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Introduction

Model-based optimization (MBO)

I Prominent role in todays modeling, simulation, and optimization
processes

I Most efficient technique for expensive and time-demanding real-world
optimization problems

I Engineering domain, MBO is an important practice
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Introduction

Example

I Waste heat boiler:
I CFD-optimized design

Bartz-Beielstein SMBO in Practice 4 / 72



Introduction

Model-based optimization (MBO)

I Recent advances in
I computer science,
I statistics, and
I engineering
I in combination with progress in high-performance computing

I Tools for handling problems, considered unsolvable only a few decades
ago
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Introduction

Global optimization (GO)

I GO can be categorized based on different criteria.
I Properties of problems

I continuous versus combinatorial
I linear versus nonlinear
I convex versus multimodal, etc.

I We present an algorithmic view, i.e., properties of algorithms
I The term GO will be used in this talk for algorithms that are trying to find

and explore global optimal solutions with complex, multimodal objective
functions [Preuss, 2015].

I GO problems are difficult: nearly no structural information (e.g., number
of local extrema) available

I GO problems belong to the class of black-box functions, i.e., the analytic
form is unknown

I Class of black-box function contains also functions that are easy to solve,
e.g., convex functions
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Introduction

Problem

I Optimization problem given by

Minimize: f (~x) subject to ~xl  ~x  ~xu,

where f : Rn ! R is referred to as the objective function and ~xl and ~xu
denote the lower and upper bounds of the search space (region of
interest), respectively

I Setting arises in many real-world systems:
I when the explicit form of the objective function f is not readily available,
I e.g., user has no access to the source code of a simulator

I We cover stochastic (random) search algorithms, deterministic GO
algorithms are not further discussed

I Random and stochastic used synonymously
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Introduction

Taxonomy of model-based approaches in GO

[1] Deterministic
[2] Random Search

[2.1] Instance based
[2.2] Model based optimization (MBO)

[2.2.1] Distribution based
[2.2.2] Surrogate Model Based Optimization (SBO)

[2.2.2.1] Single surrogate based
[2.2.2.2] Multi-fidelity based
[2.2.2.3] Evolutionary surrogate based
[2.2.2.4] Ensemble surrogate based
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Stochastic Search Algorithms

Random Search

I Stochastic search algorithm: Iterative search algorithm that uses a
stochastic procedure to generate the next iterate

I Next iterate can be
I a candidate solution to the GO or
I a probabilistic model, where solutions can be drawn from

I Do not depend on any structural information of the objective function such
as gradient information or convexity ) robust and easy to implement

I Stochastic search algorithms can further be categorized as
I instance-based or
I model-based algorithms [Zlochin et al., 2004]
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Stochastic Search Algorithms

[2.1] Instance-based Algorithms

I Instance-based algorithms: use a single solution, ~x , or population, P(t),
of candidate solutions

I Construction of new candidates depends explicitly on previously
generated solutions

I Examples: Simulated annealing, evolutionary algorithms

1: t = 0. InitPopulation(P).
2: Evaluate(P).
3: while not TerminationCriterion() do

4: Generate new candidate solutions P’(t ) according to a specified
random mechanism.

5: Update the current population P(t+1) based on population P(t) and
candidate solutions in P’(t).

6: Evaluate(P(t + 1)).
7: t = t + 1.
8: end while
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Stochastic Search Algorithms

[2.2] MBO: Model-based Algorithms

I MBO algorithms: generate a population of new candidate solutions P 0(t)
by sampling from a model

I In statistics: model ⌘ distribution
I Model (distribution) reflects structural properties of the underlying true

function, say f
I Adapting the model (or the distribution), the search is directed into

regions with improved solutions
I One of the key ideas: replacement of expensive, high fidelity, fine grained

function evaluations, f (~x), with evaluations, f̂ (~x), of an adequate cheap,
low fidelity, coarse grained model, M

Bartz-Beielstein SMBO in Practice 12 / 72



Stochastic Search Algorithms

[2.2.1] Distribution-based Approaches

I Metamodel is a distribution
I Generate a sequence of iterates (probability distributions) {p(t)} with the

hope that
p(t) ! p⇤ as t ! 1,

where p⇤: limiting distribution, assigns most of its probability mass to the
set of optimal solutions

