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Abstract

Computational intelligence methods have gained importance in several real-world do-

mains such as process optimization, system identification, data mining, or statistical

quality control. Tools are missing, which determine the applicability of computational

intelligence methods in these application domains in an objective manner. Statistics

provide methods for comparing algorithms on certain data sets. In the past, several

test suites were presented and considered as state of the art. However, there are several

drawbacks of these test suites, namely: (i) problem instances are somehow artificial

and have no direct link to real-world settings; (ii) since there is a fixed number of test

instances, algorithms can be fitted or tuned to this specific and very limited set of

test functions; (iii) statistical tools for comparisons of several algorithms on several

test problem instances are relatively complex and not easily to analyze. We propose a

methodology to overcome these di�culties. It is based on standard ideas from statis-

tics: analysis of variance and its extension to mixed models. This chapter combines

essential ideas from two approaches: problem generation and statistical analysis of

computer experiments.

⇤
This is a preprint of the publication T. Bartz-Beielstein. How to create generalizable

results. In J. Kacprzyk and W. Pedrycz, editors, Springer Handbook of Computational In-
telligence, chapter 56. Springer, 2015 (in print). The original publication is available at

www.springerlink.com
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1 Introduction

Computational intelligence (CI) methods have gained importance in several real-
world domains such as process optimization, system identification, data mining,
or statistical quality control. Tools are missing, which determine the appli-
cability of CI methods in these application domains in an objective manner.
Statistics provide methods for comparing algorithms on certain data sets. In
the past, several test suites were presented and considered as state of the art.
However, there are several drawbacks of these test suites, namely:

• problem instances are mostly artificial and have no direct link to real-world
settings;

• since there is a fixed number of test instances, algorithms can be fitted
or tuned to this specific and very limited set of test functions. As a
consequence, studies (benchmarks) provide insight how these algorithms
perform on this specific set of test instances, but no insight on how they
perform in general;

• statistical tools for comparisons of several algorithms on several test prob-
lem instances are relatively complex and not easy to analyze.

We propose a methodology to overcome these di�culties. This methodology,
which generates problem classes rather than uses one instance, is constructed
as follows.

1. First, we pre-process the underlying real-world data.

2. In a second step, features from these data are extracted. This extraction
relies on the assumption that mathematical variables can be used to rep-
resent real-world features. For example, decomposition techniques can be
applied to model the underlying data structures, if we are using time-series
data. The original time series is deconstructed into a number of compo-
nent series, where each of these reflects a certain type of behavior, e.g., a
trend or seasonality[9]. We obtain an analytic model of the data.

3. Then, we parametrize this model. Based on this parametrization and
randomization, we can generate infinitely many new problem instances.

4. If no real-world data are available, problem instances can be generated
using test-problem generators. The generation of test problems, which are
well-founded and have practical relevance, is an on-going field of research
for several decades.

5. From this infinite set, we can draw a limited number of problem instances
which will be used for the comparison.

6. Since problem instances are selected randomly, we apply random and
mixed models for the analysis [15]. Mixed models include fixed and
random e↵ects. A fixed e↵ect is an unknown constant. Its estimation
from the data is a common practice in analysis of variance (ANOVA) or
regression. A random e↵ect is a random variable. We are estimating the
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parameters that describe its distribution, because—in contrast to fixed
e↵ects—it makes no sense to estimate the random e↵ect itself.

This chapter combines ideas from two approaches: problem generation and
statistical analysis of computer experiments. The work presented by Chiaran-
dini and Goegebeur [11] provides the basis of our statistical analysis. They
present a systematic and well-developed framework for mixed models. Related
modeling approaches were suggested by McGeoch[14] and Birattari [7]. Gal-
lagher and Yuan [13] present a problem instance (landscape) generator that is
parameterized by a small number of parameters, and the values of these param-
eters have a direct and intuitive interpretation in terms of the geometric features
of the landscapes that they produce. Castiñeiras, Cauwer, and O’Sullivan [10]
present a parametrizable benchmark generator for bin packing instances based
on the well-known Weibull distribution. Using the shape and scale parameters
of the Weibull distribution, the authors generate benchmarks that contain a
variety of item size distributions. They report that for all bin capacities, the
number of bins required in an optimal solution increases as the Weibull shape
parameter increases. Using this feature, scalability is enabled.

Basically, this chapter tries to find answers for the following fundamental
questions in experimental research.

(Q-1) How to generate problem instances?

(Q-2) How to generalize experimental results?

The chapter is structured as follows. Section 2 introduces real-world and
artificial optimization problems. Algorithms are described in Sect. 3. Objec-
tive functions and statistical models are introduced in Sect. 4. These models
take problem and algorithm features into consideration. Section 5 presents case
studies, which illustrate our methodology. This chapter closes with a summary
and an outlook.

2 Features of Optimization Problems

2.1 Problem Classes and Instances

Nowadays, it is a common practice in optimization to choose a fixed set of prob-
lem instances in advance and to apply classical ANOVA or regression analysis.
In many experimental studies a few problem instances ⇡

i

(i = 1, 2, . . . , q) are
used and results of some runs of the algorithms ↵

j

(j = 1, 2, . . . , h) on these in-
stances are collected. The instances can be treated as blocks and all algorithms
are run on each single instance. Results are grouped per instance ⇡

i

. Analyses
of these experiments shed some light on the performance of the algorithms on
those specific instances. However, the interest of the researcher should not be
just the performance of the algorithms on those specific instances chosen, but
rather on the generalization of the results to the entire class ⇧. Generalizations
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about the algorithm’s performance on new problem instances are di�cult or
impossible in this setting.

