The Revised Sequential Parameter Optimization Toolbox

Thomas Bartz-Beielstein, Martin Zaefferer, Jörg Stork and Sebastian Krey

TH Köln University of Applied Sciences

5th July 2017

Technology
Arts Sciences
TH Köln
Sequential Parameter Optimization: Overview

- Developed: Bartz-Beielstein et al. (2005)
- Core purpose:
 - Derive understanding of problem, parameters
 - Reduce load of costly target functions
 - Statistically sound comparisons
- Combines approaches from different fields
 - Design of Experiment
 - Statistics
 - Optimization algorithms
- Areas of application
 - Algorithm tuning
 - Engineering design
 - And many more (Bartz-Beielstein, 2010)
- R-package maintained by SPOTSeven research group
Sequential Parameter Optimization: Concept

1. Create initial design
2. Evaluate design
3. Goal Reached?
 - Yes: Analyse and report results
 - No: Build a surrogate model → Optimize surrogate model → Update design

S. Krey (TH Köln)
Create initial design → Evaluate design
Goal Reached?
Yes → Analyse and report results
No → Build a surrogate model → Optimize surrogate model → Update design

Goal Reached? No

Yes

f(x)

initial design

S. Krey (TH Köln)
Create initial design
Evaluate design
Build a surrogate model
Optimize surrogate model
Update design

Goal Reached? No
Yes

Analyze and report results

f(x)
evaluate initial design

S. Krey (TH Köln)
Create initial design
Evaluate design
Build a surrogate model
Optimize surrogate model
Update design

Goal Reached?
Yes
No

Analyse and report results

f(x)

build surrogate model
Create initial design
Evaluate design
Build a surrogate model
Optimize surrogate model
Update design

Goal Reached? No
Yes

Analyse and report results

optimize surrogate model

\[f(x) \]
Create initial design → Evaluate design → Goal Reached?
Yes → Analyse and report results
No → Build a surrogate model → Optimize surrogate model → Update design

Goal Reached? No Yes

Evaluate

f(x)

evaluate

S. Krey (TH Köln)
Create initial design

Evaluate design

Goal Reached?

Yes

No

Build a surrogate model

Optimize surrogate model

Update design

Analyse and report results

Goal Reached? Yes

No

Analyse and report results

build surrogate model
Create initial design → Evaluate design → Goal Reached?
Yes → Analyse and report results → Optimize surrogate model → Update design
No → Build a surrogate model → Optimize surrogate model

$f(x)$

optimize surrogate model
Create initial design → Evaluate design → Goal Reached? → No → Build a surrogate model → Optimize surrogate model → Update design

Goal Reached? No → Analyse and report results

\[f(x) \]

build surrogate model
Create initial design → Evaluate design

Goal Reached?

Yes → Analyse and report results

No → Build a surrogate model → Optimize surrogate model → Update design

f(x)

optimize surrogate model
Aims of the revised SPOT package

- High prediction quality
- Stable numerics
- Fast
- Modular structure for good extensibility
- Standardized objects and user interfaces
- Easy comprehensible code
- Good usability
What is new?

- No text files for configuration and data exchange anymore
- Everything implemented in R
- Object-oriented data structures as input and output for the individual functions
- Consistent with core R functionality
- Standardized and modular structure of the functions form a harmonized and easy understandable user interface
- Kriging with categorical inputs
- Stacking of different models for better prediction performance

Bartz-Beielstein and Zaefferer (2017)
Create initial design

designLHD(x = NULL, lower, upper, control = list())

- **Arguments**
 - **x**: optional matrix of fixed user defined design points
 - **lower/upper**: vectors with boundaries for the design variables
 - **control**: list with the following controls:
 - **size**: number of design points
 - **retries**: number of retries during design creation
 - **types**: vector with the data type for each design parameter
 - **replicates**: integer for replications of each design point

- **Returns** matrix with design points (rows) for each variable (columns)
Model building

Different models can be chosen

- Linear models
- Kriging / Gaussian process regression
- Random Forest
- ...