I Probability distribution is propagated from one iteration to the next
I Instance-based algorithms propagate candidate solutions

1: t = 0. Let p(t) be a probability distribution.
2: while not TerminationCriterion() do

3: Randomly generate a population of candidate solutions P(t) from p(t).
4: Evaluate(P(t)).
5: Update the distribution using population (samples) P(t) to generate a

new distribution p(t + 1).
6: t = t + 1.
7: end while
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Stochastic Search Algorithms

[2.2.1] Estimation of distribution algorithms (EDA)

I EDA: very popular in the field of evolutionary algorithms (EA)
I Variation operators such as mutation and recombination replaced by a

distribution based procedure:
I Probability distribution estimated from promising candidate solutions from

the current population ) generate new population
I Larraaga and Lozano [2002] review different ways for using probabilistic

models
I Hauschild and Pelikan [2011] discuss advantages and outline many of

the different types of EDAs
I Hu et al. [2012] present recent approaches and a unified view
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Stochastic Search Algorithms

[2.2.2] Focus on Surrogates

I Although distribution-based approaches play an important role in GO,
they will not be discussed further in this talk

I We will concentrate on surrogate model-based approaches
I Origin in statistical design and analysis of experiments, especially in

response surface methodology [G E P Box, 1951, Montgomery, 2001]
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Stochastic Search Algorithms

[2.2.2] Surrogate Model-based Approaches

I In general: Surrogates used, when outcome of a process cannot be
directly measured

I Imitate the behavior of the real model as closely as possible while being
computationally cheaper to evaluate

I Surrogate models also known as
I the cheap model, or
I a response surface,
I meta model,
I approximation,
I coarse grained model

I Simple surrogate models constructed using a data-driven approach
I Refined by integrating additional points or domain knowledge, e.g.,

constraints
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Stochastic Search Algorithms

[2.2.2] Surrogate Model-based Approaches

Sample design
space

Optimize on
metamodel

Initial 
design

Build
metamodel

Validate
metamodel

I Validation step (e.g., via CV) is optional
I Samples generated iteratively to improve the surrogate model accuracy
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Stochastic Search Algorithms

[2.2.2] Surrogate Model Based Optimization (SBO)
Algorithm

1: t = 0. InitPopulation(P(t))
2: Evaluate(P(t))
3: while not TerminationCriterion() do

4: Use P(t) to build a cheap model M(t)
5: P 0(t + 1) = GlobalSearch(M(t))
6: Evaluate(P 0(t + 1))
7: P(t + 1) ✓ P(t) + P 0(t + 1)
8: t = t + 1
9: end while
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Stochastic Search Algorithms

[2.2.2] Surrogates

I Wide range of surrogates developed in the last decades ) complex
design decisions [Wang and Shan, 2007]:

I (a) Metamodels
I (b) Designs
I (c) Model fit

I (a) Metamodels:
I Classical regression models such as polynomial regression or response

surface methodology [G E P Box, 1951, Montgomery, 2001]
I support vector machines (SVM) [Vapnik, 1998],
I neural networks [Zurada, 1992],
I radial basis functions [Powell, 1987], or
I Gaussian process (GP) models, design and analysis of computer

experiments, Kriging [Schonlau, 1997], [Büche et al., 2005], [Antognini and
Zagoraiou, 2010], [Kleijnen, 2009], [Santner et al., 2003]

I Comprehensive introduction to SBO in [Forrester et al., 2008]
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Stochastic Search Algorithms

[2.2.2] Surrogates: Popular metamodeling techniques

I (b) Designs [Wang and Shan, 2007]:

I Classical
I Fractional factorial
I Central composite
I Box-Behnken
I A-, D-optimal (alphabetically)
I Plackett-Burmann

I Space filling
I Simple grids

I Latin hypercube
I Orthogonal
I Uniform
I Minimax and Maximin

I Hybrid methods
I Random or human selection
I Sequential methods
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Stochastic Search Algorithms

[2.2.2] Surrogates: Popular metamodeling techniques

I (b) Designs: Sequential methods
I Model Refinement: Selection Criteria for Sample Points
I An initial model refined during the optimization ) Adaptive sampling
I Identify new points, so-called infill points
I Balance between

