
Towards a Framework for the Empirical Analysis
of Genetic Programming System Performance

Oliver Flasch and Thomas Bartz-Beielstein

Cologne University of Applied Sciences,
{oliver.flasch, thomas.bartz-beielstein}@fh-koeln.de

Abstract. This chapter introduces the basics of a framework for sta-
tistical sound, reproducible empirical research in Genetic Programming
(GP). It provides tools to understand GP algorithms and heuristics and
their interaction with problems of varying di�culty. Following a rigorous
approach where scientific claims are broken down to testable statistical
hypotheses and GP runs are treated as experiments, the framework helps
to achieve statistically verified results of high reproducibility. A proto-
typic software-implementation based on the R environment automates
experiment setup, execution, and analysis. The framework is introduced
by means of an example study comparing the performance of a refer-
ence GP system (TinyGP) with a successively more complex variants
of a more modern system (GMOGP) to test the intuition that complex
problems require complex algorithms.

Keywords: Genetic Programming, Symbolic Regression, Design of Ex-
periments, Sequential Parameter Optimization, Reproducible Research,
Multi-Objective Optimization

1 Introduction

The goal of this chapter is to introduce a framework for the systematic empirical
analysis of Genetic Programming (GP) system components and their influence
on GP system performance. Main ideas and concepts are borrowed from the
empirical approach to research in evolutionary computation described in [1].
Performing a thorough and statistically well-founded experimental analysis pro-
vides valuable insight into the behavior of GP components.

In current GP research, much repeated work in experimental planning, setup
and result analysis is required when proposing improvements in GP system
components such as selection and variation operators, individual representations,
or general search heuristics. To measure the performance benefit of an improved
GP system component, a set of test functions has to be implemented,GP system
parameters, both of the system under study as well as of comparison systems
have to be chosen, experiments have to be designed and code for the statistical
result analysis has to be written. As obtaining results of statistical significance
often requires many independent runs, infrastructure for distributed execution
is often necessary to render the implementation of an experiment plan practical.

2

Although this e↵ort is necessary to participate in GP research, it might
constitute a significant barrier of entry to newcomers to the community. Even
worse, time spent re-implementing necessary GP research infrastructure is lost
for working on core issues. As each group working in GP research has to provide
not only their own GP system, but also proprietary and complex supporting
infrastructure often tightly coupled to local conditions, reproducing results by
other groups is often more di�cult than needed.

Fortunately, much of the necessary infrastructure for conducting reproducible
research in GP could be provided as a framework of reusable building blocks and
made available as open-source software. Laying the foundation of this framework
defines the goal of this work.

In recent years, several high quality GP systems have been developed that
could constitute the basis of such a framework. For example, ECJ provides a
modular open-source GP implementation that is easily extensible. [19] Eurequa
is a modern GP system featuring a user-friendly graphical user interface that
makes solving real-world symbolic regression problems with GP very simple and
intuitive. [15] The system also supports large-scale runs on compute clusters.
While freely available, extensibility through third parties is somewhat limited
by the fact that the system is distributed in closed-source form. On the other
hand, third party extensions are available that tightly couple Eurequa to com-
puting environments like Mathematica and Matlab. DataModeler is another
modern GP system mainly geared to real-world symbolic regression. [18, 10, 17]
Embedded in Mathematica, which provides sophisticated tools for data manip-
ulation, statistics and visualization, the system is ideally suited as a basis for
the framework suggested in this chapter. While DataModeler is a commercial
system, academic licencing is handles liberally. The system is also extensible
by third-party GP operators implemented in Mathematica code. RGP1 is an
open-source GP system hosted by the statistical software environment R. [5, 14]
Compared to the aforementioned system, RGP is still quite immature, yet all
basic features of a modern multi-objective typed GP system are implemented.
As most performance critical operators feature alternative optimized implemen-
tations in the C programming language, this system is fast enough to be used on
real-world problems. As RGP has been designed as a research tool, the system
has a highly modular design. All components are extensible and replaceable on a
fine-grained level. The interactive nature of the R environment alleviates quick
experimentation and rapid prototyping, while performance critical-components
can be easily re-implemented in compiled languages such as C.

In the future, the framework introduced in this chapter will provide a general
interface to support all modern GP systems. Support for DataModeler will be
provided by the authors. Presently, a prototype hosted by the statistical software
environment R exists, supporting the RGP system. To support the e↵ective and
e�cient experimental planning, setup and analysis of GP runs, the framework
provides the following features:

1 The RGP package is available via the Comprehensive R Archive Network (CRAN)
at http://cran.r-project.org/ or directly at http://rsymbolic.org/projects/show/rgp.