\texttt{buildKriging(x, y, control = list())}

- Arguments
 - \texttt{x}: design matrix (sample locations)
 - \texttt{y}: vector of observations at \texttt{x}
 - \texttt{control}: list with the options for the model building procedure

- Returns an object of class \texttt{kriging}, basically a list, with the options and found parameters for the model which has to be passed to the predictor function
optimLBFGSB(x = NULL, fun, lower, upper, control = list(), ...)

- Wrapper function for `optim` with method = "L-BFGS-B"
- Arguments
 - `x`: optional matrix of data-points, only first row used as start-point
 - `fun`: objective function, which receives a matrix `x` and returns observations `y`
 - `lower/upper`: boundary of the search space
 - `control`: list of control parameters, passed to `optim`
 - `funEvals`: number of function evaluations allowed
 - `...`: passed to `fun`
- Returns list with best solution (`xbest, ybest`), number of function evaluations (`count`) and messages from the optimizer
Why SPOT instead of package ...

A lot of packages provide methods for model based optimization, Kriging, etc. For example mlrMBO, diceKriging, diceOptim, mleGP, ...

- easy usage
- own Kriging implementation for stable numerics (based on Matlab code from Forrester et al. (2008))
- fast
- good and easy extensibility
- well proven methods for good results in real world problems
Cyclone optimization

Front View

Top View

S. Krey (TH Köln)
funCyclone(c(1260,2500)) # [1] 1626.194527 -0.886269
create vectorized target funcion for the first objective only
tfunvecF1 <- function(x){apply(x,1,funCyclone)[2,]}
fixed <- matrix(c(1260,2500,1000,2000),2,2,byrow=TRUE)
lower <- c(1000,2000)
upper <- c(2000,3000)
optimize with spot
res <- spot(x = designLHD(x = fixed, lower = lower, upper = upper, control = list(size =4)),
 fun = tfunvecF1,
lower = lower,
upper = upper,
control = list(modelControl = list(target="ei"),
 model = buildKriging,
 optimizer = optimLBFGSB,
 plots=TRUE))
best found solution ...
res$xbest # [1,] 2000 2861.775
... and its objective function value
res$ybest # [1,] -0.95085
Cyclone optimization

A more complex cyclone optimization, building a stacking ensemble of models from lab experiments, CFD simulations and analytical models can be found in Bartz-Beielstein et al. (2016).

The necessary datasets and the source code for this optimization is available here: http://www.gm.fh-koeln.de/~bartz/Bart16e.d/
Stacking example

```r
require(SPOT); require(CEGO)

train <- dataGasSensor[dataGasSensor[,11]==1,1:10]
test <- dataGasSensor[dataGasSensor[,11]==2,1:10]

# define an optimizer:
optimizer <- function(x,fun,lower,upper,control,...){
  CEGO::optimInterface(x, fun, lower, upper,
                      control=list(method="NLOPT_GN_DIRECT_L", funEvals=10,
                                   reltol=1e-6, restarts=2), ...)
}

fitStack <- buildEnsembleStack(
  data.matrix(train[,c("Y","X7","Sensor","Batch")]),
  data.matrix(train$X1),
  control=list(modelL0Control=list(list(), list(),
                              list(algTheta=optimizer,reinterpolate=FALSE))
  )
)

predtest <- predict(fitStack,
  data.matrix(test[,c("Y","X7","Sensor","Batch")]))$y
mse <- mean(abs(predtest - data.matrix(test$X1))^2) # [1] 0.2627715
```

S. Krey (TH Köln)
Stacking example
Summary and Outlook

- SPOT 2 provides a good base for real world optimization problems
- Interfaces and object structures are stable and allow easy extensions
- Reporting functions are still missing (current work in progress)
Summary and Outlook

- SPOT 2 provides a good base for real world optimization problems
- Interfaces and object structures are stable and allow easy extensions
- Reporting functions are still missing (current work in progress)

Thank you for your attention!
References