I exploration, i.e., improving the model quality (related to the model, global),
and

I exploitation, i.e., improving the optimization and determining the optimum
(related to the objective function, local)

I Expected improvement (EI): popular adaptive sampling method [Mockus
et al., 1978], [Jones et al., 1998]
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Stochastic Search Algorithms

Model Refinement: Expected Improvement

Include Fig. 11 from Jones et al. [1998]
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Stochastic Search Algorithms

[2.2.2] Surrogates: Popular metamodeling techniques

I (c) Model fitting [Wang and Shan, 2007]:

I Weighted least squares
regression

I Best linear unbiased predictor
(BLUP)

I Likelihood

I Multipoint approximation
I Sequential metamodeling
I Neural networks:

backpropagation
I Decision trees: entropy
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Stochastic Search Algorithms

[2.2.2] Applications of SBO

I Popular application areas: Simulation-based design of complex
engineering problems

I computational fluid dynamics (CFD)
I finite element modeling (FEM) methods

I Exact solutions ) solvers require a large number of expensive computer
simulations

I Two variants of SBO
I (i) metamodel [2.2.2.1]: uses one or several different metamodels
I (ii) multi-fidelity approximation [2.2.2.2]: same metamodel with different

parameterizations
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Stochastic Search Algorithms

Example

I Automotive: Exhaust gas
recirculation

I Optimization:
I Pressure loss
I Fill level: uniformly distributed

I 3D CFD tool to analyze behavior
I Surrogate substitutes CFD for

optimization
I Evolutionary algorithm
I Project duration: several years
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Stochastic Search Algorithms

[2.2.2.1] Applications of Metamodels and [2.2.2.2]
Multi-fidelity Approximation

I Meta-modeling approaches
I 31 variable helicopter rotor design [Booker et al., 1998]
I Aerodynamic shape design problem [Giannakoglou, 2002]
I Multi-objective optimal design of a liquid rocket injector [Queipo et al., 2005]
I Airfoil shape optimization with CFD [Zhou et al., 2007]
I Aerospace design [Forrester and Keane, 2009]

I Multi-fidelity Approximation
I Several simulation models with different grid sizes in FEM [Huang et al.,

2015]
I Sheet metal forming process [Sun et al., 2011]

I “How far have we really come?” [Simpson et al., 2012]
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Stochastic Search Algorithms

[2.2.2.3] Surrogate-assisted Evolutionary Algorithms

I Surrogate-assisted EA: EA that decouple the evolutionary search and the
direct evaluation of the objective function

I Cheap surrogate model replaces evaluations of expensive objective
function
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Stochastic Search Algorithms

Example

I Electrostatic precipitator (filter)
I How to arrange baffles?
I Velocity profile

I Pressure loss and uniformity
I Velocities before and after

electrostatic fields
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Stochastic Search Algorithms

Example

I Filter
I Velocity profile

I Pressure loss and uniformity
I Velocities before and after filter
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Stochastic Search Algorithms

[2.2.2.3] Surrogate-assisted Evolutionary Algorithms

I Combination of a genetic algorithm and neural networks for aerodynamic
design optimization [Hajela and Lee, 1997]

I Approximate model of the fitness landscape using Kriging interpolation to
accelerate the convergence of EAs [Ratle, 1998]

I Evolution strategy (ES) with neural network based fitness evaluations [Jin
et al., 2000]

I Surrogate-assisted EA framework with online learning [Zhou et al., 2007]
I Not evaluate every candidate solution (individual), but to just estimate the

objective function value of some of the neighboring individuals [Branke
and Schmidt, 2005]

I Survey of surrogate-assisted EA approaches [Jin, 2003]
I SBO approaches for evolution strategies [Emmerich et al., 2002]
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Stochastic Search Algorithms

[2.2.2.4] Multiple Models

I Instead of using one surrogate model only, several models Mi ,
i = 1, 2, . . . , p, generated and evaluated in parallel

I Each model Mi : X ! y uses
I same candidate solutions, X , from the population P and
I same results, y , from expensive function evaluations

I Multiple models can also be used to partition the search space
I The tree-based Gaussian process (TGP): regression trees to partition the

search space, fit local GP surrogates in each region [Gramacy, 2007].
I Tree-based partitioning of an aerodynamic design space, independent

