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Abstract For many practical optimization problems, the evaluation of a solution
is subject to noise, and optimization heuristics capable of handling such
noise are needed. In this paper, we examine the influence of noise on
particle swarm optimization and demonstrate that the resulting stagna-
tion can not be removed by parameter optimization alone, but requires
a reduction of noise through averaging over multiple samples. In order
to reduce the number of required samples, we propose a combination of
particle swarm optimization and a statistical sequential selection pro-
cedure, called optimal computing budget allocation, which attempts to
distribute a given number of samples in the most effective way. Exper-
imental results show that this new algorithm indeed outperforms the
other alternatives.
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Introduction
In many real-world optimization problems, solution qualities can only

be estimated but not determined precisely. Falsely calibrated measure-
ment instruments, inexact scales, scale reading errors, etc. are typical
sources for measurement errors. If the function of interest is the output
from stochastic simulations, then the measurements may be exact, but
some of the model output variables are random variables. The term
“noise” will be used in the remainder of this article to subsume these
phenomena.

This article discusses the performance of particle swarm optimization
(PSO) algorithms on functions disturbed by Gaussian noise. It extends
previous analysis by also examining the influence of algorithm param-
eters, by considering a wider spectrum of noise levels, and analyzing
different types of noise (multiplicative and additive). Furthermore, we
integrated a recently developed sequential sampling technique into the
particle swarm optimization method. Similar techniques have been inte-
grated into other metaheuristics like evolutionary algorithms, but their
application to the PSO algorithm is new.

The paper is structured as follows. First, we briefly introduce PSO in
Section 1. Then, the effects of noise and sequential sampling techniques
are discussed in Section 2. Section 4 presents several experimental re-
sults, including the effect of parameter tuning, some algorithmic variants
with perfect local and global knowledge, and the integration of sequential
sampling. The paper concludes with a summary and an outlook.

1. Particle swarm optimization
PSO uses a population (swarm) of particles to explore the search

space. Each particle represents a candidate solution of an optimization
problem and has an associated position, velocity, and memory vector.
The main part of the PSO algorithm can be described formally as follows:
Let S ⊆ Rn be the n-dimensional search space of a (fitness) function f :
S → R to be optimized. Without loss of generality, throughout the rest
of this article, optimization problems will be formulated as minimization
problems. Assume a swarm of s particles. The ith particle consists
of three components. The first one, xi, is its position in the search
space, the second component, vi, describes the velocity, and the third
component, p∗i , is its memory, storing the best position encountered so
far. This vector is often referred to as personal best in the PSO literature.
Finally, the term p∗g denotes the best position position found so far by
the whole swarm, and is generally referred to as global best. Let t denote
the current generation. Velocities and positions are updated for each
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dimension 1 ≤ d ≤ n as follows:

vi(t+ 1) = wvi(t)︸ ︷︷ ︸
momentum

+ c1u1i {p∗i (t)− xi(t)}︸ ︷︷ ︸
local information

+ c2u2i

{
p∗g(t)− xi(t)

}︸ ︷︷ ︸
global information

,

(1.1)

xi(t+ 1) = xi(t) + vi(t+ 1).

Before optimization can be started, several parameters or factors have to
be specified. These so-called exogenous factors will be analyzed in more
detail below. Parameters that are used inside the algorithm are referred
to as endogenous. The endogenous factors u1i and u2i are realizations of
uniformly distributed random variables U1i and U2i in the range [0, 1].
The exogenous factors c1 and c2 are weights that regulate the influence
of the local and the global information. The factor w in the momentum
term of Eq. 1.1 is called inertia weight. It was introduced in Shi and
Eberhart (1998) to balance the global and local search abilities.

2. The effect of noise
Noise makes it difficult to compare different solutions and select the

better ones. In PSO, noise affects two operations: In every iteration,

1 each particle has to compare the new solution to its previous best
and retain the better one, and

2 the overall best solution found so far has to be determined.

