrate the statistical spread of the results as any EA
run will result typically in a distribution of solutions around any (local) optimum the
algorithm finds. Very helpful in industrial applications could be a look at the parameter
settings of a solution. A solution close to a constraint could indicate that the opti-
mization problem might be over-constraint or there is a potential better solution in the
real-world when a constraint can be relaxed. Also the pattern of the parameter settings
in the parameter space can help understanding the underlying problem structure. A
random walk structure for example may indicate local plateau areas. In case solutions
can be visualized through CAD it can sometimes be helpful to view the actual evolu-
tion of the solution as a video. This can help improving parameter settings (finding the

17

narrow evolutionary window, i.e., the parameter window where the EA converges best
towards to better solutions) or determining realistic stopping criteria of the algorithm.

It should be highlighted that robustness of the solution is often a very important cri-
terion in industrial practice. The best solution may be contained in a very narrow set
intervals that when left the solutions deteriorate quickly. Robust solution in this sense
would allow some variation in the parameter settings. Any robustness analysis of a pro-
posed solution (e.g., using ANOVA) gives extra confidence in a result that is supposed
to be applied in a critical industrial application.

Limitations

Some EAs face limitations when it comes to budgeted fitness evaluations. The stochas-
tic nature of EA may also be a limiting factor when it comes to safety critical ap-
plications where repeatability is important. Typically in these cases, EA are used to
improve the parameter settings of deterministic algorithms. The explanation of a solu-
tion can also be difficult as the way how a solution was deduced is based on a complex
stochastic search rather than on a deterministic one-step-at-a-time approach. A proof
that a solution is optimal will not be provided by any current EA, not even how close a
solution might be to an optimal solution.

Kordon (2010) gives a lively description how to apply EAs in industry and describes
several pitfalls. Filipič & Tušar (2013) present two case studies of applying optimiza-
tion methodology in industry, one involving numerical optimization based on simu-
lation models, and the other combinatorial optimization with specific constraints and
objectives. They identify some of the challenges frequently met by solution providers
for industrial optimization problems.

Data Mining and Knowledge Discovery

EAs have been successfully applied in a large variety of real-world problem areas.
Given the focus of the journal, it seems sensible to briefly discuss a particular applica-
tion area for EAs: Data mining and knowledge discovery. In a sense, data mining is
about finding good and meaningful models and rules, and thus essentially an optimiza-
tion task. So it is not surprising that EAs may be helpful also in this area.

They have been proposed for a variety of data-mining related tasks, including feature
selection and feature construction, instance selection, or rule extraction, Ghosh & Jain
(2005) provide a number of examples. Freitas (2002a,b, 2008) presents a comprehen-
sive introduction to data mining and EAs and introduces the term evolutionary data
mining to subsume any data mining using EAs.

More specific, Tan et al. (2005) present a distributed coevolutionary classifier for ex-
tracting comprehensible rules in data mining. Vladislavleva et al. (2013) forecast the
energy output of wind farms using GP and report on the correlation of the different vari-
ables for the energy output. Note that GP is able to search for symbolic representations

18

that are interpretable (Vladislavleva, 2008). Schmidt & Lipson (2008) use GP tech-
niques for automatically reverse engineering symbolic analytical models of dynamical
systems directly from experimental observations. EAs have been used indirectly to
tune parameters of data-mining algorithms (Lessmann et al., 2005) or replace machine
learning algorithms such as clustering (Handl & Knowles, 2007).

Even the automated design of new data mining algorithms has been proposed (Pappa
& Freitas, 2010). Last, but not least, Schmidt & Lipson (2009) has to be mentioned.
The authors apply sophisticated GP techniques for the ’identification of nontriviality’.
Motion-tracking data captured from various physical systems, e.g, harmonic oscilla-
tors and chaotic double-pendula, is used to re-discover Hamiltonians, Lagrangians, and
other laws of geometric and momentum conservation. Interestingly, no prior knowl-
edge about physics, kinematics, or geometry, is used by the algorithm.

