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ABSTRACT
Cyclone separators are filtration devices frequently used in
industry, e.g., to filter particles from flue gas. Optimizing
the cyclone geometry is a demanding task. Accurate simu-
lations of cyclone separators are based on time consuming
computational fluid dynamics simulations. Thus, the need
for exploiting cheap information from analytical, approxima-
tive models is evident. Here, we employ two multi-objective
optimization algorithms on such cheap, approximative mod-
els to analyze their optimization performance on this prob-
lem. Under various limitations, we tune both algorithms
with Sequential Parameter Optimization (SPO) to achieve
best possible results in shortest time. The resulting optimal
settings are validated with di↵erent seeds, as well as with a
di↵erent approximative model for collection e�ciency. Their
optimal performance is compared against a model based ap-
proach, where multi-objective SPO is directly employed to
optimize the Cyclone model, rather than tuning the opti-
mization algorithms. It is shown that SPO finds improved
parameter settings of the concerned algorithms and performs
excellently when directly used as an optimizer.

Categories and Subject Descriptors
G.1.6 [Mathematics of Computing]: Optimization

General Terms
Algorithms, Experimentation

Keywords
Evolutionary Multi-objective Optimization, Parameter Tun-
ing, Cyclone Optimization Problem

1. INTRODUCTION
Filtering dust particles from flue gas is a challenging task.

Environmental consequence, governmental limitations, cost
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of operation, high temperature, and varying pressures in-
crease the need for e�cient filtering devices. Cyclone dust
separators are frequently applied for this purpose since they
combine low costs with robustness against high temperature
or pressures.

The main quality indicators of a cyclone are the fraction
of particles filtered from the gas, i.e. the Collection E�-
ciency (CE), as well as the Pressure Drop (PD). While CE
reflects how well the cyclone solves its main task, PD is the
main impact on operational cost. PD and CE may be con-
flicting, i.e., ideal PD will not coincide with ideal CE. They
are heavily influenced by the choice of several geometrical
design parameters, like height or diameter of a cyclone. This
results into a Multi-objective Optimization (MO) problem,
the so called Cyclone Optimization Problem (COP).

The quality of a cyclone may be evaluated with expen-
sive Computational Fluid Dynamics (CFD) simulations or
estimated with analytical, approximative models.

This study analyzes the performance of MO algorithms
based on an analytical model of the cyclone. This allows
for extensive tuning and comparisons, which may be used
to parameterize algorithms used in future studies where the
more expensive CFD simulations are employed.

Hence, the main goals of this study are:
• Determine performance of MO algorithms with default

parameters.
• Tune the employed MO algorithms to determine good

parameter settings and guarantee a fair comparison.
• Test the advantage of employing surrogate models in

the MO.
• Validate results with a di↵erent model.
The remainder of this work is structured as follows. Sec-

tion 2 introduces the optimization problem as well as the
underlying analytical models for cyclone dust separators.
Section 3 describes multi-objective optimization and related
methods. After that, an empirical optimization study re-
garding the introduced problem is described in Sec. 4, in-
cluding experimental setup as well as description and dis-
cussion of results. A final summary as well as an outlook on
future research directions is given in Sec. 5.

2. CYCLONE OPTIMIZATION

2.1 Problem Description
Cyclones are frequently used devices to separate solid par-

ticles from a gas phase. Pollution and emission regulations
compelled engineers to optimize the cyclone design. Cy-
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Figure 1: Schematic representation of a cyclone dust
separator.

Table 1: Table of fluid, particle and geometrical pa-
rameters used in the experiments. Most values are
taken from an example by Lö✏er [9].