Kriging surfaces in each partition [Nelson et al., 2007]
I Combination of an evolutionary model selection (EMS) algorithm with

expected improvement (EI) criterion: select best performing surrogate
model type at each iteration of the EI algorithm [Couckuyt et al., 2011]
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Stochastic Search Algorithms

[2.2.2.4] Multiple Models: Ensembles

I Ensembles of surrogate models gained popularity:
I Adaptive weighted average model of the individual surrogates [Zerpa

et al., 2005]
I Use the best surrogate model or a weighted average surrogate model

instead [Goel et al., 2006]
I Weighted-sum approach for the selection of model ensembles [Sanchez

et al., 2006]
I Models for the ensemble chosen based on their performance
I Weights are adaptive and inversely proportional to the local modeling errors
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Quality Criteria: How to Select Surrogates

Model Selection Criteria

I EI approach handles the initialization and refinement of a surrogate
model

I But not the selection of the model itself
I Popular efficient global optimization (EGO) algorithm uses a Kriging

model
I Because Kriging inherently determines the prediction variance (necessary

for the EI criterion)
I But there is no proof that Kriging is the best choice
I Alternative surrogate models, e.g., neural networks, regression trees,

support vector machines, or lasso and ridge regression may be better
suited

I An a priory selection of the best suited surrogate model is conceptually
impossible in the framework treated in this talk, because of the black-box
setting
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Quality Criteria: How to Select Surrogates

Single or Ensemble

I Regarding the model choice, the user can decide whether to use
I one single model, i.e., one unique global model or
I multiple models, i.e., an ensemble of different, possibly local, models

The static SBO uses a single, global surrogate model, usually refined by
adaptive sampling, but did not change ) category [2.2.2.1]
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Quality Criteria: How to Select Surrogates

Criteria for Selecting a Surrogate

I Here, we do not consider the selection of a new sample point (as done in
EI)

I Instead: Criteria for the selection of one (or several) surrogate models
I Usually, surrogate models chosen according to their estimated true error

[Jin et al., 2001], [Shi and Rasheed, 2010]
I Commonly used performance metrics:

I mean absolute error (MAE)
I root mean square error (RMSE)

I Generally, attaining a surrogate model that has minimal error is the
desired feature

I Methods from statistics, statistical learning [Hastie, 2009], and machine
learning [Murphy, 2012]:

I Simple holdout
I Cross-validation
I Bootstrap
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Examples

Criteria for Selecting a Surrogate: Evolvability

I Model error is not the only criterion for selecting surrogate models
I Evolvability learning of surrogates approach (EvoLS) [Le et al., 2013]:

I Use fitness improvement for determining the quality of surrogate models
I EvoLS belongs to the category of surrogate-assisted evolutionary

algorithms ([2.2.2.3])
I Distributed, local information
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Examples

Evolvability Learning of Surrogates

I EvoLS: select a surrogate models that enhance search improvement in
the context of optimization

I Process information about the
I (i) different fitness landscapes,
I (ii) state of the search, and
I (iii) characteristics of the search algorithm to statistically determine the

so-called evolvability of each surrogate model
I Evolvability of a surrogate model estimates the expected improvement of

the objective function value that the new candidate solution has gained
after a local search has been performed on the related surrogate
model [Le et al., 2013]
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Examples

Evolvability

I Local search: After recombination and mutation, a local search is
performed

I It uses an individual local meta-model, M, for each offspring
I The local optimizer, 'M , uses an offspring ~y as an input and returns ~y⇤ as

the refined offspring
I Evolvability measure can be estimated as follows [Le et al., 2013]:

EvM(~x) = f (~x) �
KX

i=1

f (~y⇤
i ) ⇥ wi(~x)

with weights (selection probabilities of the offsprings):

wi(~x) =
P(~yi |P(t),~x)

PK
j=1 P(~yj |P(t),~x)
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Examples

SPO

I EvoLS: distributed, local information. Now: more centralized, global
information ) sequential parameter optimization (SPO)

I Goal: Analysis and understanding of algorithms
I Early versions of the SPO [Bartz-Beielstein, 2003, Bartz-Beielstein et al.,

2005] combined methods from
I design of experiments (DOE) [Pukelsheim, 1993]
I response surface methodology (RSM) [Box and Draper, 1987, Montgomery,

2001]
I design and analysis of computer experiments (DACE) [Lophaven et al.,

2002, Santner et al., 2003]
I regression trees [Breiman et al., 1984]

I Also: SPO as an optimizer
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Examples

SPO

I SPO: sequential, model based approach to optimization
I Nowadays: established parameter tuner and an optimization algorithm
I Extended in several ways:

I For example, Hutter et al. [2013] benchmark an SPO derivative, the
so-called sequential model-based algorithm configuration (SMAC)
procedure, on the BBOB set of blackbox functions.