Software

A variety of software frameworks for GP is available: DataModeler is a software pack-
age that is developed within the context of industrial data analysis (Evolved Analytics LLC,
2010). It implements several non-linear modeling techniques such as Pareto-symbolic
regression, statistical learning theory, and non-linear variable selection. The GP-based
software Discipulus is applied to Data Mining as well as to problems requiring pre-
dictive Analytics and Classification (Francone, 2010). Eureqa is a software tool for
detecting equations and hidden mathematical relationships in data (Dubčáková, 2011;
Austrem, 2012). GPTIPS is a free genetic programming (GP) and predictive modeling
toolbox for MATLAB (Searson et al., 2010).

MATLAB’s Global Optimization Toolbox has genetic algorithms for single and multi
objective functions (Mathworks, 2011). Implementations of the CMA-ES and links to
libraries that contain such implementations can be found on the author’s web page3 (Hansen
et al., 1995). The Java Evolutionary Computation Toolkit (ECJ) is a freeware evolu-
tionary computation research system written in Java. It implements several EA tech-
niques, e.g., GAs, GP, and ES (Luke, 2013). The MOEA Framework is an open-source
evolutionary computation library for Java that specializes in multi-objective optimiza-
tion (Hadka, 2012).

State-of-the-art software packages for parameter tuning and algorithm configuration
such as Bonesa (Smit & Eiben, 2011), irace (López-Ibánez et al., 2011), ParamILS (Hutter
et al., 2010), and SPOT (Bartz-Beielstein & Zaefferer, 2011) are freely available from
the authors’ web pages.

Alcalá-Fdez et al. (2009) develop KEEL, an open source Java software tool to assess
evolutionary algorithms for data mining problems. Mikut & Reischl (2011) discuss
the historical development and present a range of existing state-of-the-art data mining
and related tools. They provide a list of data mining tools, which includes EA based

3https://www.lri.fr/˜hansen/cmaes_inmatlab.html

19

approaches, too. Weka and RapidMiner, which provide several machine learning al-
gorithms for solving real-world data mining problems, contain a couple of EA-based
search methods (Witten & Frank, 2005; Rapid-I, 2010). Finally, the statistical soft-
ware R (R Core Team, 2005) should be mentioned. Several EAs, e.g., emoa, GA, or
cmaes are available as R packages, see http://cran.r-project.org/web/
packages.

Conclusion
Evolutionary algorithms are established stochastic direct search algorithms.
The evolutionary cycle can be seen as the common ground for EA. They are
trying to reach optimal states by successive improvements. Improvements oc-
cur by variation (mutation, recombination). Several problem specific selection
methods enable to cope with different situations, e.g., noisy and dynamically
changing environments. Since they are population-based search algorithms,
EAs are well suited to solve multi-objective optimization problems. They are
also flexible tools for data-mining problems. By modifying the evolutionary cy-
cle, new members of the EA family are generated. Bio-inspired algorithms
such as particle swarm optimization (Eberhart & Kennedy, 1995) or ant colony
algorithms (Dorigo, 1992) enrich the EA family with new problem specific opti-
mization techniques.

References

Adenso-Diaz, B. & Laguna, M. (2006). Fine-tuning of algorithms using frac-
tional experimental design and local search. Operations Research, 54(1), 99–
114.

Alba, E. & Tomassini, M. (2002). Parallelism and evolutionary algorithms. Evo-
lutionary Computation, IEEE Transactions on, 6(5), 443–462.

Alcalá-Fdez, J., Sánchez, L., Garcı́a, S., del Jesús, M. J., Ventura, S., Garrell,
J., Otero, J., Romero, C., Bacardit, J., Rivas, V. M., et al. (2009). KEEL: a
software tool to assess evolutionary algorithms for data mining problems. Soft
Computing, 13(3), 307–318.

Arnold, D. V. (2002). Noisy optimization with evolution strategies, volume 8.
Kluwer Academic Pub.

Arnold, D. V. & Beyer, H.-G. (2003). A comparison of evolution strategies with
other direct search methods in the presence of noise. Computational Optimiza-
tion and Applications, 24(1), 135–159.

Auger, A. & Hansen, N. (2011). Theory of evolution strategies: a new perspec-
tive. In A. Auger & B. Doerr (Eds.), Theory of Randomized Search Heuristics:
Foundations and Recent Developments chapter 10, (pp. 289–325). World Sci-
entific Publishing.

20

Auger, A. & Hansen, N. (2013). Evolution strategies and cma-es (covariance
matrix adaptation).

Austrem, P. G. (2012). A comparative study of the eureqa tool for end-user
development. IJISMD, 3(3), 66–87.