Wrong decisions can cause a stagnation of the search process: Over-
valuated candidates—solutions that are only seemingly better—build a
barrier around the optimum and prevent convergence. The function
value at this barrier will be referred to as the stagnation level. Or, even
worse, the search process can be misguided: The selection of seemingly
good candidates moves the search away from the optimum. This phe-
nomenon occurs if the noise level is high and the probability of a correct
selection is very small.

There is very little research on how strongly the noise affects the over-
all performance of PSO, and what measures are suitable to make PSO
more robust against noise. Parsopoulos and Vrahatis (2001) were prob-
ably the first to present some results regarding the behavior of the PSO
algorithm in noisy and continuously changing environments. In Par-
sopoulos and Vrahatis (2002), they focused on noise alone and concluded
that “. . . in the presence of noise the PSO method is very stable and ef-
ficient.” In both papers, fitness proportional noise models were used.
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Krink et al. (2004) compared differential evolution, evolutionary algo-
rithms, and PSO on noisy fitness functions. The noise was independent
of the solution’s fitness. To reduce the effect of the noise, they suggested
to average over a number of samples. Finally, in Liu et al. (2005), PSO is
combined with local simulated annealing and a hypothesis test to tackle
flow shop problems with noisy processing times. Thereby, the hypoth-
esis tests are used to decide whether the new solution should replace a
particle’s personal best position.

The influence of noise on evolutionary algorithms (EAs) has received
much more attention. EAs have been shown to work quite well in the
presence of noise. Also, it has been proven analytically that under
certain conditions, increasing the population size may help an evolu-
tion strategy to cope even better with the noise (Beyer, 2001). Several
papers report on the successful integration of statistical tests or selec-
tion procedures into evolutionary algorithms, see, e.g., Rudolph (1997);
Bartz-Beielstein and Markon (2004); Branke and Schmidt (2004); Buch-
holz and Thümmler (2005); Schmidt et al. (2006). A comprehensive
overview on the topic of evolutionary algorithms in the presence of noise
is given in Jin and Branke (2005). Based on the good performance of
evolution strategies in noisy environments, one might hope that also
PSO can somehow cope with the noise, and that it is sufficient to adjust
its parameters.

Alternatively, one may attempt to reduce the effect of noise explicitly.
The simplest way to do so is to sample a solution’s function value n
times, and use the average as estimate for the true expected function
value. While this reduces the standard deviation of the mean by a factor
of
√
n, it also increases the running time by a factor of n, which is often

not acceptable.

3. Optimal computing budget allocation
We consider statistical selection procedures that use only a small num-

ber of samples to identify the best out of a set of solutions with a high
probability. There is a multitude of selection procedures in the liter-
ature. Bechhofer et al. (1995) give a comprehensive introduction into
statistical selection methods. Two-stage procedures use the samples of
a first stage to estimate means and variances. In the second stage, an
additional amount of samples is drawn for each candidate solution, each
amount depending on the variance and the overall required probabil-
ity of correct selection. Sequential procedures allow even more than two
stages. Such methods use either an elimination mechanism to reduce the
number of alternatives considered for sampling, or they assign additional
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samples only to the most promising alternatives. The intuition is to use
all available information as soon as possible to adjust the further pro-
cess in a promising way. The most sophisticated sampling approaches
include the information about variances and the desired probability of a
correct selection and adjust the overall number of samples accordingly.
A comparison of three state-of-the-art selection procedures can be found
in Branke et al. (2005).

In this paper, we use a procedure that assigns a fixed total number of
samples to candidate solutions, but sequentially decides how to allocate
the samples on the different candidate solutions. A recently suggested
sequential approach that falls into this category is the optimal comput-
ing budget allocation (OCBA) (Chen et al., 2000). OCBA is based on
Bayesian statistics and aims at maximizing the Approximate Probability
of Correct Selection (APCS), a lower bound for the probability of correct
selection P (CS). It is defined as

APCS = 1−
k∑

i=1,i 6=b

P [X̄b > X̄i] ≤ P (CS),

where k is the number of solutions considered and b denotes the solution
with the smallest sample mean performance, and X̄i denotes the sample
mean for solution i.