Parameter Symbol Default Unit

Geometrical Parameters
Cyclone diameter D

a

1260 mm
Cyclone height H 2500 mm
Outlet pipe diameter D

t

420 mm
Outlet pipe immersion H

t

640 mm
Inlet height H

e

600 mm
Inlet width B

e

200 mm

Fluid/Particle Parameters
Viscosity µ 18.5 · 10�6 Pa · s
Flow Rate V

p

5000 m

3

h

Gas density ⇢
f

1.204 kg

m

3

Particle density ⇢
p

2000 kg

m3
Particle concentration c

e

50 g

m

3

Output values
Pressure Drop PL 1626 Pa
Collection E�ciency CE 0.89 –

clones exist in di↵erent shapes but the reverse flow cyclone
represented in Fig.1 is the most common design in industry.
The principle of cyclone separation is simple: the gas-solid
mixture enters at the top section tangentially. The cylindri-
cal body induces a spinning. Centrifugal force separates the
dust from the gas stream: the dust is moved to the walls of
the cylinder and down the conical section to the dust outlet
while the gas exits through the outlet pipe. The e�ciency
of this process is mainly influenced by the geometric shape.
A set of seven geometrical parameters like height or diame-
ter allows to describe a cyclone as shown in Fig. 1. Several
characteristics constitute a COP.

1. Geometric shape: Seven geometric parameters describe
the cyclone as shown in Fig. 1.

2. Fluid/Gas properties: Parameters like viscosity or den-
sity describe the carrier substance

3. Particle properties: Particle composition is described
by density, concentration, and size distribution
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Figure 2: Fractional e�ciency curve.

4. Collection E�ciency (CE): Amount of particles filtered
from the gas

5. Pressure Drop (PD): Di↵erence in pressure between
inlet and outlet

The default values used in our experiments for these pa-
rameters are listed in Table 1. PD and CE are the main
criteria used to evaluate cyclone performance. Both are
functions of the cyclone dimensions. The goal of cyclone
design is to maximize CE and to minimize PD by adjusting
the geometric parameters.

2.2 Models
2.2.1 Collection Efficiency
Separation of particles inside a cyclone is a result of the

forces acting on them. There are basically two concepts to
calculate the CE of cyclones in the literature: The “equili-
brium-orbit”models and the“time-of-flight”models. We use
two di↵erent kinds of approaches.

The Barth model: Barth [1] developed the original
“equilibrium-orbit” model. There are two forces acting on
a particle rotating in the cyclone body: the centrifugal force
acting towards the wall and a drag acting towards the outlet
pipe. Equating these forces, Barth calculates the so called
cut size x50, where drag and centrifugal force are equal.
Here, 50% of the particles are collected. Smaller particles are
collected with lower e�ciency, larger with higher e�ciency.
Once we have the cut size, we can fit a fractional e�ciency
curve through it. For high concentrations of dust, the Barth
model is often corrected with an approach to model mass
loading e↵ects: the concept of a “critical load”, first intro-
duced by Muschelknautz [11]. The optimization problem
based on this model will be referred to as COP1.

The model of Mothes and Lö✏er: Mothes and Löf-
fler [10, 9] present a model based on di↵erential mass bal-
ances which are formulated for four zones in the cyclone.
This model is a composition of the “equilibrium-orbit” and
“time-of-flight” models. “Time-of-flight” models determine
whether the particle has time to reach the wall. The opti-
mization problem based on this model will be referred to as
COP2.

Both models include the main cyclone parameters and cal-
culate a fractional e�ciency curve T (x) that assigns an ef-
ficiency to the particle diameter as shown in Fig. 2. Larger
particles are collected more e�ciently than smaller particles.
The overall e�ciency can be calculated by integrating the
fractional e�ciency curve over the particle size distribution
according to:

E =

Z
x

max

x

min

T (x)q
e

(x)dx =
x

maxX

x

min

T (x̃
i

)�Q
e

(x
i

) (1)



where x
min

is the lower bound of the particle size, x
max

is
the upper bound of the particle size, x̃

i

is the mean par-
ticle size, �Q

e

(x
i

) is the change in distribution of particle

sizes and q
e

(x) = �Q

e

(x
i

)
�x

i

. In the experiments, values for

�Q
e

(x
i

) are taken from an example by Lö✏er [9].

2.2.2 Pressure Drop according to Muschelknautz
PD is defined as the di↵erence in pressure �p between

two points of a fluid carrying body. It occurs with frictional
forces and relates directly to operational cost. Therefore, an
exact prediction is very important. Total PD equals to:

�p =
⇢

2
v2
i

(⇠
e�a

+ ⇠
a�i

+ ⇠
i�m

) (2)

where ⇠
e�a

, ⇠
a�i

and ⇠
i�m

are friction coe�cients for the
loss within inlet, cyclone body and outlet pipe respectively.
⇢

2v
2
i

is the relationship between pressure and velocity. This
model is used in both COP1 and COP2.