I Small budget of 10 ⇥ d evaluations of d-dimensional functions, SMAC in
most cases outperforms the state-of- the-art blackbox optimizer CMA-ES
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Examples

SPO

I The most recent version, SPO2, is currently under development
I Integration of state-of-the-art ensemble learners
I SPO2 ensemble engine:

I Portfolio of surrogate models
I regression trees and random forest, least angle regression (lars), and Kriging
I Uses cross validation to select an improved model from the portfolio of

candidate models
I Creates a weighted combination of several surrogate models to build the

improved model
I Use stacked generalization to combine several level-0 models of different

types with one level-1 model into an ensemble [Wolpert, 1992]
I Level-1 training algorithm: simple linear model
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Examples

SPO

I Promising preliminary results
I SPO2 ensemble engine can lead to significant performance

improvements
I Rebolledo Coy et al. [2016] present a comparison of different data driven

modeling methods
I Bayesian model
I Several linear regression models
I Kriging model
I Genetic programming

I Models build on industrial data for the development of a robust gas sensor
I Limited amount of samples and a high variance
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Examples

Example: Sensor development

I Two sensors are compared
I 1st sensor (MSE)

I Linear model (0.76), OLS (0.79), Lasso (0.56), Kriging (0.57), Bayes (0.79),
and genetic programming (0.58)

I SPO2 0.38
I 2nd sensor (MSE)

I Linear model (0.67), OLS (0.80), Lasso (0.49), Kriging (0.49), Bayes (0.79),
and genetic programming (0.27)

I SPO2 0.28
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Examples

Example: Sensor development
I Comparison of the mean squared error from the SPO2 ensemble and the

single models:

SPO2 (MSE): 0.284948273406
L (MSE): 0.673695001324
R (MSE): 0.367652881967
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Examples

Summary

I SMBO works!
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Examples

Example

I Baffle geometry in electrostatic precipitators
I Combinatorial optimization problem: more than 2300 possible

arrangements
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SPO2 Part 2 Artificial Test Functions

Function Definitions [jupyter]

I Motivated by van der Laan and Polley [2010], we consider six test
functions

I All simulations involve a univariate X drawn from a uniform distribution in
[-4, +4]

I Test functions:
I f1(x): return -2 * I(x < -3) + 2.55 * I(x > -2) - 2 * I(x > 0) + 4 * I(x > 2) - 1 * I(x

>3 ) + ✏
I f2(x): return 6 + 0.4 * x - 0.36x * x + 0.005x * x * x + ✏
I f3(x): return 2.83 * np.sin(math.pi/2 * x) + ✏
I f4(x): return 4.0 * np.sin(3 * math.pi * x) * I(x >= 0) + ✏
I f5(x): return x + ✏
I f6(x): return np.random.normal(0,1,len(x)) + ✏

I I(·) indicator function, ✏ drawn from an independent standard normal
distribution, sample size r = 100 (repeats)
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SPO2 Part 2 Artificial Test Functions

Function Definitions [jupyter]

I f1: Step function

�4 �3 �2 �1 0 1 2 3 4
�4

�2

0

2

4

6

Bartz-Beielstein SMBO in Practice 51 / 72



SPO2 Part 2 Experiment 1: Step Function

f1: Coefficients of the Level-1 Model [jupyter]

I The coefficients can be interpreted as weights in the linear combination
of the models. 0 = intercept; 1, 2, and 3 denote the �1, �2, and �3 values,
respectively
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SPO2 Part 2 Experiment 1: Step Function

f1: R2 Values [jupyter]
I R2 (larger values are better) and standard deviation.