Bäck, T. (1996). Evolutionary algorithms in theory and practice: evolution
strategies, evolutionary programming, genetic algorithms, volume 996. Oxford
university press Oxford.

Bäck, T., Kok, J. N., & Rozenberg, G. (2012). Handbook of Natural Computing.
Springer.

Balaprakash, P., Birattari, M., & Stützle, T. (2007). Improvement strategies
for the F-race algorithm: Sampling design and iterative refinement. In Hybrid
Metaheuristics (pp. 108–122).

Bartz-Beielstein, T., Chiarandini, M., Paquete, L., & Preuss, M., Eds. (2010a).
Experimental Methods for the Analysis of Optimization Algorithms. Berlin, Hei-
delberg, New York: Springer.

Bartz-Beielstein, T., Lasarczyk, C., & Preuß, M. (2005). Sequential parameter
optimization. In B. McKay & others (Eds.), Proceedings 2005 Congress on
Evolutionary Computation (CEC’05), Edinburgh, Scotland, volume 1 (pp. 773–
780). Piscataway NJ: IEEE Press.

Bartz-Beielstein, T., Parsopoulos, K. E., & Vrahatis, M. N. (2004). Design and
analysis of optimization algorithms using computational statistics. Applied Nu-
merical Analysis and Computational Mathematics (ANACM), 1(2), 413–433.

Bartz-Beielstein, T., Preuß, M., & Schwefel, H.-P. (2010b). Model optimization
with evolutionary algorithms. In K. Lucas & P. Roosen (Eds.), Emergence, Anal-
ysis, and Evolution of Structures—Concepts and Strategies Across Disciplines
(pp. 47–62). Berlin, Heidelberg, New York: Springer.

Bartz-Beielstein, T. & Zaefferer, M. (2011). SPOT Package Vignette. Technical
report, Cologne University of Applied Sciences.

Beume, N., Naujoks, B., & Emmerich, M. (2007). SMS-EMOA: Multiobjective
selection based on dominated hypervolume. European Journal of Operational
Research, 181(3), 1653–1669.

Beyer, H.-G. (2001). The Theory of Evolution Strategies. Berlin, Heidelberg,
New York: Springer.

Beyer, H.-G., Brucherseifer, E., Jakob, W., Pohlheim, H., Sendhoff, B., &
To, T. B. (2002). Evolutionary algorithms—terms and definitions. http://ls11-
www.cs.uni-dortmund.de/people/beyer/EA-glossary/def-engl-html.html.

Beyer, H.-G. & Schwefel, H.-P. (2002). Evolution strategies: A comprehensive
introduction. Natural Computing, 1(1), 3–52.

21

Birattari, M., Stützle, T., Paquete, L., & Varrentrapp, K. (2002). A racing algo-
rithm for configuring metaheuristics. In Proceedings of the Genetic and Evolu-
tionary Computation Conference, GECCO ’02 (pp. 11–18). San Francisco, CA,
USA: Morgan Kaufmann Publishers Inc.

Branke, J. (2008). Consideration of user preferences in evolutionary multi-
objective optimization. In J. Branke, K. Deb, K. Miettinen, & R. Slowinski (Eds.),
Multiobjective Optimization - Interactive and Evolutionary Approaches, volume
5252 of LNCS (pp. 157–178). Springer.

Branke, J., Greco, S., Słowiński, R., & Zielniewicz, P. (2009). Interactive
evolutionary multiobjective optimization using robust ordinal regression. In
M. Ehrgott & others (Eds.), International Conference on Evolutionary Multi-
Criterion Optimization, volume 5467 of LNCS (pp. 554–568).: Springer.

Branke, J., Kaußler, T., & Schmeck, H. (2001). Guidance in evolutionary multi-
objective optimization. Advances in Engineering Software, 32, 499–507.

Brownlee, J. (2011). Clever algorithms: nature–inspired programming recipes.
Lulu Enterprises.

Cantú-Paz, E. (2001). Migration policies, selection pressure, and parallel evo-
lutionary algorithms. Journal of Heuristics, 7(4), 311–334.

Cantú-Paz, E. (2007). Parameter setting in parallel genetic algorithms. In
Parameter Setting in Evolutionary Algorithms (pp. 259–276). Springer.