2.3 The Cyclone Optimization Problem
In this paper, two di↵erent COP’s are solved, COP1 and

COP2. Both depend on analytical models and correspond
to the geometrical description in Fig. 1 as well the default
parameters in Table 1. The fluid parameters are assumed
to be constant for the given problems. The six geometrical
parameters are to be chosen to yield optimal CE and PD,
yielding a bi-objective problem. PD will be calculated as
described in Sec. 2.2.2. In COP1, the CE will be calculated
with the model introduced by Barth [1]. while the model by
Mothes and Lö✏er [10, 9] is involved in COP2.

2.4 Previous Research
Ravi et al. [15] used the Non Dominated Sorting Genetic

Algorithm NSGA to optimize an analytical model for cy-
clone dust separators by Mothes and Lö✏er [10, 9]. Elsayed
and Lacor [5] optimized four geometrical parameters using
computational fluid dynamics CFD models and a model by
Barth [1]. They minimized PD only, using the response sur-
face methodology. Pishbin and Moghiman [13] optimized
seven geometry parameters with a genetic algorithm, min-
imizing PD and maximizing CE. They used a CFD model
to construct the fitness function. The bi-objective problem
was transferred to a single-objective problem using weights.
Elsayed and Lacor [6] minimized PD and cut-o↵ diameter.
They used a Pareto optimization approach, utilizing a Ra-
dial Basis Function Neural Network RBFNN. A similar ap-
proach was taken by Safikhani et al. [16].

The herein presented work uses the analytical model by
Barth [1] and Muschelknautz [12] to tune state-of-the-art
MO algorithms. The tuned algorithms are then tested with
the model by Mothes and Lö✏er [9]. Multi-objective Se-
quential Parameter Optimization [17] is compared to the
tuned MO algorithms.

3. MULTI-OBJECTIVE OPTIMIZATION
A multi-objective optimization problem can be defined by

a function

f : A ⇢ Rn �! Rm, f(x) = (f1(x), . . . , fm(x)),

with x 2 Rn, and the feasible set A. The common way to
handle multi-objective optimization problems is Pareto op-
timization based on the concept of Pareto-dominance. One

solution x 2 A is said to (Pareto-) dominate (�) another
solution y 2 A, if the following holds:

x � y i↵ 8i : f
i

(x)  f
i

(y) ^ 9j : f
j

(x) < f
j

(y)

(for i, j 2 {1, . . . ,m}). Consequently, the set {x 2 A | 6 9y 2
A : y � x} is called the Pareto-set, while the corresponding
set under mapping f is called the Pareto-front.

3.1 Algorithms
Evolutionary Algorithms (EA) have become a standard

tool for solving MO problems, and are here termed Evolu-
tionary Multi-objective Optimization Algorithms (EMOA).
These algorithms are based on sets of solutions. This coin-
cides well with the challenge of finding a set of solutions in
MO problems.

One of the most popular algorithms is the Non-dominated
Sorting Genetic Algorithm (NSGA-II) [4]. In this algorithm,
individuals are first ranked by non-dominated sorting. To se-
lect from a set of equally ranked non-dominated individuals
and preserve diversity, NSGA-II employs crowding distance.
Crowding distance measures the average length of a cuboid
spanned by the nearest neighbors of the solution for which
the measure is computed.

Whereas NSGA-II uses crowding distance as an indica-
tor of quality, other methods use the hypervolume, i.e. the
space covered by a Pareto front with respect to a prede-
fined reference point. Maximizing the hypervolume pushes
solutions towards the desired objective values. Moreover,
the hypervolume rewards a high diversity of solutions, i.e.
a wide spread, and a regular distribution of solutions along
the border to the non-dominated area. One of the techniques
employing hypervolume maximization is the S-Metric Selec-
tion EMOA (SMS-EMOA) (cf. Beume et al. [3]).