Based on ideas from Chiarandini and Goegebeur [11], to overcome this dif-
ficulty, we propose the following approach: A small set of problem instances
{⇡

i

2 ⇧|i = 1, 2, . . . , q} is chosen at random from a large set, or class ⇧, of pos-
sible instances of the problem. Problem instances are considered as factor levels.
However, this factor is of a di↵erent nature from the fixed algorithmic factors in
the classical ANOVA setting. Indeed, the levels are chosen at random and the
interest is not in these specific levels but in the problem class ⇧ from which they
are sampled. Therefore, the levels and the factor are random. Consequently,
our results are not based on a limited, fixed number of problem instances. They
are randomly drawn from an infinite set, which enables generalization.

2.2 Feature Extraction and Instance Generation

A problem class ⇧ can be generated in di↵erent manners. We will consider
artificial and natural problem class generators. Artificially generated problems
allow feature generation based on some predefined characteristics. They are ba-
sically theory driven, i.e., the researcher defines certain features such as linearity
or multi modality. Based on these features, a model (formula) is constructed.
By integrating parameters into this formula, many problem instances can be
generated by parameter variation. We will exemplify this approach in the fol-
lowing paragraph. The second way, which will generate natural problem classes,
uses a three-stage approach. First, the real-word system and its components are
described. Then, features are extracted from a real-world system. Based on this
feature set, a model is defined. Adding parameters to this model, new prob-
lem instances can be generated. There is also a third way to ”generate” test
instances: if we are lucky, many data are available. In this case, we can sample
a limited number of problem instances from the larger set of real-world data.
The statistical analysis is similar for these three cases.

2.2.1 Artificial Test Functions

Several problem instance generators have been proposed over the last years. For
example, Gallagher and Yuan present a landscape test generator, which can be
used to set up problem instances for continuous, bound-constrained optimization
problems [13]. The Max-Set of Gaussian Landscape Generator (MSG) uses the
maximum of m weighted Gaussian functions

G(x) = max
i21,2,...,m

(w
i

g
i

(x)),

where g : Rn ! R denotes an n-dimensional Gaussian function

g(x) =

 
exp

�
� 1

2

(x� µ)⌃�1(x� µ)T
�

(2⇡)n/2|⌃|1/2

!
1/n

,
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µ is an n-dimensional vector of means, and ⌃ is an (n ⇥ n) covariance matrix.
The mean of each Gaussian corresponds to an optimum on the landscape and
the location of all optima is known. The global optimum is the one with the
largest value. We will use the MSG problem instance generator in Sect. 5 to
demonstrate our approach.

2.2.2 Natural Problem Classes

This section exemplifies the three fundamental steps for generating real-world
problem instances, namely

1. Describing the real-world system and its data
2. Feature extraction and model construction
3. Instance generation.
We will illustrate this procedure by using the classic Box and Jenkins airline

data [8]. These data contain the monthly totals of international airline pas-
sengers from 1949 to 1961. The feature extraction is based on methods from
time-series analysis. Because of its simplicity the Holt-Winters method is pop-
ular in many application domains. It is able to adapt to changes in trends and
seasonal patterns. The Holt-Winters prediction function requires the estimation
of three parameters, i.e., ↵, � and �, which can be estimated from original time-
series data. Their optimal values are determined by minimizing the squared
one-step prediction error. To generate new problem instances, these parameters
can be slightly modified. Based on these modified values, the model is re-fitted.
Finally, we can extract the new time series. One typical result from this instance
generation is shown in Fig. 1. Bartz-Beielstein [2] describes this procedure in
detail.

To illustrate the wide applicability of this approach, we will list further real-
work problem domains, which are subject of our current research.

Smart Metering. The development of accurate forecasting methods for electri-
cal energy consumption profiles is an important task. We consider time
series collected from a manufacturing process. Each time series contains
quarter-hourly samples of the energy consumption of a bakery. A detailed
data description can be found in [3].

Water Industry. Canary is a software developed by the United States Environ-
mental Protection Agency (US EPA) and Sandia National Laboratories.
Its purpose is to detect events in the context of water contamination. An
event is in this context defined as a certain time period where a contam-
inant significantly deteriorates the water quality. Distinguishing events
from (i) background changes, (ii) maintenance and modification due to
operation, and (iii) outliers is an essential task, which was implemented
in the Canary software. Therefore, deviations are compared to regular
patterns and short term changes. The corresponding data contains multi-
variate time-series data. It is a selection from a larger dataset shipped
with the open source event-detection software CANARY developed by US
EPA and Sandia National Laboratories [19].
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Figure 1: Holt-Winters problem instance generator. The solid line represents
the real data, the dotted line predictions from the Holt-Winters model and the
fine dotted line modified predictions, respectively.

Finance. The data are real-world data from intraday foreign exchange (FX)
trading. The FX market is a financial market for trading currencies to
enable international trade and investment. It is the largest and most
liquid financial market in the world. Currencies can be traded via a wide
variety of di↵erent financial instruments, ranging from simple spot trades
over to highly complex derivatives. We are using three foreign exchange
(currency rate) time series collected from Bloomberg. Each time series
contains hourly samples of the change in currency exchange rate [12].

One typical goal in forecasting is the minimization of the forecast errors or
the di↵erences between real (observed) values, say y

i

, and predicted values, say
ŷ
i

. This goal can be considered as an optimization problem.
As stated in Sect. 2.2, the statistical analysis is similar for artificial and nat-

ural problem classes. Our goal can be stated as follows: For a given problem
class ⇧, which can be artificial or natural, we are trying to determine if an opti-
mization algorithm ↵ or several algorithm instances ↵

i

show similar behavior on
randomly selected problem instances ⇡

i

2 ⇧. This question will be formulated
as a statistical hypothesis. Based on the related statistical framework, we can
determine confidence intervals for the performance of the algorithm on unseen
problem instances.
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3 Algorithm Features

3.1 Factors and Levels

Evolutionary algorithms (EA) belong to the large class of bio-inspired search
heuristics. They combine specific components, which may be qualitative, like
the recombination operator or quantitative, like the population size. Our interest
is in understanding the contribution of these components. In statistical terms,
these components are called factors. The interest is in the e↵ects of the specific
levels chosen for these factors. Hence, we say that the levels and consequently
the factors are fixed. Although modern search techniques like sequential pa-
rameter optimization or Pareto genetic programming [18] allow multi-objective
performance measures (solution quality versus variability or description length),
we restrict ourselves to analyze the e↵ect of these factors on a univariate mea-
sure of performance. We will use the quality of the solutions returned by the
algorithm at termination as the performance measure.