Coello, C. A. C. (2013a). List of references on constraint-handling techniques
used with evolutionary algorithms. http://www.cs.cinvestav.mx/ constraint/.

Coello, C. A. C., Lamont, G. B., & Veldhuizen, D. A. V. (2006). Evolutionary Al-
gorithms for Solving Multi-Objective Problems (Genetic and Evolutionary Com-
putation). Secaucus, NJ, USA: Springer-Verlag New York, Inc.

Coello, C. C. (2013b). Emoo web page. http://delta.cs.cinvestav.
mx/˜ccoello/EMOO/.

De Jong, K. A. (2006). Evolutionary computation: a unified approach, volume
262041944. MIT press Cambridge.

Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. (2002). A Fast and Elitist
Multiobjective Genetic Algorithm: NSGA–II. IEEE Transactions on Evolutionary
Computation, 6(2), 182–197.

Deb, K. & Srinivasan, A. (2006). Innovization: Innovating design principles
through optimization. In M. Keijzer & others (Eds.), Proceedings of the 8th
annual conference on Genetic and evolutionary computation (pp. 1629–1636).:
ACM.

Dorigo, M. (1992). Optimization, learning and natural algorithms. Ph. D. Thesis,
Politecnico di Milano, Italy.

22

Downey, R. G. & Fellows, M. R. (1999). Parameterized Complexity. Springer-
Verlag.

Dubčáková, R. (2011). Eureqa: software review. Genetic Programming and
Evolvable Machines, 12(2), 173–178.

Eberhart, R. & Kennedy, J. (1995). A new optimizer using particle swarm the-
ory. In Proceedings Sixth International Symposium on Micro Machine and
Human Science (Nagoya, Japan) (pp. 39–43). Piscataway NJ: IEEE Service
Center.

Eiben, A., Hinterding, R., & Michalewicz, Z. (1999). Parameter control in evo-
lutionary algorithms. IEEE Transactions on Evolutionary Computation, 3(2),
124–141.

Eiben, A. & Smit, S. (2011). Parameter tuning for configuring and analyzing
evolutionary algorithms. Swarm and Evolutionary Computation, 1(1), 19 – 31.

Eiben, A. E. & Schoenauer, M. (2002). Evolutionary computing. Information
Processing Letters, 82(1), 1–6.

Eiben, A. E. & Smith, J. E. (2003). Introduction to Evolutionary Computing.
Berlin, Heidelberg: Springer.

Emmerich, M. (2005). Single- and Multi-objective Evolutionary Design Opti-
mization: Assisted by Gaussian Random Field Metamodels. PhD thesis, Uni-
versität Dortmund, Germany.

Evolved Analytics LLC (2010). DataModeler Release 8.0. Evolved Analytics
LLC.

Filipič, B. & Tušar, T. (2013). Challenges of applying optimization methodol-
ogy in industry. In Proceeding of the fifteenth annual conference companion
on Genetic and evolutionary computation conference companion, GECCO ’13
Companion (pp. 1103–1104). New York, NY, USA: ACM.

Fogel, D. B. & Chellapilla, K. (1998). Revisiting evolutionary programming. In
Aerospace/Defense Sensing and Controls (pp. 2–11).: International Society for
Optics and Photonics.

Fogel, L. J. (1999). Intelligence through simulated evolution: forty years of
evolutionary programming. John Wiley & Sons, Inc.

Fogel, L. J., Owens, A. J., & Walsh, M. J. (1965). Artificial intelligence through
a simulation of evolution. In A. Callahan, M. Maxfield, & L. J. Fogel (Eds.),
Biophysics and Cybernetic Systems. Washington DC: Spartan Books.

Fonseca, C. M. & Fleming, P. J. (1998). Multiobjective optimization and multiple
constraint handling with evolutionary algorithms - part I: A unified fomulation.
IEEE Transactions on Systems, Man, and Cybernetics - Part A, 28(1), 26–37.

23

Francone, F. D. (2010). Discipulus—Owner’s Manual. Register Machine Learn-
ing Technologies, Inc.

Freitas, A. A. (2002a). Data mining and knowledge discovery with evolutionary
algorithms. Springer.

Freitas, A. A. (2002b). A survey of evolutionary algorithms for data mining
and knowledge discovery. In In: A. Ghosh, and S. Tsutsui (Eds.) Advances in
Evolutionary Computation: Springer-Verlag.