In case of expensive optimization problems, it is a stan-
dard approach to reduce the number of target Function
Evaluations (FE) by shifting the load to surrogate models.
Several approaches in MO employ surrogate modeling. An
overview is given by Knowles and Nakayama [8].

Sequential Parameter Optimization (SPO) [2] provides a
flexible framework for surrogate model based optimization.
Recently, SPO has also been extended to MO [17, 18], mak-
ing use of various models as well as state-of-the-art MO
algorithms like SMS-EMOA and NSGA-II. Hence, multi-
objective SPO (MSPO) can directly solve the COP.

3.2 Tuning
Every optimization algorithm has parameters which in-

fluence the optimization performance. Tuning these param-
eters towards optimal performance is thus, again, an opti-
mization problem. Tuning may be done for several reasons.
Firstly, it allows to find better parameter settings thus lead-
ing to improved algorithms which solve the problem better.
Secondly, tuning may yield additional understanding of the
optimization algorithms. Finally, tuned algorithms allow for
a fair comparison. That is, the good/bad performance of an
algorithm may not be due to fortunate/unfortunate selection
of default parameter values. The last point is especially im-
portant for studies that compare di↵erent algorithms, hence
very relevant for this study.

Sequential Parameter Optimization [2] is a framework for
surrogate model based optimization that was initially devel-
oped for the purpose of parameter tuning of EA’s but has
since been applied to numerous applications. It is based on



methods from Design of Experiment (DoE), Statistics and
Machine Learning.

In SPO, an initial DoE is created and evaluated on the
target function. The acquired data is used to build a model
representing the e↵ects and interactions of the various tuned
parameters. In a sequential manner, this model is first ex-
ploited to yield new candidate solutions (i.e., parameter set-
tings) and then updated with the data from the new candi-
dates. This is repeated until a stopping criterion is reached,
after which a report and analysis of results follows.

In this work, SPO is applied to tune the employed SMS-
EMOA and NSGA-II, while MSPO is a competitor to these
MO algorithms.

4. EMPIRICAL STUDY
In this empirical study, (M)SPO will be used in form of

the SPO Toolbox SPOT R-package. This also includes an
implementation of the SMS-EMOA, making use of the emoa
R-package. The NSGA-II implementation stems from the
mco R-package1.

4.1 Preliminary Experiment
4.1.1 Setup
In a very first attempt to analyze behavior of the di↵er-

ent algorithms, we perform a lengthy optimization of the
target function (i.e., the cyclone model) using SMS-EMOA
and NSGA-II with default parameters. The goal is to get
a reasonably good approximation of the Pareto-front. This
will be used to specify a target for the parameter tuning,
measured by hypervolume. The default parameters of both
algorithms are summarized in Table 2. These parameters are
the population size µ, the distribution indexes for crossover
⌘
c

and mutation ⌘
m

as well as the probabilities for both
variation operators p

c

and p
m

.

Table 2: Default parameters of the employed NSGA-
II and SMS-EMOA implementations.

µ ⌘
c

⌘
m

p
c

p
m

SMS-EMOA 100 15 25 0.7 0.3
NSGA-II 100 5 10 0.7 0.2

The optimization run is repeated 50 times, where each
run is allowed 100 000 evaluations of the cyclone model. The
reference point is chosen to be at PD 5 000 and CE zero. The
upper and lower boundary of the COP are listed in Table 3.
Please note, that in this work hypervolume will be measured
based on the set of non-dominated solutions in an archive of
all solutions found during each run, not based on the final
population.

Table 3: Lower and upper boundaries of the COP.
Based on an example by Lö✏er [9].

Da H Dt Ht He Be
lower 1134 2250 378 576 540 180
upper 1386 2750 462 704 660 220

4.1.2 Results and Discussion
The maximum hypervolume received from all runs was

3 843.964. Based on this, a target value for the tuning of the
algorithms was defined. This was chosen to be 99.9% of the
1All packages are available as open source on
http://cran.r-project.org/
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Figure 3: Run length distributons plot for target of
99.9% of hypervolume, i.e., 3 843.34

maximum hypervolume, i.e., a value of 3 843.34. Figure 3 de-
picts the run length distributions of the NSGA-II and SMS-
EMOA runs from above. The depicted graphs show the
cumulative, empirical probability of the optimization runs
reaching the target value over the number of required FE.