3.2 Example: Evolution Strategy

Evolution strategies (ES) are prominent representatives of evolutionary algo-
rithms, which includes genetic algorithms and genetic programming as well [17].
They can be classified as generic population-based metaheuristic optimization
algorithms for global optimization that in some sense mimics the natural evolu-
tion. Evolution strategies are applied to hard real-valued optimization problems.
Mutation is performed by adding a normally distributed random value to each
vector component. The standard deviation of these random values is modified
by self-adaptation. Evolution strategies can use a population of several solu-
tions. Each solution is considered as as individual and consists of object and
strategy variables. Object variables represent the position in the search space,
whereas strategy variables store the step sizes, i.e., the standard deviations for
the mutation. We are analyzing the ES basic variant, which has been proposed
in [6].

Mutation means neighborhood-based movement in search space that includes
the exploration of the ”outer space” currently not covered by a population,
whereas recombination rearranges existing information and so focuses on the
”inner space”. Selection is meant to introduce a bias towards better fitness val-
ues. A concrete ES may contain specific mutation, recombination, or selection
operators, or call them only with a certain probability, but the control flow is
usually left unchanged. Each of the consecutive cycles is termed a generation.
The control flow is shown in Fig. 2. Concerning the representation, it should be
noted that most empiric studies are based on canonical forms as binary strings
or real-valued vectors, whereas many real-world applications require specialized,
problem dependent ones. Table 1 summarizes important ES parameters. This
chapter presents two case studies. The first case study is based on a fixed ES
parameter setting, whereas the second case study modifies the recombination
operator for object variables. We are convinced that the applicability of the
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Figure 2: The evolutionary cycle, basic working scheme of all ES and EA. Terms
common for describing evolution strategies are used, alternative terms are added
below in blue.

methods presented in this chapter goes far beyond the simplified case studies.
Our main contribution is a framework, which allows conclusions that are not
limited to a small number of problem instances but to problem classes.

4 Objective Functions

We will use the following optimization framework: An ES is applied as a min-
imizer on the test function f(x). Formally speaking, let S denote some set,
e.g., S ✓ Rn. We are seeking for values f⇤ and x⇤, such that min

x2S

f(x) with
f⇤ = min

x2S

f(x) and x⇤ = argmin f(x). This approach can be extended in
many ways. For example, if S denotes times-series data, then an optimization
algorithm can be applied to minimize the empirical mean squared prediction
error.

Test problem instances will be drawn from Gallagher’s and Yuan’s MSG test
function generator. The following parameters can be used to specify the MSG
generator.

• The number of Gaussian components m.

• The mean vector µ of each component.

• The covariance matrix ⌃ of each component.

• The weight of each component w
i

.

• A maximum threshold t 2 [0; 1] can be specified for local optima and
the fitness value of the global optimum G⇤. Local optima are randomly
generated within [0; t⇥G⇤].
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Table 1: Settings of exogenous parameters of an ES. Recombination operators
are labeled as follows: 1=no, 2=dominant, 3=intermediate, 4=intermediate as
in [6]. Mutation uses the following encoding: 1 = no mutation, 2 = self adaptive
mutation.
Parameter Symbol Name Range Value

mue µ Number of parent individuals N 5
nu ⌫ = �/µ O↵spring-parent ratio R

+

2.0

sigmaInit �
(0)

i

Initial standard deviations R
+

1.0
nSigma n

�

Number of standard deviations.
d denotes the problem dimen-
sion

{1, d} 1

c
⌧

Multiplier for individual and
global mutation parameters

R
+

1.0

tau0 R
+

0.0
tau R

+

1.0
rho ⇢ Mixing number {1, µ} 2
sel  Maximum age R

+

1.0
mutation Mutation {1, 2} 2
sreco r

�

Recombination operator for
strategy variables

{1, 2, 3, 4} 3

oreco r
x

Recombination operator for ob-
ject variables

{1, 2, 3, 4} 2
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The following tuple can be used to specify an MSG generator:

⇧ := ([�c, c]n, n,m,D
µ

, {D
⌃

}, {t, G⇤}), (1)

where c 2 R defines the boundary constraints of the search space, n the search
space dimensionality, m the number of Gaussian components, D

µ

the distribu-
tion used to generate the mean vectors of components, D

⌃

the distribution or
procedures used to generate covariances of components, t 2 [0; 1] the threshold
for local optima, and G⇤ the function value of the global optimum.

Based on Eq. (1), we have specified the following MSG landscape generator
for our experiments:

⇧
MSG

:=
�
[�1; 1]2, 2, 10,U [�1; 1], {U [0.05; 0.15],

U [�⇡/4,⇡/4]}, {0.8, 1}) .
(2)

With this setting, the mean vector of each component is generated randomly
within [�1, 1]2. The covariance matrix of each component is generated with the
procedure D

⌃

in three steps:

1. A diagonal matrix S with eigenvalues is generated.

2. An orthogonal matrix T is generated through n(n � 1)/2 rotations with
random angles between [�⇡/4,⇡/4].

3. The covariance matrix is generated as TTST .

The weight w
i

of the component corresponding to the global optimum is set to
1 while other weights are randomly generated within [0; 0.8]. The nine problem
instances, ⇡

i

2 ⇧
MSG

, (i = 1, . . . , 9) from Fig. 3 were generated with this
parametrization.

