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ABSTRACT
RGP is a new genetic programming system based on the
R environment. The system implements classical untyped
tree-based genetic programming as well as more advanced
variants including, for example, strongly typed genetic pro-
gramming and Pareto genetic programming. It strives for
high modularity through a consistent architecture that al-
lows the customization and replacement of every algorithm
component, while maintaining accessibility for new users by
adhering to the “convention over configuration” principle.
Typical GP applications are supported by standard R in-
terfaces. For example, symbolic regression via GP is sup-
ported by the same “formula interface” as linear regression
in R. RGP is freely available as an open source R package.

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods, and Search—Heuristic methods

General Terms
Design, Documentation, Languages

Keywords
Late Breaking Abstract, Genetic Programming, Software,
Symbolic Regression

1. INTRODUCTION
Genetic programming (GP) is a collection of techniques

from evolutionary computing (EC) for the automatic gener-
ation of computer programs that perform a user-defined task
[4, 1]. Starting with a high-level problem definition, GP cre-
ates a population of random programs that are progressively
refined through variation and selection until a satisfactory
solution is found.

An important advantage of GP is that no prior knowledge
concerning the solution structure is needed. Another advan-
tage is the representation of solutions as terms of a computer
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language, i.e. in a form accessible to human reasoning. The
main drawback of GP is its high computational complex-
ity, due to the potentially infinitely large search space of
computer programs. On the other hand, the recent avail-
ability of fast multi-core systems has enabled the practical
application of GP in many real-world application domains.
This has lead to the development of software frameworks for
GP, including DataModeler, Discipulus, ECJ, Eurequa, and
GPTIPS1.

All of these systems are complex aggregates of algorithms
for solving not only GP specific tasks, such as solution cre-
ation, variation, and evaluation, but also more general EC
tasks, like single- and multi-objective selection, and even
largely general tasks like the design of experiments, data
pre-processing, result analysis and visualization. Packages
like Matlab, Mathematica, and R [5] already provide so-
lutions for the more general tasks, greatly simplifying the
development of GP systems based on these environments.

RGP2 is based on the R environment for several reasons.
Firstly, there seems to be a trend towards employing statisti-
cal methods in the analysis and design of evolutionary algo-
rithms, including modern GP variants [7, 3]. Secondly, R’s
open development model has led to the free availability of R
packages for most methods from statistics and many meth-
ods from EC. Also, the free availability of R itself makes
RGP accessible to a wide audience. Thirdly, the R language
supports“computing on the language”, which greatly simpli-
fies symbolic computation inherent in most GP operations.
In addition, parallel execution of long-running GP experi-
ments is easily supported by R packages such as Snow [8].

The remainder of this extended abstract gives a very short
overview of RGP’s design and functionality.

1DataModeler is a commercial Mathematica-based GP sys-
tem focused on symbolic regression in industrial applica-
tions (evolved-analytics.com). Discipulus is a commer-
cial linear GP system (www.rmltech.com). ECJ is an open
source framework for evolutionary computation (cs.gmu.
edu/~eclab/projects/ecj). Eurequa is a graph GP sys-
tem optimized for symbolic regression (ccsl.mae.cornell.
edu/eureqa). GPTIPS is an open source Matlab toolbox
for symbolic regression by GP (sites.google.com/site/
gptips4matlab).
2The RGP package and documentation is available at
rsymbolic.org.
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2. RGP OVERVIEW
RGP was mainly developed as a research tool for explor-

ing time series regression and prediction problems with GP.
Nevertheless, the system is modular enough to be easily
adapted and extended to new application domains.

2.1 Individual Representation
RGP represents GP individuals as R expressions that can

be directly evaluated by the R interpreter. This allows the
whole spectrum of functions available in R to be used as
building blocks for GP. Because R expressions are internally
represented as trees, RGP may be seen as a tree-based GP
system. However, the individual representation can be easily
replaced together with associated variation and evaluation
operators, if an alternative representation is found to be
more effective for a given application [6].

Besides classical untyped GP, strongly typed GP is sup-
ported by a type system based on simply typed lambda cal-
culus [2]. A distinctive feature of RGP’s typed tree repre-
sentation is the support for function defining subtrees, i.e.
anonymous functions or lambda abstractions. In combina-
tion with a type system supporting function types, this al-
lows the integration of common higher order functions like
folds, mappings, and convolutions, into the set of GP build-
ing blocks.

RGP also includes a rule based translator for transform-
ing R expressions. This mechanism can be used to simplify
GP individuals as part of the evolution process as a means
the reduce bloat, or just to simplify solution expressions for
presentation. The default rule base implements simplifica-
tion of arithmetic expressions. It can be easily extended to
simplify expressions containing user-defined operators and
functions.

2.2 GP Operators
RGP provides default implementations for several initial-

ization, variation, and selection operators. The system also
provides tools for the analysis and visualization of popula-
tions and GP individuals.

2.2.1 Initialization
Individual initialization can performed by the conventional

grow and full strategies of tree building. When using strongly-
typed GP, the provided individual initialization strategies
respect type constraints and will create only well-typed ex-
pressions. Initialization strategies may be freely combined,
e.g. to implement the well known ramped-half-and-half strat-
egy.

2.2.2 Variation
RGP includes classical and type-safe subtree crossover op-

erators. Also, several classical and type-safe mutation op-
erators are provided. The variation pipeline can be freely
configured by combining several mutation and recombina-
tion operators to be applied in parallel or consecutively, with
freely configurable probabilities.

2.2.3 Selection
The system provides an implementation of single-objective

tournament selection with configurable tournament size. Other
selection strategies can be easily added and will be pro-
vided in later versions. Additionally, multi-objective selec-

tion is supported via the EMOA package3 for implementing
a Pareto GP algorithm. This algorithm optimizes solution
quality while, at the same time, controlling solution com-
plexity. For this purpose, RGP implements multiple com-
plexity measures for GP individuals.
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