Freitas, A. A. (2008). A review of evolutionary algorithms for data mining. In Soft
Computing for Knowledge Discovery and Data Mining (pp. 79–111). Springer.

Ghosh, A. & Jain, L. C., Eds. (2005). Evolutionary Computation in Data Mining.
Springer.

Goldberg, D. E. (1989). Genetic Algorithms in Search, Optimization, and Ma-
chine Learning. Reading MA: Addison-Wesley.

Goldberg, D. E. (1990). Real-coded genetic algorithms, virtual alphabets, and
blocking. Urbana, 51, 61801.

Hadka, D. (2012). MOEA Framework—A Free and Open Source Java Frame-
work for Multiobjective Optimization.

Handl, J. & Knowles, J. (2007). An evolutionary approach to multiobjective
clustering. IEEE Transactions, 11(1), 56–76.

Hansen, N. & Ostermeier, A. (1996). Adapting arbitrary normal mutation dis-
tributions in evolution strategies: The covariance matrix adaptation. In Evolu-
tionary Computation, 1996., Proceedings of IEEE International Conference on
(pp. 312–317).: IEEE.

Hansen, N., Ostermeier, A., & Gawelczyk, A. (1995). On the adaptation of
arbitrary normal mutation distributions in evolution strategies: The generating
set adaptation. In ICGA (pp. 57–64).

Herrera, F., Lozano, M., & Verdegay, J. L. (1998). Tackling real-coded genetic
algorithms: Operators and tools for behavioural analysis. Artif. Intell. Rev.,
12(4), 265–319.

Holland, J. H. (1973). Genetic algorithms and the optimal allocation of trials.
SIAM Journal of Computing, 2(2), 88–105.

Hu, T., Harding, S., & Banzhaf, W. (2010). Variable population size and evolu-
tion acceleration: a case study with a parallel evolutionary algorithm. Genetic
Programming and Evolvable Machines, 11(2), 205–225.

Huang, D., Allen, T. T., Notz, W. I., & Zeng, N. (2006). Global optimization of
stochastic black-box systems via sequential kriging meta-models. Journal of
Global Optimization, 34(3), 441–466.

24

Hutter, F., Bartz-Beielstein, T., Hoos, H., Leyton-Brown, K., & Murphy, K. P.
(2010). Sequential model-based parameter optimisation: an experimental in-
vestigation of automated and interactive approaches. In T. Bartz-Beielstein,
M. Chiarandini, L. Paquete, & M. Preuss (Eds.), Experimental Methods for the
Analysis of Optimization Algorithms (pp. 361–414). Berlin, Heidelberg, New
York: Springer.

Hutter, F., Hoos, H. H., & Stützle, T. (2007). Automatic algorithm configuration
based on local search. In IN AAAI07: PROC. OF THE TWENTY-SECOND
CONFERENCE ON ARTIFICAL INTELLIGENCE (pp. 1152–1157).

Jansen, T. (2013). Analyzing Evolutionary Algorithms: The Computer Science
Perspective. Springer Publishing Company, Incorporated.

Jaszkiewicz, A. & Branke, J. (2008). Interactive multi-objective evolutionary
algorithms. In J. Branke, K. Deb, K. Miettinen, & R. Slowinski (Eds.), Multiob-
jective Optimization - Interactive and Evolutionary Approaches, volume 5252 of
LNCS (pp. 179–193). Springer.

Jin, Y. & Branke, J. (2005). Evolutionary optimization in uncertain environments
– a survey. IEEE Transactions on Evolutionary Computation, 9(3), 303–317.

Kauffman, S. & Levin, S. (1987). Towards a general theory of adaptive walks
on rugged landscapes. Journal of Theoretical Biology, 128(1), 11–45.

Kern, S., Müller, S., Hansen, N., Büche, D., Ocenasek, J., & Koumout-
sakos, P. (2004). Learning probability distributions in continuous evolutionary
algorithms–a comparative review. Natural Computing, 3(1), 77–112.

Kordon, A., Kalos, A., Castillo, F., Jordaan, E., Smits, G., & Kotanchek, M.
(2005). Competitive advantages of evolutionary computation for industrial ap-
plications. In Evolutionary Computation, 2005. The 2005 IEEE Congress on,
volume 1 (pp. 166–173).