Chen et al. (2000) show that for a fixed total number of samples
T =

∑k
i=1Ni, the APCS can be asymptotically maximized if

Ni

Nj
=
σi/(X̄i − X̄b)
σi/(X̄j − X̄b)

, i, j ∈ 1, 2, . . . , k, and i 6= j 6= b (1.2)

and

Nb = σb

√√√√ k∑
i=1,i 6=b

Ni
2

σi
2

(1.3)

with σi being the standard deviation of the samples for solution i.
Based on these propositions, OCBA draws samples iteratively until

the computational budget is exhausted.

1 Initialization: Draw n0 initial samples for each solution. Set l =
0, N l

1 = N l
2 = · · · = N l

k = n0, and T = T − kn0

2 WHILE T > 0 DO

(a) Set l = l + 1. Increase the computing budget by ∆l (i.e.,
number of additional simulations in this iteration) and com-
pute the new budget allocation to approximate Eq. 1.2 and
Eq. 1.3.
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(b) Draw additional max(0, N l
i −N

l−1
i ) samples for each solution

i, i = 1, 2, . . . , k

(c) T = T −∆l.

3 Return the index b of the system with the lowest mean X̄b, where
X̄b = min1≤i≤k X̄i.

For a more detailed description of OCBA, the reader is referred to
Chen et al. (2000).

4. Experiments on the noisy sphere

Experimental setup
Sequential parameter optimization (SPO) is an algorithmical proce-

dure to adjust the exogenous parameters of an algorithm, the so-called
algorithm design, and to determine good tuned parameter settings for
optimization algorithms (Bartz-Beielstein, 2006). It combines methods
from computational statistics, design and analysis of computer experi-
ments (DACE), and exploratory data analysis to improve the algorithm’s
performance and to understand why an algorithm performs poorly or
well. SPO provides a means for reasonably fair comparisons between
algorithms, allowing each algorithm the same effort and mechanism to
tune parameters. Table 1.1 presents an algorithm design for PSO algo-
rithms. The seven parameters were tuned during the SPO procedure.
Details of this tuning procedure are presented in Blum (2005) and Bartz-
Beielstein (2006).

In our experiments, we use the 10-dimensional sphere (min y =
∑10

i x2
i )

as test problem, because in this unimodal environment, the algorithm
can easily find the optimum, and if it does not, this can be directly
attributed to the noise. We consider additive (ỹ = y + ε) and multi-

Table 1.1. Algorithm design of the PSO algorithm. Similar designs were used in Shi
and Eberhart (1999) to optimize well-known benchmark functions

Symbol Parameter Range Default
s Swarm size N 40
c1 Cognitive parameter R+ 2
c2 Social parameter R+ 2
wmax Starting value of the inertia weight w R+ 0.9
wscale Final value of w in percentage of wmax R+ 0.4
witerScale Percent iterations with reduced wmax R+ 1.0
vmax Max. value of the step size (velocity) R+ 100
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plicative (ỹ = y(1 + ε)) noise, where ε denotes a normally distributed
random variable with mean zero and standard deviation σ. A broad
range of noise levels σ was used to analyze the behavior of the algo-
rithms and to detect the highest noise level PSO was able to cope with.
For example, the experiments with additive noise used σ values from the
interval [10−4, 102]. All particle positions were initialized to xi = 10 in
all dimensions.

Unless specified otherwise, the best function value found after 10,000
function evaluations was used as a performance measure, because (i)
a fixed number of evaluations is a quite fair and comparable criterion,
as it does not depend on programming skills, hardware, etc., and (ii)
many real-world optimization problems require simulation runs that are
computationally expensive compared to the computational effort of the
optimization algorithm itself.