3

– a modular GP system fast enough for real-world applications (RGP)
– a set of test problems of scalable di�culty
– tools for automatic parameter tuning based on the sequential parameter

optimization toolbox (SPOT) [2]
– experiment design and setup based on SPOT
– tools for statistical analysis of GP results based on the R environment
– tools for result visualization and automated result reporting
– support for distributed execution on PBS compute clusters

The framework is still under active development and will be published as
a supplemental part of the first author’s PhD thesis. A preliminary version
in form of an R package will soon become available on the RGP website at
http://rsymbolic.org/.

This chapter will illustrate the framework by means of a small but realistic
example study. To provide baseline results, the performance of the simple and
well-known TinyGP system is examined on a small set of scalable symbolic
regression test problems. Then, the performance benefits of several improvements
to a more modern yet still simple GP system, Generational Multi-Objective GP
(GMOGP), are studied empirically.

Thus, the remainder of this chapter is structured as follows: Section 2 in-
troduces the di↵erent GP search heuristics considered in the example study.
Scalable test problems used in the study are described in Section 3. Section 4 in-
troduces the experimental setup. This section also formulates research questions
relevant to the study. Results are described in Section 5, which is followed by a
discussion and conclusions in Section 6. Here, answers to the research questions
posed in Section 4 are formulated. As the framework introduced in this chapter
is work in progress, the chapter closes with a outlook to further extensions, given
in Section 7.

2 GP Search Heuristics

In this work, the term GP search heuristic denotes the concrete search strat-
egy used in a GP system, which is in principle independent of the concrete
GP search space. Classical GP uses a steady state Genetic Algorithm (GA)
with tournament selection to search genotype space. In the GP literature, many
di↵erent concrete variants have been described. It is possible to de-couple the
search heuristic from the search space, giving rise to a wide variety of possible
hybrid algorithms. An example is the evolution of support vector machine ker-
nels, by including a memetic approach of kernel constant optimization. [7] Of
course, it is also possible to use search heuristics from outside the field of EAs
in GP search.

Historically, every GP system implemented slightly di↵erent search heuris-
tics, while exhaustive comparisons of GP search heuristics, isolated from the
concrete GP search space, are scarce. Many modern GP systems often em-
ploy multi-objective evolutionary algorithms (EMOAs) as search heuristic. For

4

historical reasons and to simplify parallelization on shared memory multiproces-
sors, steady state algorithms with Pareto tournament selection seem to be the
predominant EMOA variants used in todays best-performing GP systems. In
simple GP systems mainly designed for research and teaching, single-objective
steady state EAs with tournament selection are still widespread.

This section describes the two GP search heuristics examined in this study.
For both heuristics, the general algorithmic framework and the concrete imple-
mentation of the selection operator sel is described. GP search heuristics may
be classified as generational, steady state, or generation gap algorithms. The
variation pipeline, i.e. the concrete setup and order of application of variation
operators (recombination and mutation) is defined, as some GP search heuristics
exclusively use recombination or mutation.2 Furthermore, the main features of
the selection strategy are described, including number and details of selection
criteria, as well as the trade-o↵ made between exploration of new search space
areas and exploitation of existing solutions. Most modern GP search heuristics
make provisions for preserving genetic diversity and related to that, avoiding
premature convergence of a population to local optima. These provisions may
include fitness sharing, crowding, niching, age layering, or restarts. Diversity
preservation approaches implemented are also part of the description of each
GP search heuristic. Finally, for each GP search heuristic, parameters including
types, ranges, default values, and constraints are given.

The first GP search heuristic selected for this study is the straight forward
single-objective tournament selection-based TinyGP search heuristic. Modern
GP systems used for real-world applications, such as DataModeler and Eurequa,
also implement single- or multi-objective steady state EAs with tournament se-
lection. The second GP search heuristic selected for this study is a new GP
search heuristic based on a traditional generational multi-objective EA that im-
plements modern means of controlling bloat and preserving population diversity.
Steady state EAs based on tournament selection are traditionally used in GP
systems to simplify parallelization on shared memory multiprocessors. Nonethe-
less, it is also possible to parallelize generational EAs, while the parallelization
on large scale distributed memory multiprocessors is of comparable di�culty
with both algorithmic schemes.