As can be seen from Fig. 3, all NSGA-II runs featuring
standard parameters reached the target after about 17 000 to
18 000 FE, while all SMS-EMOA required about 30 000 FE.
NSGA-II provided a much steeper slope than SMS-EMOA,
which converges much slower.

The interpretation of results was twofold. On the one
hand, the experiments show that both algorithms are able
to reach 99.9% of the achievable hypervolume within the
maximum budget. Therefore, this value was chosen as a
target for the algorithm tuning. The number of FE to reach
99.9% of the achievable hypervolume is minimized. Here, the
goal of the tuning is to see how much the value of 17 000 to
30 000 FE could be reduced and whether the results would be
applicable for optimization based on CFD models. It is also
of interest whether a tuned NSGA-II will still outperform
a tuned SMS-EMOA, even though the concerned quality
criterion (the hypervolume) is directly optimized by SMS-
EMOA.

On the other hand, 1 000 FE or even more seem to be far
too much for an optimization invoking expensive CFD mod-
els. Therefore, the question is how far, w.r.t. hypervolume,
we could possibly get with a strictly limited budget of FE.
This was the foundation for additional tuning experiments.
Here, the budget is limited to a few hundreds FE and the
achieved hypervolume is maximized.

4.2 Tuning
4.2.1 Setup
Table 4 shows the region of interest, i.e., the lower and

upper boundaries between which parameters are varied dur-
ing tuning. The upper boundary of µ is chosen to coincide
with the smallest tuning budget, i.e., 120.

First, the algorithms were tuned to reach the previously
determined target value from above, minimizing the num-
ber of required FE. This tuning task will be referred to as



Table 4: Region of interest in which parameters are
tuned.

µ ⌘
c

⌘
m

p
c

p
m

lower 3 0 0 0 0
upper 120 40 40 1 1

minimization of the required FE to reach the Target hyper-
volume (FTar). Additionally, both algorithms were tuned
to reach a maximum hypervolume for a strictly limited bud-
get of FE. This reflects the real world problem where only a
certain budget is available for the optimization process. The
budgets chosen were 120, 240, and 500 function evaluations.
This second set of tuning runs will be referred to as Achieved
Hypervolume maximization (AHvol). Thus, each algorithm
is tuned four times, resulting into an overall number of 8
tuning runs.

SPO is utilized to tune the algorithms, but also has a large
number of parameters:

• A Kriging model based on code by Forrester et al. [7]
was used as a surrogate model.

• The number of algorithm runs in each tuning run are
limited to 500 (for the fixed target value) and 1 000
(for the fixed budgets).

• In the initial design, each parameter setting is evalu-
ated twice (fixed target) or four times (fixed budget).

• Each parameter setting may be re-evaluated no more
than ten (fixed target) or twenty (fixed budget) times.

• In each sequential step, one new solution is evaluated
on the target function and one old solution may be
re-evaluated.

• The number of re-evaluations of promising solutions
are increased linearly. Optimal computing budget al-
location is not used.

• The initial design consists of 100 di↵erent parameter
settings.

• The sequentially created models are optimized by Latin
Hypercube Sampling (LHS) and Di↵erential Evolution
(DE) [14].

• The sequential step LHS evaluates 1 000 points on the
model.

• The sequential step DE uses 2 000 evaluations and a
population size of 50.

The larger numbers for the tuning under limited budgets
is supposed to amend the higher noise level caused by small
budgets.
At the end of each tuning run, resulting parameter sets

are compared to default parameters. In addition to the com-
parison of tuned and default parameters, a model-based op-
timization is performed with multi-objective SPO. Here, a
Kriging model is used as a surrogate for each objective. A
maximum of 120 evaluations was allowed, which is a rea-
sonably low budget for real world problems. The initial
design consisted of 30 points. The surrogate is optimized
with SMS-EMOA using default parameters and suggesting
10 points for evaluation in each sequential step. No repeated
evaluations are performed, since the presented COP is de-
terministic. Note that, in contrast to NSGA-II and SMS-
EMOA MSPO was not tuned.