Performance in noisy environments
For the experiments in this subsection we used the following fixed pa-

rameter settings which have proven reasonable in preliminary tests and
have also been used, e.g., in Shi and Eberhart (1999): s = 20, c1 = c2 =
2, wmax = 0.9, wscale = 4/9, vmax = 100. Figure 1.1 shows the con-
vergence curves (fitness over time) of the standard PSO algorithm for
different levels of additive noise. As can be seen, while the PSO without
noise keeps improving, the algorithm stagnates in noisy environments,
with the fitness level reached depending on the noise level. It is interest-
ing to note that the performance of PSO before reaching the stagnation
level is almost unaffected by the noise, indicating that a certain noise
level is tolerated before the system breaks down.

While for the case of additive noise, the influence of the noise on the
performance was quite regular, the effect of multiplicative noise was quite
different. Figure 1.2 shows the final solution quality obtained depending
on the noise level. For low levels of noise, the algorithm is basically unaf-
fected, as the noise scales with the fitness values and most decisions can
be made correctly throughout the run. This confirms the observations
made in Parsopoulos and Vrahatis (2002) regarding the robustness of
PSO with respect to proportional noise. On the other hand, if the noise
exceeds a certain threshold, the algorithm may actually diverge and end
up with solutions worse than the initial solutions. This may happen if
the worse solutions have a much higher noise, making it likely that the
worse fitness is accidentally compensated by an overvaluation.

When comparing the performance of PSO to a simple (1+1)-evolution
strategy (ES), we observed a much faster progress of the ((1+1)-ES) on
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Figure 1.1. Convergence curves for the standard PSO for different levels of additive
noise (from top to bottom, σ = 100, 10, 1, 0.1, 10−2, 10−3, 10−4, 0).

Figure 1.2. Fitness after 10,000 evaluations for various noise levels. Horizontal line
indicates initial fitness.
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the Sphere function during the first phase of the optimization. However,
the algorithm encountered the same problem as the PSO: the stagnation
on a certain level. Having tuned the parameters of both algorithms using
SPO, we observed that the (1+1)-ES stagnated on a higher fitness level
than the PSO, possibly due to an inherent advantage of population-based
approaches in noisy environments.

Global versus local certainty
As described above, noise can affect PSO in two steps: when each

particle chooses its local best, and when the global best is determined. In
order to find out which of the two steps is more critical for the algorithm’s
performance, we tested two special variants of the PSO algorithm.

Variant PSOpc was given the correct information whenever a particle
decided between its new position and the old personal best. This variant
was able to find significantly better results than the variant PSOdefault.
Moreover, it did not stagnate at certain fitness levels and showed a
progress during the whole optimization process. Similar results were
observed for multiplicative noise. The search was not misguided by the
noise and for all noise levels the solutions obtained were better than the
initial point.

Variant PSOgc was provided with the information which of the parti-
cles’ presumed best was the true best, i.e., it could correctly select the
global best from all the presumed local best. In the presence of additive
noise the variant could find better solutions than the PSOdefault, but the
optimization stagnated and could not converge to the minimum. Exper-
iments with multiplicative noise also showed an improvement compared
to PSOdefault, but again the basic problem remained: the search was
misled.

Overall, in our experiments with additive and multiplicative noise
models, PSOpc showed clearly superior performance compared to the
PSOgc variant. However, we have to keep in mind that variant PSOpc

received in each iteration the knowledge for a number of decisions, which
was equal to the swarm size. In contrast, variant PSOgc could decide
once per iteration correctly. Furthermore, PSOgc could potentially loose
the true global best, namely when the decision on the first level was
wrong. This could not happen with PSOpc.

Parameter tuning vs. multiple evaluations
Now let us examine whether parameter tuning is sufficient for PSO

to cope with the noise, or whether multiple evaluations are necessary.
Results are summarized in Table 1.2. Thereby, the PSOrep variant uses
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a fixed number of repeated function evaluations (5 in the default set-
ting, and this parameter is optimized by SPO as well). As can be seen,
while parameter tuning improves the final solution quality for the single-
evaluation and multiple-evaluation case, better results can be obtained
when allowing multiple evaluations rather than only optimizing param-
eters and letting the algorithm cope with noise.