Note, we are using the distance to the optimum as an objective function
in our experiments. Our objective function reads G⇤ � f(x), because we are
considering minimization problems. Other measures of interest might be the
gap percent of optimality (G⇤ � f(x))/G⇤ ⇥ 100, or computation time etc., see,
e.g. [1].

5 Case Studies

Bartz-Beielstein introduced the acronyms
• SASP: one single algorithm and one single problem instance
• SAMP: one single algorithm and multiple problems instances
• MASP: multiple algorithms and one single problem instance
• MAMS: multiple algorithms and multiple problem instances

for classifying optimization designs [4].
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5.1 Single Problem Designs: SASP and MASP

In SASP we are analyzing the performance of an optimization algorithm ↵ on
a single problem instance ⇡. An optimization problem has a set of input data
which instantiate the problem. This might be a function in continuous opti-
mization or the location and distances between cities in a traveling salesman
problem. In the following, we will use Y to denote the random performance
measure obtained by r runs of algorithm ↵ on problem instance ⇡. Because
many optimization algorithms such as evolutionary algorithms are randomized,
their performance Y on one instance is a random variable. It might be described
by a probability density/mass function p(y|⇡). Running the algorithm with dif-
ferent random seeds on one problem instance, we collect sample data y

1

, . . . , y
r

,
which are independent and identically distributed (i.i.d.).

There are situations, in which SASP is the method of first choice. Real-world
problems, which have to be solved only once in a very limited time, are good
examples for using SASP optimizations. MASP shares several characteristics
with SASP. Because of their limited capacities for generalization, SASP and
MASP will not be further investigated in this study.

5.2 SAMP: Single Algorithm, Multiple Problems

5.2.1 Fixed-e↵ects Models

This setup is commonly used for testing an algorithm on a given (fixed) set of
problem instances. Standard assumptions from analysis of variance (ANOVA)
lead us to propose the following fixed-e↵ects model [15]:

Y
ij

= µ+ ⌧
i

+ "
ij

, (3)

where µ is an overall mean, ⌧
i

is a parameter unique to the ith treatment
(problem instance factor), and "

ij

is a random error term for replication j on
problem instance i. Usually, the model errors "

ij

are assumed to be normally and
independently distributed with mean zero and variance �2. If problem instance
factors are considered fixed, i.e., non random, the stochastic behavior of the
response variable originates from the algorithm. This implies the experimental
results

Y
ij

⇠ N(µ+ ⌧
i

,�2), i = 1, . . . , q, j = 1, . . . , r, (4)

and that the Y
ij

are mutually independent. Results from statistical analyses
remain valid only on the specific instances. Furthermore, SAMP with a fixed
set of problem instances is subject to criticism, e.g., that algorithms are trained
for this specific set up test instances (over fitting).

In order to make the results of the analysis independent on the specific
instances and dependent instead on the class of instances from which the specific
instances are drawn, Chiarandini and Goegebeur propose randomized and mixed
models for the experimental analysis of optimization algorithms as an extension
of (3) [11]. In contrast to model (3), these models allow generalizations of results
to the whole class of instances.
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5.2.2 Randomized Models

In the following, we consider a population or class of instances ⇧. The class
⇧ consists of a large, possibly an infinite, number of problem instances ⇡

i

, i =
1, 2, 3, . . . Let p(⇡) denote the probability of sampling instance ⇡. The per-
formance Y of the algorithm ↵ on the class ⇧ is described by the probability
function

p(y) =
X

⇡2⇧

p(y|⇡)p(⇡). (5)

If we ran an algorithm ↵ r times on instance ⇡, then we receive r replicates of
↵’s performance, denoted by Y

1

, . . . , Y
r

. These r observations are i.i.d., i.e.,

p(y
1

, . . . , y
r

|⇡) =
rY

j=1

p(y
j

|⇡). (6)

So far, we have considered r replicates of the performance measure Y on one
problem instance ⇡. Now consider several, randomly sampled problem instances.
Over all the instances the joint probability distribution of the observed perfor-
mance measures is obtained by marginalizing over all instances:

p(y
1

, . . . , y
r

) =
X

⇡2⇧

p(y
1

, . . . , y
r

|⇡)p(⇡). (7)

Extending the model (7) to the case where one algorithm with several parameter
settings or several algorithms are analyzed leads to mixed models, which will be
discussed in Sec. 5.3.

5.2.3 Example SAMP: ES on ⇧
1

(Random-E↵ects Design)

The simplest random-e↵ects experiment is performed as follows. For i = 1, . . . , q
a problem instance ⇡

i

is drawn randomly from the class of problem instances ⇧.
On each of the sampled ⇡

i

, the algorithm ↵ is run r times using di↵erent seeds
for ↵. Due to ↵’s stochastic nature, we obtain, conditionally on the sampled
instance, r replications of the performance measure that are i.i.d.

Let Y
ij

(i = 1, . . . , q; j = 1, . . . , r) denote the random performance measure
obtained in the jth replication of ↵ on ⇡

i

. We are interested in drawing conclu-
sions about ↵’s performance on a larger set of problem instances from ⇧, and
not just on those q problem instances included in the experiment. A systematic
approach to accomplish this task comprehends the following steps.
SAMP-1 Algorithm and Problem Instances
SAMP-2 ANOVA and REML Model Building
SAMP-3 Validation of the Model Assumptions
SAMP-4 Hypothesis Testing
SAMP-5 Confidence Intervals and Prediction
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Figure 3: Nine test problem instances from ⇧
MSG

, which were generated with
the MSG landscape generator as specified in Eq. 2.