Kordon, A. K. (2010). Applying Computational Intelligence—How to Create
Value. Springer.

Koza, J. (1992a). Genetic Programming: On the Programming of Computers
by Means of Natural Selection. Cambridge MA: MIT Press.

Koza, J. R. (1992b). Genetic Programming: On the Programming of Computers
by Means of Natural Selection. Cambridge, MA: MIT Press.

Koza, J. R. & Poli, R. (2003). A genetic programming tutorial. In E. Burke &
G. Kendall (Eds.), Introductory Tutorials in Optimization, Search and Decision
Support, volume 8 chapter 8. Springer.

Laumanns, M., Thiele, L., Zitzler, E., & Deb, K. (2002). Archiving with guaran-
teed convergence and diversity in multi-objective optimization. In Proceedings
of Genetic and Evolutionary Computation Conference (GECCO) (pp. 439–447).

25

Lessmann, S., Stahlbock, R., & Crone, S. (2005). Optimizing hyper-parameters
of support vector machines by genetic algorithms. In International Conference
on Artificial Intelligence (pp. 74–82).

López-Ibánez, M., Dubois-Lacoste, J., Stützle, T., & Birattari, M. (2011). The
irace package, iterated race for automatic algorithm configuration. IRIDIA, Uni-
versité Libre de Bruxelles, Belgium, Tech. Rep. TR/IRIDIA/2011-004.

Luke, S. (2013). The ECJ Owner’s Manual—A user manual for the ECJ Evolu-
tionary Computation Library. Department of Computer Science, George Mason
University.

Luke, S. & Panait, L. (2001). A survey and comparison of tree generation
algorithms. In Proceedings of the Genetic and Evolutionary Computation Con-
ference (GECCO-2001) (pp. 81–88).

Mathworks (2011). Global Optimization Toolbox Documentation.

McCarthy, J. (1960). Recursive functions of symbolic expressions and their
computation by machine, part i. Communications of the ACM, 3(4), 184–195.

McGeoch, C. C. (2012). A Guide to Experimental Algorithmics. New York, NY,
USA: Cambridge University Press, 1st edition.

Michalewicz, Z. & Fogel, D. B. (2004). How to solve it: Modern Heuristics.
Berlin, Heidelberg, New York: Springer.

Michalewicz, Z. & Schoenauer, M. (1996). Evolutionary algorithms for con-
strained parameter optimization problems. Evol. Comput., 4(1), 1–32.

Mikut, R. & Reischl, M. (2011). Data mining tools. Wiley Interdisciplinary Re-
views: Data Mining and Knowledge Discovery, 1(5), 431–443.

Nguyen, T., Yang, S., & Branke, J. (2012). Evolutionary dynamic optimization:
A survey of the state of the art. Swarm and Evolutionary Computing, 6, 1–24.

Pappa, G. L. & Freitas, A. A., Eds. (2010). Automating the Design of Data
Mining Algorithms: An Evolutionary Computation Approach. Springer.

Poli, R., Langdon, W. B., & McPhee, N. F. (2008). A field guide to ge-
netic programming. Published via http://lulu.com and freely available at
http://www.gp-field-guide.org.uk. (With contributions by J. R. Koza).

R Core Team (2005). R: A language and environment for statistical computing.
Technical report, ISBN 3-900051-07-0. R Foundation for Statistical Computing.
Vienna, Austria, 2013. url: http://www. R-project. org.

Rapid-I (2010). Rapid Miner 5.0 User Manual.

Rechenberg, I. (1971). Evolutionsstrategie: Optimierung technischer Systeme
nach Prinzipien der biologischen Evolution. PhD thesis, Department of Process
Engineering, Technical University of Berlin, Germany.

26

Reeves, C. R. & Rowe, J. E. (2002). Genetic algorithms-principles and per-
spectives: a guide to GA theory, volume 20. Springer.

Rothlauf, F. (2011). Design of Modern Heuristics: Principles and Application.
Springer.

Rowe, J. E. (2012). Genetic algorithm theory. In T. Soule & J. H. Moore (Eds.),
GECCO (Companion) (pp. 917–940).: ACM.

Rudolph, G. (1997). Convergence Properties of Evolutionary Algorithms. Ham-
burg, Germany: Verlag Dr. Kovač.