4.2.2 Results and Discussion
The determined sets of tuned parameters are combined in

Table 5. The su�x “Ftar” indicates parameters tuned with
respect to minimum required FE to reach the 99.9% tar-

Table 5: Results of the eight tuning runs. Parame-
ters of the best found solution are shown.

µ ⌘
c

⌘
m

p
c

p
m

SMS-EMOA-Ftar 12.44 18.03 3.59 0.25 0.37
SMS-EMOA-B500 3.01 1.63 0.14 0.02 0.54
SMS-EMOA-B240 3.19 10.20 0.00 0.00 0.56
SMS-EMOA-B120 3.14 12.48 0.09 0.01 0.98
NSGAII-Ftar 43.04 39.09 0.11 0.45 0.25
NSGAII-B500 5.05 21.92 0.03 0.31 0.41
NSGAII-B240 3.11 17.99 0.04 0.08 0.53
NSGAII-B120 3.05 18.46 0.27 0.01 0.70

get hypervolume (case FTar from above). The results from
tuning with limited budgets of 120, 240, or 500 FE are indi-
cated by the su�x consisting of “B” and the corresponding
number. Results within this table di↵er remarkably.

In the case of FTar, where large numbers of FE are al-
lowed, optimal population sizes are much larger than in the
case of AHvol, where the budgets are rather small. The pop-
ulation size is 4 times larger for SMS-EMOA and around 10
times larger for NSGA-II. Moreover, recombination plays a
stronger role in case of FTar, marked by a probability of at
least 0.25. For AHvol optimization, the recombination prob-
ability exceeds 0.25 in only one case, i.e. NSGA-II-B500.
The mutation probability has negative correlation with the
recombination probability. Thus, it is smallest where the
budget is largest. It reaches nearly 100% for SMS-EMOA-
B120 indicating that for smallest budgets mutation plays a
much more important role than recombination.

The outlier in recombination probability (NSGA-II-B500)
coincides with an unusual population size. Here, population
size is five individuals, while all other AHvol cases yield an
optimal population size of three individuals.

Compared to the default values, ⌘
m

was reduced remark-
ably, indicating that small parameter changes are preferred.
On the other hand, ⌘

c

varies strongly in the given interval.
The SPO Kriging model also attributed a low importance
to this parameter.

Figure 4 depicts the run length distribution plots for the
considered algorithms featuring standard as well as tuned
parameterizations. Here, di↵erent random number gener-
ator seeds are used for initialization to prevent bias intro-
duced by the choice of seeds during the tuning. Due to this,
the results featuring standard parameterization look a bit
di↵erent although they stem from the same parameteriza-
tions.

A clear improvement can be observed comparing standard
and tuned parameterization. All runs with tuned parame-
ters reach the optimization goal much earlier, i.e. SMS-
EMOA after 4 100 FE compared to NSGA-II after 8 130 FE
(cf. Table 7 for the concrete numbers). Interestingly, SMS-
EMOA performs better than NSGA-II comparing the tuned
variants, while the algorithms behave vice versa considering
the standard parameterizations. Note that the slopes for cu-
mulative probabilities for both algorithms are much larger
for the tuned variants as well.

The received hypervolume values for the AHvol tuning
are depicted in Table 6. Next to mean and standard devi-
ation (“SD”), the table lists minimum and maximum values
(“Min.” and “Max.” resp.) as well as “Mean%” being the
mean percentage of achieved hypervolume. Corresponding
boxplots are provided in Fig. 5. It can be observed that the
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Figure 4: Run length distribution plot for target
of 99.9% of hypervolume, i.e., 3 843.34. Showing
results for default algorithm parameters as well as
tuned to reach the target hypervolume with mini-
mum number of function evaluations. Based on val-
idation experiments with new random seeds.

tuned instances are significantly better than the ones fea-
turing standard parameterizations. Moreover, the expected
behavior that performance increases with increasing budget,
can be retraced in the data.

Even with only 120 FE both algorithms capture about
90% of achievable hypervolume in the mean. Doubling this
budget yields an increase up to 97% and having 500 FE
allowed, more than 99% of hypervolume is achieved. These
results can only be topped by MSPO, which is able to achieve
over 99% hypervolume within only 120 FE.