Integrating OCBA into PSO
Now we examine how PSO can benefit from integrating a sequential

sampling procedure like OCBA (see Section 2). The variant PSOOCBA

uses the OCBA procedure to search for the swarm’s global best among
the set of positions considered in the iteration (i.e., all new positions
and all local best). With the design of the PSOOCBA algorithm, we
aim at two objectives: (i) an increased probability to select the swarm’s
global best correctly, (ii) an increased probability to select the particles’
personal bests correctly (as a byproduct of the repeated function eval-
uations of candidate positions by the OCBA method). In accordance
with the OCBA technique, the position with the resulting lowest mean
of the function values is selected as the swarm’s global best. The new
personal bests of the particles result from the comparison between the
function value means of their old personal best and new positions. Func-
tion values from previous generations were stored for re-use in the next
generation.

The results in Table 1.2 indicate that variant PSOOCBA with an im-
proved algorithm design generated by SPO significantly outperformed
the other algorithm variants optimizing the Sphere function disturbed
by additive noise. OCBA enables the algorithm to distinguish smaller
function value differences than the other variants. This seems obvious
with respect to PSOdefault, as it has no noise reduction mechanism, but
it also reaches a lower stagnation level than PSOrep. OCBA’s flexible as-
signment of samples seemed to be an advantage in the selection process.
Furthermore, as OCBA allocates more samples to promising solutions,
and these are more likely to survive to the next iteration, the total num-
ber of function evaluations used for decisions in one iteration (new and
preserved) is higher for the OCBA variant than if each position had
received the same amount of function evaluations. In fact, in our ex-
periments we observed this number to be about twice as high, allowing
more accurate decisions.
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Table 1.2. Comparison of the standard algorithm (standard), a variant with multiple
evaluations (rep) and the new variant with integrated OCBA (OCBA). Each variant
has been tested with default (default) and optimized (SPO) parameter settings. Re-
sults ± standard error for the sphere with additive noise (σ = 10). Varying the noise
level σ lead to similar results that are reported in Blum (2005). Smaller values are
better.

Parameter settings

Algorithm Default SPO

PSOstandard 9.08± 0.43 6.94± 0.30

PSOrep 7.59± 0.35 4.99± 0.27

PSOOCBA 6.81± 0.67 1.98± 0.11

5. Summary and outlook
We have examined the influence of noise on the performance of PSO,

and compared several algorithmic variants with default and tuned pa-
rameters. Based on our results, we make the following conclusions:

Additive noise leads to a stagnation of the optimization process,
multiplicative noise can even lead to divergence.

Parameter tuning alone cannot eliminate the influence of noise.

Sequential selection procedures such as OCBA can significantly
improve the performance of particle swarm optimization in noisy
environments. Local information plays an important role in this
selection process and cannot be omitted.

Why did sequential selection methods improve the algorithm’s per-
formance? First, the selection of the swarm’s best of one iteration was
correct with a higher probability compared to reevaluation approaches.
Second, as more samples were drawn for promising positions, positions
that remained and reached the next iteration were likely to have re-
ceived more samples than the average. Samples accumulated and led to
a greater sample base for each iteration’s decisions. These two advan-
tages might be transferable to other population-based search heuristics,
in which individuals can survive several generations. Summarizing, we
can conclude that it was not sufficient to only tune the algorithm design
(e.g., applying SPO), or to only integrate an advanced sequential se-
lection procedure (e.g., OCBA). The highest performance improvement
was caused by the combination of SPO and OCBA.

However, our experiments were restricted to artificial test functions
only. The application of the PSOOCBA variant to real-world problems
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will be the next step. In such problems, the noise might not be nor-
mally distributed. First experiments, which analyzed the applicability
of OCBA to an elevator group control problem proposed in Markon
et al. (2006) produced promising results. Noise-dependent, variable
swarm sizes as proposed in Bartz-Beielstein and Markon (2004) for evo-
lution strategies, might improve the convergence velocity. Furthermore,
it might be interesting to replace the current OCBA by sampling tech-
niques with variable stopping rules, where the number of samples al-
located per generation is not fix but depends on the confidence in the
decisions.
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