SAMP-1 Algorithm and Problem Instances The goal of this case study
is to analyze if one algorithm shows a similar performance on a class of problem
instances, say ⇧

MSG

. A random-e↵ects design will be used to model the results.
We illustrate the decomposition of the variance of the response values in (i) the
variance due to problem instance and (ii) the variance due to the algorithm and
derive results, which are based on hypotheses testing as introduced in (12).

We consider one algorithm, an ES, which is run r = 10 times on a set of
randomly generated problem instances. The ES is parametrized with the default
setting from Table 1. These parameters are kept constant during the experiment.
Nine instances are drawn from the set of problem instances ⇧

MSG

. Problem
instances were generated with the MSG landscape generator as specified in
Eq. 2. The corresponding problem instances are shown in Fig. 3.

The null hypothesis reads ”There is no instance e↵ect”. Since we are consid-
ering the SAMP case, our experiments is based on one ES instance only. There
are 90 observations, because 10 repeats were performed on 9 problem instances.
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Figure 4: Performance of the ES on nine test problem instances. Left: Prob-
lem instances plotted versus algorithm performance. Right: Problem instances
plotted against logarithmic performance. Smaller values are better.

Figure 4 shows the performance of the ES on these nine instances. The variable
fSeed is used to denote the problem instance number ⇡

i

.

SAMP-2 ANOVA and REML Model Building

ANOVA Model Building. The following analysis is based on the linear
statistical model

Y
ij

= µ+ ⌧
i

+ "
ij

⇢
i = 1, . . . , q
j = 1, . . . , r

(8)

where µ is an overall mean and "
ij

is a random error term for replication j on
instance i. Note, in contrast to the fixed-e↵ects model from (3), ⌧

i

is a random
variable representing the e↵ect of instance i. The stochastic behavior of the
response variable originates from both the instance and the algorithm. This is
reflected in (8), where both ⌧

i

and ✏
ij

are random variables. The model (8) is
the so-called random-e↵ects model, cf. [15] or [11].

We assume that ⌧
1

, . . . , ⌧
q

are i.i.d. N (0,�2

⌧

) and "
ij

, i = 1, . . . , q, j =
1, . . . , r, are i.i.d. N (0,�2). If ⌧

i

is independent of ✏
ij

and has variance V(⌧
i

) =
�2

⌧

, the variance of any observation is V(Y
ij

) = �2 + �2

⌧

. Similar to the parti-
tion in classical ANOVA, the variability in the observations can be partitioned
into a component that measures the variation between treatments and a compo-
nent that measures the variation within treatments. Based on the fundamental
ANOVA identity SS

total

= SS
treat

+ SS
err

, we define

MS
treat

=
SS

treat

q � 1
=

r
P

q

i=1

(Ȳ
i.

� Ȳ
..

)2

q � 1
,
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Table 2: ANOVA table for a one-factor fixed and random e↵ects models
Source Sum Degrees Mean EMS EMS
of Variation of Squares of freedom Square Fixed Random

Treatment SS
treat

q � 1 MS
treat

�2 + r
Pq

i=1 ⌧

2
i

q�1

�2 + r�2

⌧

Error SS
err

q(r � 1) MS
err

�2 �2

Total SS
total

qr � 1

and

MS
err

=
SS

err

q(r � 1)
=

P
q

i=1

P
r

j=1

(Y
ij

� Ȳ
i.

)2

q(r � 1)
.

It can be shown that

E(MS
treat

) = �2 + r�2

⌧

and E(MS
err

) = �2, (9)

cf. [15]. Therefore, the estimators of the variance components are

�̂2 = MS
err

, (10)

�̂2

⌧

=
MS

treat

�MS
err

r
. (11)

The corresponding ANOVA table is shown in Table 2.
Based on ANOVA calculations, we obtain with (10) an estimator of the

first variance component �̂2 = �0.4848257, and from (11), we obtain the second
component �̂2

⌧

= 11.32854. The model variance can be determined as �̂2+ �̂2

⌧

=
10.84372. The mean µ = �12.05554 from (8) can be extracted. Finally, the p
value in the ANOVA table is calculated as 0.7979083.

Note, that we have obtained a negative variance. Since negative variances
are not feasible, we can proceed by setting their values to zero and proceed with
this modified values. A more elegant way is presented in the following.

Restricted maximum likelihood. In some cases, the standard ANOVA,
which was used in our example, produces a negative estimate of a variance
component. This can be seen in (11): If MS

err

> MS
treat

, negative values
occur. By definition, variance components are positive. Methods, which al-
ways yield positive variance components have been developed. Here, we will
use restricted maximum likelihood estimators (REML). The ANOVA method
of variance component estimation, which is a method of moments procedure,
and REML estimation may lead to di↵erent results. Output from an R-based
analysis with the function lme from the package lme4 reads as follows (fSeed
denotes the problem instance) [16]:

Linear mixed model fit by REML

Formula: yLog ~ 1 + (1 | fSeed)

Data: samp.df
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Figure 5: Left : Q-Q plot of the residuals for raw data. Left : Q-Q plot for the
log-transformed responses.

AIC BIC logLik deviance REMLdev

475.6 483.1 -234.8 469.3 469.6

Random effects:

Groups Name Variance Std.Dev.

fSeed (Intercept) 0.000 0.0000

Residual 10.893 3.3004

Number of obs: 90, groups: fSeed, 9

Fixed effects:

Estimate Std. Error t value

(Intercept) -12.0555 0.3479 -34.65

Compared to the ANOVA setting, di↵erent values for �̂2, �̂2

⌧

, and µ were
obtained. However, the REML based analysis also shows that the variability in
the response observations can be attributed to the variability of the algorithm.