Table 6: Resulting hypervolumes for default algo-
rithm parameters (.def) as well as tuned parameters.
Based on validation experiments with new random
seeds on COP1.

Min. Mean% Mean Max. SD
SMS.def.120 3517.5 64.2 3620.5 3719.5 43.2
NSG.def.120 3488.8 63.2 3614.6 3707.4 43.2

SMS.120 3687.3 87.2 3764.4 3811.9 33.1
NSG.120 3724.4 91.6 3791.7 3823.4 22.4

SMS.def.240 3574.6 74.4 3684.3 3764.4 41.9
NSG.def.240 3559.0 70.9 3662.4 3733.4 40.4

SMS.240 3802.2 97.4 3827.7 3835.7 7.1
NSG.240 3794.6 97.4 3827.7 3834.7 6.5

SMS.def.500 3688.2 84.5 3747.6 3794.2 27.2
NSG.def.500 3651.8 83.2 3739.1 3788.3 31.1

SMS.500 3834.7 99.1 3838.2 3839.6 1.1
NSG.500 3835.3 99.0 3837.5 3839.3 0.9

MSPO.120 3841.0 99.6 3841.5 3841.9 0.2

It was found that solving a COP with the considered algo-
rithms produces a strong need for parameter tuning. Within
all the received results, the performance of the tuned vari-
ants is much better than the performance of the default ones.

It turned out that a population size of three is optimal
in almost all cases where a very small budget was imposed.
Moreover, mutation is the more important variation opera-

tor and prefers rather small changes. Considering the case
of FTar, the number of required FE was reduced to around
4 000 (from over 25 000).

If surrogate models are allowed, results further improved
dramatically. MSPO proved to be the best performing al-
gorithm in our study achieving more than 99.5% of possible
hypervolume within only 120 FE.

A basic validation of results has already been performed
using di↵erent random number generator seeds.To further
validate our findings w.r.t. modeling, an alternative model
for CE is considered, i.e., COP2. The following section will
present experimental results for this second problem and
compare them to COP1.

4.3 Validation
4.3.1 Setup
To validate results achieved by tuning on COP1, perfor-

mance of tuned and default parameters are compared on
COP2. Thus, tuned parameters are tested on a previously
unseen problem instance. During validation, all algorithms
are run 50 times to create statistically sound results.

Results of the two models for CE will di↵er. In general,
the second model (COP2) does predict better CE. As the ref-
erence point remains unchanged, hypervolumes are expected
to be larger for COP2. They should only be compared in
terms of relative performance between algorithms, no abso-
lute comparisons between hypervolumes of di↵erent models
should be made.

4.3.2 Results and Discussion
Based on COP2, a new target hypervolume value had to

be determined. A hypervolume value of 4 040.639 has been
received as the maximum value. 4 039,479 represents the
99.9% target hypervolume.

Table 7: Number of FE required for all 50 of 50 runs
to reach the target hypervolume (COP1: 3 843.34,
COP2: 4 039.479). Based on the validation with
di↵erent seeds optimizing hypervolume on COP1 as
well as COP2.

SMS.tun SMS.def NSG.tun NSG.def
COP1 4100 34750 8130 27410
COP2 2830 18710 4390 18040

Table 7 summarizes the number of FE required to reach
the target hypervolume. For COP2, all these values are
smaller than the ones for the corresponding algorithmic vari-
ants for COP1. This reveals that COP2 may be a bit easier
to solve than COP1.

Considering the influence of tuning, we were able to reca-
pitulate the results received for COP1: the tuned variants
perform much better than the ones featuring standard pa-
rameterizations. For all SMS-EMOA runs on COP2, only
less than 3 000 FE were necessary to reach the target hyper-
volume. These results are also reflected in the corresponding
run length distribution plots in Fig. 6.

Table 8 as well as Fig. 7 present the direct comparison of
default and tuned parameter settings. These data supple-
ment the results received for COP1 as presented in Table 6
and depicted in Fig. 5.