Schmidt, M. & Lipson, H. (2009). Distilling free-form natural laws from experi-
mental data. science, 324(5923), 81–85.

Schmidt, M. D. & Lipson, H. (2008). Data-mining dynamical systems: Auto-
mated symbolic system identification for exploratory analysis. In Proc. of the
Biennial ASME Conf. on Engineering Systems Design and Analysis, Haifa, Is-
rael.

Schwefel, H.-P. (1965). Kybernetische Evolution als Strategie der Expri-
mentellen Forschung in der Strömungstechnik. Master’s thesis, Technical Uni-
versity of Berlin, Germany.

Schwefel, H.-P. (1975). Evolutionsstrategie und numerische Optimierung. Dr.-
Ing. Dissertation, Technische Universität Berlin, Fachbereich Verfahrenstech-
nik.

Schwefel, H.-P. (1995). Evolution and Optimum Seeking. Sixth-Generation
Computer Technology. New York NY: Wiley.

Searson, D. P., Leahy, D. E., & Willis, M. J. (2010). GPTIPS: an open source
genetic programming toolbox for multigene symbolic regression. In Proceed-
ings of the International MultiConference of Engineers and Computer Scientists
2010 (IMECS 2010).

Smit, S. & Eiben, A. E. (2011). Multi-problem parameter tuning using BONESA.
In J. Hao, P. Legrand, P. Collet, N. Monmarché, E. Lutton, & M. Schoenauer
(Eds.), Artificial Evolution, 10th International Conference Evolution Artificielle,
number 7401 in LNCS (pp. 222–233).: Springer.

Smits, G. F. & Kotanchek, M. (2005). Pareto-front exploitation in symbolic
regression. In Genetic Programming Theory and Practice II (pp. 283–299).
Springer.

Sywerda, G. (1989). Uniform crossover in genetic algorithms. In Proceed-
ings of the third international conference on Genetic algorithms (pp. 2–9). San
Francisco, CA, USA: Morgan Kaufmann Publishers Inc.

27

Tan, K. C., Yu, Q., & Lee, T. H. (2005). A distributed evolutionary classifier for
knowledge discovery in data mining. Systems, Man, and Cybernetics, Part C:
Applications and Reviews, IEEE Transactions on, 35(2), 131–142.

Vladislavleva, E. (2008). Model–based Problem Solving through Symbolic Re-
gression via Pareto Genetic Programming. PhD thesis, Tilburg University.

Vladislavleva, E., Friedrich, T., Neumann, F., & Wagner, M. (2013). Predicting
the energy output of wind farms based on weather data: Important variables
and their correlation. Renewable Energy, 50(0), 236 – 243.

Wagner, T. (2010). A subjective review of the state of the art in model-based
parameter tuning. In Workshop on Experimental Methods for the Assessment
of Computational Systems (WEMACS 2010) (pp.1̃).

Wegener, I. (2005). Complexity Theory: Exploring the Limits of Efficient Algo-
rithms. Springer.

Whitley, D. (1994). A genetic algorithm tutorial. Statistics and Computing, 4(2),
65–85.

Wierstra, D., Schaul, T., Glasmachers, T., Sun, Y., & Schmidhuber, J. (2011).
Natural Evolution Strategies. Technical Report arxiv:1106.4487v1, arxiv.org.

Wierstra, D., Schaul, T., Peters, J., & Schmidhuber, J. (2008). Natural evo-
lution strategies. In Evolutionary Computation, 2008. CEC 2008.(IEEE World
Congress on Computational Intelligence). IEEE Congress on (pp. 3381–3387).:
IEEE.

Witten, I. H. & Frank, E. (2005). Data Mining: Practical machine learning tools
and techniques. Morgan Kaufmann.

Yao, X., Liu, Y., & Lin, G. (1999). Evolutionary programming made faster. Evo-
lutionary Computation, IEEE Transactions on, 3(2), 82–102.

Yu, T., Riolo, R., & Worzel, B. (2006). Genetic programming: Theory and
practice. Springer.

Further Reading
The handbook of natural computing (Bäck et al., 2012) describes interactions
between computer science and the natural sciences. Brownlee (2011) edited
a handbook of algorithmic recipes, which contains code for more than forty
nature-inspired heuristics.

28