SAMP-3 Validation of the Model Assumptions Before performing hy-
pothesis testing based on the models introduced in SAMP-2, the validity of the
model assumptions has to be investigated. If the model is adequate, the residuals
should exhibit no structure. Residuals are plotted against fitted values to check
the assumption of homoscedasticity and quantile-quantile (Q-Q) plots are used
to check if residuals meet the normality assumption. Quantile-quantile plots of
the residuals is shown in Fig. 5 for the raw and the log-transformed responses.
These plots provide a good way to compare the the distribution of a sample
with a distribution. Large deviations from the line indicate non-normality of
the sample data. These Q-Q plots indicate that a log transformation of the
response might be useful in our setting.

SAMP-4 Hypothesis Testing Testing hypotheses about individual treat-
ments (instances) is useless, because the problem instances ⇡

i

are here consid-
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ered as samples from some larger population of instances ⇧. We test hypotheses
about the variance component �2

⌧

, i.e., the null hypothesis

H
0

: �2

⌧

= 0 versus H
1

: �2

⌧

> 0. (12)

Under H
0

, the algorithm performance is identical on all problem instances (”all
treatments are identical”), i.e., r�2

⌧

is very small. Based on (9), we conclude that
E(MS

treat

) = �2 + r�2

⌧

and E(MS
err

) = �2 are similar. Under the alternative,
variability exists between treatments. Standard analysis shows that SS

err

/�2 is
distributed as chi-square with q(r � 1) degrees of freedom. Let F

u,v

denote the
F distribution with u numerator and v denominator degrees of freedom. Under
H

0

, the ratio

F
0

=
SStreat
q�1

SSerr
q(r�1)

=
MS

treat

MS
err

is distributed as F
q�1,q(r�1)

. To test hypotheses in (8), we require that ⌧
1

, . . . , ⌧
q

are i.i.d. N (0,�2

⌧

), "
ij

, i = 1, . . . , q, j = 1, . . . , r, are i.i.d. N (0,�2), and all ⌧
i

and "
ij

are independent of each other. These considerations lead to the decision
rule to reject H

0

at the significance level ↵ if

f
0

> F (1� ↵; q � 1, q(r � 1)), (13)

where f
0

is the realization of F
0

from the observed data. An intuitive motivation
for the form of statistic F

0

can be obtained from the expected mean squares.
Under H

0

both MS
treat

and MS
err

estimate �2 in an unbiased way, and F
0

can
be expected to be close to one. On the other hand, large values of F

0

give
evidence against H

0

.
Regarding the SAMP case, we obtain the following values: Based on (9)

and (13), we can determine the F statistic and the p value. We get MS
treat

=
MS

err

= 10.89275 and f
0

= 1, which results a large p value: 0.4426363. The
null hypothesis H

0

: �2

⌧

= 0 from (12) can not be rejected, i.e., we conclude that
there is no instance e↵ect. A similar conclusion was obtained from the ANOVA
method of variance component estimation as introduced in Table 2.

SAMP-5 Confidence Intervals and Prediction An unbiased estimator of
the overall mean µ is

µ̂ = ȳ·· =
qX

i=1

rX

j=1

y
ij

/(qr).

Its variance is given by

V(ȳ··) = V

0

@
qX

i=1

rX

j=1

y
ij

/(qr)

1

A =
r�2

⌧

+ �2

qr
.

With (9) and (10), we obtain an estimator of the variance of the overall mean
µ as

V̂(ȳ··) = MS
treat

/qr.
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Since
Ȳ·· � µp
MS

treat

/qr
⇠ t

q(r�1)

,

the confidence limits for µ can be derived as

ȳ·· ± t
1�↵/2;q(r�1)

p
MS

treat

/qr. (14)

We conclude the SAMP case study with prediction of the algorithm’s per-
formance on a new instance from the same class. Based on (14), we obtain the
following 95% confidence interval: [2.6773e�06; 1.262e�05]. Again, confidence
intervals from the REML and ANOVA methods are very similar. Summariz-
ing, we can conclude that the ES performs similar on instances from ⇧

MSG

,
which were generated with Eq. 2.

5.3 MAMP: Multiple Algorithms, Multiple Problems

In the MAMP case study, fixed e↵ects are included in the conditional structure
of (6), which leads to a mixed model. Instead of one fixed algorithm as in the
SAMP case, we consider either several algorithms or algorithms with several
parameters. Both situations can be treated while considering algorithms as
levels of a fixed factor, whereas problem instances are drawn randomly from the
population of instances ⇧

MSG

.
MAMP-1 Algorithm and Problem Instances
MAMP-2 ANOVA and REML Model Building
MAMP-3 Validation of the Model Assumptions
MAMP-4 Hypothesis Testing

a) Random e↵ects
b) Fixed e↵ects

MAMP-5 Confidence Intervals and Prediction

MAMP-1 Algorithm and Problem Instances We aim at comparing the
performance of the ES with di↵erent recombination operators over an instance
class. More precisely, we have four ES instances using recombination operators
{1, 2, 3, 4} and nine instances randomly sampled from the class ⇧

MSG

as illus-
trated in Fig. 3. Each run is repeated ten times. In this study 4⇥ 9⇥ 10 = 360
data were used. We are interested in the following questions:

• Is there an instance e↵ect?
• Do the mean performances of the ES with di↵erent recombination opera-
tors di↵er?

• Do the instance-algorithm interactions contribute to the variability of the
response?