I SPO: 0.78211976, 0.03308847
I L: 0.4024831, 0.07134356
I R: 0.78556947, 0.03187105
I G: 0.76547433, 0.03564519
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SPO2 Part 2 Experiment 2: Polynomial Function

Function Definitions [jupyter]

I f2: Polynomial function
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SPO2 Part 2 Experiment 2: Polynomial Function

f2: Coefficients of the Level-1 Model [jupyter]

I The coefficients can be interpreted as weights in the linear combination
of the models. 0 = intercept; 1, 2, and 3 denote the �1, �2, and �3 values,
respectively
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SPO2 Part 2 Experiment 2: Polynomial Function

f2: R2 Values [jupyter]
I R2 (larger values are better) and standard deviation.

I SPO: 0.79514735 0.03602018
I L: 0.21445917 0.07656562
I R: 0.79488344 0.03604606
I G: 0.79514727 0.03602018
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SPO2 Part 2 Experiment 3: Sine Function

Function Definitions [jupyter]

I f3: Sine function
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SPO2 Part 2 Experiment 3: Sine Function

f3: Coefficients of the Level-1 Model [jupyter]

I The coefficients can be interpreted as weights in the linear combination
of the models. 0 = intercept; 1, 2, and 3 denote the �1, �2, and �3 values,
respectively
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SPO2 Part 2 Experiment 3: Sine Function

f3: R2 Values [jupyter]
I R2 (larger values are better) and standard deviation.

I SPO: 0.7939634 0.02777211
I L: 0.11677184 0.05688847
I R: 0.79244941 0.02743085
I G: 0.79396338 0.02777211
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SPO2 Part 2 Experiment 4: Linear-Sine Function

Function Definitions [jupyter]

I f4: Composite function
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SPO2 Part 2 Experiment 4: Linear-Sine Function

f4: Coefficients of the Level-1 Model [jupyter]

I The coefficients can be interpreted as weights in the linear combination
of the models. 0 = intercept; 1, 2, and 3 denote the �1, �2, and �3 values,
respectively
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SPO2 Part 2 Experiment 4: Linear-Sine Function

f4: R2 Values [jupyter]
I R2 (larger values are better) and standard deviation.

I SPO: 0.74144195 0.05779718
I L: 0.00651219 0.01489886
I R: 0.75301025 0.05133169
I G: 0.31721598 0.07939812
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SPO2 Part 2 Experiment 5: Linear Function

Function Definitions [jupyter]

I f5: Linear function
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SPO2 Part 2 Experiment 5: Linear Function

f5: Coefficients of the Level-1 Model [jupyter]

I The coefficients can be interpreted as weights in the linear combination
of the models. 0 = intercept; 1, 2, and 3 denote the �1, �2, and �3 values,
respectively
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SPO2 Part 2 Experiment 5: Linear Function

f5: R2 Values [jupyter]
I R2 (larger values are better) and standard deviation.

I SPO: 0.8362937 0.02381472
I L: 0.8362937 0.02381472
I R: 0.83628043 0.02374492
I G: 0.8362937 0.02381472
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SPO2 Part 2 Experiment 6: Random Noise (normal)

Function Definitions [jupyter]

I f6: Noise function
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SPO2 Part 2 Experiment 6: Random Noise (normal)

f5: Coefficients of the Level-1 Model [jupyter]

I The coefficients can be interpreted as weights in the linear combination
of the models. 0 = intercept; 1, 2, and 3 denote the �1, �2, and �3 values,
respectively
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SPO2 Part 2 Experiment 6: Random Noise (normal)

f5: R2 Values [jupyter]
I R2 (larger values are better) and standard deviation.

I SPO: -0.02025601 0.10308039
I L: -0.00035958 0.01505964
I R: 0.3586063 0.06232495
I G: 0.10037904 0.05356867
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More: Video Lecture, Publication

Overview

Introduction

Stochastic Search Algorithms

Quality Criteria: How to Select Surrogates

Examples

SPO2 Part 2

More: Video Lecture, Publication
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More: Video Lecture, Publication

More: Video Lecture

I http://videolectures.net/bioma2016_bartz_beielstein_
based_methods
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More: Video Lecture, Publication

More: Publication

I Bartz-Beielstein [2016], can be downloaded from
http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:
hbz:832-cos4-3759
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