Again, the tuned variants perform much better than the
ones featuring default parameters and results improve with
larger budgets. For COP2, the algorithms were able to
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Figure 5: Boxplot of hypervolume for default algorithm parameters (.def) as well as tuned parameters on
COP1. Based on validation experiments with new random seeds.
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Figure 6: Rld plot for target of 99.9% of hyper-
volume, i.e., 4 039.479. Showing results for default
algorithm parameters as well as tuned to reach the
target hypervolume with minimum number of func-
tion evaluations. Based on validation experiments
with COP2.

achieve around 95% of the maximum hypervolume within
only 120 FE. This indicates a faster convergence on COP2
compared to COP1 as can also be observed in Table 7 and
the corresponding run length distribution plots (cf. Fig. 6).

Also, for COP2, the algorithmic instances with the largest
allowed budget (500 FE) were able to perform as good as the
MSPO algorithm with only 120 FE. To be precise, they per-
formed slightly better with respect to the mean values and
standard deviations. Nevertheless, MSPO used much less
FE and, thus, is preferable for expensive target functions.

Interestingly, NSGA-II seems to perform a bit better than
SMS-EMOA when the optimization runs are limited to very
small budgets. While the run length distributions indicate
that SMS-EMOA performs better in the long run, NSGA-II
excels for the smallest budget of 120 FE, both for COP1 and
COP2

The results received for the COP were validated incorpo-
rating a di↵erent model for CE. We were able to show that
optimized parameter values received for one model could be

Table 8: Resulting hypervolumes for default algo-
rithm parameters (.def) as well as tuned parame-
ters. Based on validation experiments with COP2.

Min. Mean% Mean Max. SD
SMS.def.120 3691.6 82.3 3835.7 3929.5 47.9
NSG.def.120 3691.6 82.9 3842.7 3936.6 53.5

SMS.120 3892.0 94.7 3979.0 4029.6 34.6
NSG.120 3845.6 97.2 4007.9 4032.8 28.3

SMS.def.240 3777.2 85.5 3872.9 3954.1 42.1
NSG.def.240 3794.9 87.1 3890.7 3951.2 37.4

SMS.240 4018.4 99.3 4032.9 4038.8 5.1
NSG.240 4019.6 99.4 4033.5 4038.0 4.2

SMS.def.500 3879.0 92.1 3948.6 4025.0 34.8
NSG.def.500 3893.6 92.2 3950.4 4001.6 25.8

SMS.500 4035.6 99.8 4038.9 4039.5 0.8
NSG.500 4036.6 99.8 4038.7 4039.3 0.5

MSPO.120 4034.7 99.8 4038.6 4039.8 1.2

successfully transferred to the same optimization task incor-
porating a di↵erent model. This is a strong result for our aim
to determine optimal parameter settings for industrial opti-
mization problems. This may warrant to tune parameters
with cheap models, and later apply the tuned parameters to
a model where tuning would be too expensive.

5. SUMMARY AND OUTLOOK
This paper investigates the cyclone (dust separator) opti-

mization problem. After describing the problem itself, ob-
jectives, and parameters, algorithms for solving this problem
are presented. These algorithms are first tested with their
default parameter settings. Afterwards, the algorithms’ pa-
rameters a tuned under di↵erent specifications. Firstly, a
target hypervolume value is specified and the algorithms are
tuned to require as few FE as possible. Secondly, very small
budgets were imposed and the algorithms were tuned for a
best performance w.r.t. hypervolume. Finally, results have
been validated implementing an alternative model for one of
the objectives.

It is found that tuned algorithm parameters perform much
better than the default settings. The results for a fixed FE’
budget point to a certain parameterization with a popula-
tion size of three and a mutation dominated variation that
promise good results for further investigations, particularly
incorporating more complex simulation models.
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Figure 7: Boxplot of hypervolumes for default algorithm parameters (.def) as well as tuned parameters.
Based on validation experiments with COP2.

Moreover, the surrogate model based MSPO approach
with a very limited budget of FE performed extremely well
in our comparison. Therefore, this strategy will be inves-
tigated in more detail in future research. Further research
directions w.r.t. MSPO could concern the choice of model,
optimization technique, or infill criteria.
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