A first visual inspection, which plots the performance of the algorithm within
each problem instance, is shown in Fig. 6. In eight of the nine instances the
linear regression line does have a negative slope and the intercepts do not di↵er
very much. This indicates that there is no significant interaction between the
fixed and the random factors.
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Figure 6: Four algorithms (ES with modified recombination operators) on nine
test problem instances. Each panel represents one problem instance and problem
instances are labeled from 124 to 130. Performance is plotted against the level
of the recombination operator.
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MAMP-2 ANOVA and REML Model Building The variability in the
performance measure can be decomposed according to the following mixed-
e↵ects ANOVA model :

Y
ijk

= µ+ ↵
j

+ ⌧
i

+ �
ij

+ "
ijk

, (15)

where µ is an overall performance level common to all observations, ↵
j

is a fixed
e↵ect due to the algorithm j, ⌧

i

is a random e↵ect associated with instance i,
�
ij

is a random interaction between instance i and algorithm j, and "
ijk

is a
random error for replication k of algorithm j on instance i. We assume that
the ↵

j

’s are fixed e↵ects such that
P

h

j=1

↵
j

= 0 and that the random elements

are ⌧
i

are i.i.d. N (0,�2

⌧

), �
ij

are i.i.d. N (0,�2

�

), "
ijk

are i.i.d. N (0,�2), and
⌧
i

, �
ij

and "
ijk

are mutually independent random variables. Similar to (6) the
conditional distribution of the performance measure given the instance and the
instance–algorithm interaction is given by

Y
ijk

|⌧
i

, �
ij

⇠ N (µ+ ↵
j

+ ⌧
i

+ �
ij

,�2), (16)

with i = 1, . . . , q, j = 1, . . . , h, and k = 1, . . . , r. The marginal model reads
(after integrating out the random e↵ects ⌧

i

and �
ij

):

Y
ijk

⇠ N (µ+ ↵
j

,�2 + �2

⌧

+ �2

�

). (17)

Based on these statistical assumptions, hypothesis tests can be performed about
fixed and random factor e↵ects. Using the mixed model (16), we are interested
in testing whether there is a di↵erence between the factor level means µ + ↵

j

(j = 1, . . . , h). The hypotheses for testing the fixed e↵ects can be formulated as

H
0

: ↵
i

= 08i against H
1

: 9↵
j

6= 0 (18)

Regarding random e↵ects, tests about particular levels are useless. This is
similar to the random-e↵ects model (8). Again, we perform tests about the
variance components �2

⌧

and �2

�

instead. These can be formulated as follows:

H
0

: �2

⌧

= 0, and H
0

: �2

�

= 0,
H

1

: �2

⌧

> 0, H
1

: �2

�

> 0,
(19)

respectively. If all treatment (problem instances) combinations have the same
number of observations, i.e., if the design is balanced, the test statistics for these
hypotheses are ratios of mean squares that are chosen such that the expected
mean squares of the numerator di↵ers from the expected mean squares of the
denominator only by the variance components of the random factor under test.
Chiarandini and Goegebeur [11] present the resulting analysis of variance, which
is shown in Table 3.

ANOVA Model Building. The ANOVA table for the experiments from the
MAMP case study is shown in Table 4. Equating the observed mean squares
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Table 3: Expected mean squares and consequent appropriate test statistics for
a mixed two-factor model with h fixed factors, q random factors, and r repeats.
From [11].

Mean Expected Test
E↵ects squares df mean squares statistics

Fixed factor MSA h� 1 �2+r�2

�

+rq
Ph

j=1 ↵

2
j

h�1

MSA/MSAB

Random
factor

MSB q � 1 �2 + r�2

�

+ rh�2

⌧

MSB/MSAB

Interaction MSAB (h�1)(q�1) �2 + r�2

�

MSAB/MSE

Error MSE hq(r � 1) �2

Table 4: ANOVA for the MAMP case

Mean squares Factors Df Sum Sq Mean Sq F value Pr(>F)
MSA objreco 3 154.59 51.53 11.05 0.0000
MSB fSeed 8 251.79 31.47 6.75 0.0000
MSAB objreco:fSeed 24 185.60 7.73 1.66 0.0288
MSE Residuals 324 1511.27 4.66
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in the lines of the ANOVA table to their expected values and solving for the
variance components leads to the following equations[15]:

�̂2

⌧

=
MSB �MSAB

hr
= 0.593502

�̂2

�

=
MSAB �MSE

r
= 0.306907

�̂2 = MSE = 4.664423

Next, we will compare these results to the REML based analysis of the
mixed model.

REML Model Building. We have specified sum contrasts instead of the
default treatment contrasts used in lmer(). Again, fSeed represents the prob-
lem instance, whereas the algorithm instance ↵

j

, j = 1, . . . , 4, is represented by
objreco.

Linear mixed model fit by REML

Formula: yLog ~ objreco + (1 | fSeed)

+ (1 | fSeed:objreco)

Random effects:

Groups Name Variance Std.Dev.

fSeed:objreco (Intercept) 0.30691 0.55399

fSeed (Intercept) 0.59351 0.77039

Residual 4.66442 2.15973

Number of obs: 360,

groups: fSeed:objreco, 36; fSeed, 9

Fixed effects:

Estimate Std. Error t value

(Intercept) -6.0222 0.2956 -20.370

objreco1 0.6176 0.2539 2.433

objreco2 0.6918 0.2539 2.725

objreco3 -0.6671 0.2539 -2.628

As can be seen from the Random effects section of the REMLmodel output,
the estimated variances for the problem instance and the instance-interaction
random e↵ects are �̂2

⌧

= 0.59351 and �̂2

�

= 0.30691, respectively. The Random

effects section presents the estimates of the fixed e↵ects model parameters,
i.e., objreco.

MAMP-3 Validation of the Model Assumptions Again, the check of
the diagnostic plots (Fig. 7) reveals that a log transformation of the response
improves the model adequacy.
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Figure 7: Left : Q-Q plot of the residuals for raw data. Left : Q-Q plot for the
log-transformed responses.

MAMP-4a Hypothesis Testing: Random E↵ects We will consider ran-
dom e↵ects first. Regarding problem instances, test about levels are meaning-
less. Hence, we perform tests about the variance components �2

⌧

and �2

�

, which
were presented in (19). First, we are testing the null hypothesis, which states
that the components of the random e↵ects are zero. Based on the ANOVA from
Table 3, we obtain the values for the MAMP case that are shown in Table 4.
The values reveal that there are main factor e↵ects (fixed and random), but no
significant interaction e↵ects.

Alternatively, we can compute the likelihood ratios of models with and with-
out the factors under observation.

Data: mamp.df

Models:

mamp.lmer2: yLog ~ objreco + (1 | fSeed)

mamp.lmer3: yLog ~ objreco + (1 | fSeed)

+ (1 | fSeed:objreco)

Df AIC BIC logLik

mamp.lmer2 6 1616.7 1640.0 -802.35

mamp.lmer3 7 1616.6 1643.8 -801.31

Chisq Chi Df Pr(>Chisq)

2.0929 1 0.148

These tests indicate that there are also no significant instance-algorithm inter-
actions. Additional likelihood-ratio test show that the fixed factor and random
factor e↵ects are significant.

MAMP-4b Hypothesis Testing: Fixed Factor E↵ects Regarding fixed
factors, we are interested in testing for di↵erences in the factor level means
µ + ↵

i

. These tests were formulated in (18), i.e., we are testing H
0

: all ↵
i

are equal to 0 versus H
1

: at least one ↵
j

6= 0. Here, we are using the test
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statistic from [15, p. 523] for testing that the means of the fixed factor e↵ects
are equal. The appropriate test statistic for testing that the means of the fixed
factor e↵ects are equal, i.e., H

0

is true, is

F
0

=
MSA

MSAB
=

154.59/3

185.6/24
= 6.663362,

with values taken from Table 4. The reference distribution is F
n�1,(n�1)(q�1)

.
We calculate the p value for the test on the fixed-e↵ect term. The obtained p
value is 0.002, hence the results collected indicate that the factor recombina-
tion (objreco) has a statistically significant impact on the performance of the
algorithm. Using sum of contrasts implies that

P
↵
j

= 0. The point estimates
for the mean algorithm performance with the jth fixed factor setting can be
obtained by µ·j = µ+↵

j

. The fixed factor e↵ects can be estimated in the mixed
model as

µ̂ = y
...

↵̂
j

= y
j.

� y
...

,

which results in the following estimates: ↵̂
1

= 0.6175519, ↵̂
2

= 0.6918047,
↵̂
3

= �0.6671266, and ↵̂
4

= �0.6423659.
The same estimates were obtained with the REML analysis as can be seen

from the REML model output on page 22. The corresponding fixed e↵ects are
shown in the Fixed effects section of the REML output. For example, we
obtain the following value: objreco1 = ↵̂

1

= 0.6176.

MAMP-5 Confidence Intervals and Prediction We generate paired com-
parisons plots, which are based on confidence intervals. The wrapper function
intervals() from Chiarandini and Goegebeur [11] was used for visualizing
these confidence intervals as shown in Fig. 8. When intervals overlap we con-
clude that there is no significant di↵erence. Here, we can conclude that the
recombination operators (1) and (2) show a similar performance, whereas per-
formances between (3) and (2) are di↵erent. Intermediate recombination of
the object variables, i.e., (3) and (4), results in a significant improvement of
the performance.

6 Summary and Outlook

In order to answer question (Q-1), we propose an approach to generate natu-
ral problem classes, which are based on real-world data. If no such data are
available, artificial problem generators such as MSG can be used. Since our
approach uses a model, say M , to generate new problem instances, one con-
ceptual problem arises: This approach is not applicable, if the final goal is the
determination of a model for the data, because M is per definition the best
model in this case and the search for good models will result in M . But there
is a simple solution to this problem. In this case, the feature extraction and
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Figure 8: Paired comparison plots. Results from four ES instances with di↵erent
recombination operators are shown in this plot.

model generation should be skipped and the original data should be modified
by adding some noise or performing transformations on the data. However, if
applicable, the model-based approach is preferred, because it sheds some light
on the underlying problem structure.

The model-based approach can be used to generate infinitely many test-
problem instances. Instead of using a fixed number of problem instances, we
propose

1. using randomly generated problem instances and
2. treating the problem instance as a random factor.

Algorithms with di↵erent parameterizations are tested on this set of randomly
generated problem instances. This experimental setup requires modified statis-
tics, so-called random-e↵ects models or mixed models. This approach may lead
to objective evaluations and comparisons. If normality assumptions are met,
confidence intervals can be determined, which ”forecast” the behavior of an al-
gorithm on unseen problem instances. Furthermore, results can be generalized
in real-world settings. This gives an answer to question (Q-2).

In order to demonstrate the applicability of our approach, the performance
of an evolution strategy was analyzed. The first SAMP example illustrates that
the selection of the problem instance from the problem class ⇧

MSG

has no sig-
nificant impact on the performance of the optimization algorithm. Furthermore,
confidence intervals, which can be used the predict the performance of the algo-
rithm on a problem class, were determined. The MAMP case exemplifies how
to analyze the e↵ect of di↵erent algorithm parameter settings on the perfor-
mance. Four variants of the recombination operator and nine problem instances
were used. The analysis reveals that the choice of the recombination opera-
tor has a significant e↵ect on the algorithm’s performance: the performance
of the algorithm di↵ers with di↵erent recombination operators. Intermediate
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recombination of the object variables results in an performance improvement.
We demonstrated that the problem instances contribute significantly to the
variability in the response and that there is no significant instance-algorithm
interaction.

The software, which was used in this study, will be integrated into the R

package SPOT [5].
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Köln, Januar 2012

Herausgeber / Editorship

Prof. Dr. Thomas Bartz-Beielstein,
Prof. Dr. Boris Naujoks,
Prof. Dr. Wolfgang Konen,
Prof. Dr. Horst Stenzel
Institute of Computer Science,
Faculty of Computer Science and Engineering Science,
Cologne University of Applied Sciences,
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