2.1 Common Components

The components of a GP system responsible for individual initialization and
variation (i.e. mutation and recombination) are in principle independent of the
search heuristic. The same applies to the concrete individual representation and
the means used for individual evaluation. As the main focus of the study lies
on comparing the performance of di↵erent search heuristics, the setup of these
common components are introduced only very briefly.

2 For example, John R. Koza’s original GP system lacked mutation operators and
relied exclusively on recombination.

5

Individual Representation RGP uses a traditional abstract syntax tree represen-
tation for GP individuals. For both implementation and execution e�ciency, R’s
internal data structures representing expressions and functions are used. These
data structures can be e�ciently and simply manipulated by R and C code,
facilitating the implementation of variation operators. RGP individuals are R
functions that are directly executable by the highly optimized R interpreter. In-
dividuals that represent functions on real numbers are automatically vectorized,
making the typical use case of evaluating an individual on several fitness cases
very e�cient.

Fitness Function The RGP system provides implementations of sample-based
as well as of analytical loss functions for symbolic regression. Several genotypic
complexity measures are implemented. In this study, sample rmse is used for
measuring goodness of fit, and visitation length is used for measuring genotypic
complexity. Both measures minimization criteria.

Initialization Operators In this study, classical ramped half-and-half initializa-
tion was used in all experiments. [11] Because the success of GP runs seems to
be quite sensitive to starting conditions, RGP implements multiple initializa-
tion schemes. For simplicity and because of time constraints, these alternative
schemes where not considered in this study.

Variation Operators RGP provides implementations of multiple sets of variation
and crossover operators. In this study, a fairly standard operator set inspired by
John R. Koza’s original work was used to provide a well-understood baseline. [11]
This set includes unbalanced crossover as a recombination operator as well as
several mutation operators. The latter includes a subtree mutation operator, a
constant mutation operator, as well as a function label mutation operator. De-
tailed documentation and implementation of all variation operators is available
in the RGP package.

Common Component Parameters The parameters of theGP system components
common to all search heuristics are given in Table 1. In this example study, the
indicated default parameters were used for all experiments. Automatic parameter
tuning is supported through SPOT, but was not done in this work due to time
constraints.

2.2 TinyGP

TinyGP is a popular small GP implementation mainly used in teaching. It im-
plements a simple steady-state single-objective search heuristic with tournament
selection that is loosely based on John R. Koza’s original work on GP. [11]
Steady-state search heuristics with tournament selection are very popular in
GP, both for simple teaching systems as well as for complex real-world systems,
as they are relatively simple to implement and allow straight-forward paral-
lelization. The TinyGP search heuristic can be seen as a deliberately minimal

6

Table 1. Parameters of the RGP system independent of the search heuristic used.

Variable (Symbol) Domain Default

Subtree Mutation Probability mutationSubtreesP (p
mst

) [0, 1] 1

3

Subtree Mut. Insert/Delete Prob. mutationSubtreesPinsertDelete [0, 1] 0.5
Subtree Mut. Subtree Prob. mutationSubtreesPsubtree [0, 1] 0.9
Subtree Mut. Constant Prob. mutationSubtreesPconstant [0, 1] 0.5
Subtree Mut. Constant Minimum mutationSubtreesConstantMin R -1
Subtree Mut. Constant Maximum mutationSubtreesConstantMax R 1
Subtree Mut. Depth Maximum mutationSubtreesDepthMax N 2
Function Mutation Probability mutationFunctionsP (p

fun

) [0, 1] 1

3

Constant Mutation Probability mutationConstantsP (p
con

) [0, 1] 1

3

Constant Mut. Mean mutationConstantsMu R 0
Constant Mut. SD mutationConstantsSigma R 1

Individual Size Limit individualSizeLimit N 64
Error Measure errorMeasure G! R sample rmse

single-objective example for the popular class of steady-state GP search heuris-
tics with tournament selection. For this reason, it was implemented in RGP in
included and this study as a baseline.

Algorithm Structure TinyGP employs a simple single-objective steady state EA
as its search search heuristic. In the first step of the algorithm, a population
pop(0) of µ random individuals is created. Next, the steady-state evolution pro-
cess starts by randomly selecting either a recombination or a mutation operator.
The probability for selecting the recombination operator is given by the pa-
rameter p

rec

. In case of recombination, the algorithm selects two parents via
two independent tournaments of size s

tournament

as detailed in the next para-
graph. Note the non-zero probability of choosing the same individual for both
recombination parents, as tournaments are performed independently. In case of
mutation, a single parent is chosen in a single tournament. In both cases, a sin-
gle child is creating by applying the chosen variation operator to the parent(s).
Next, the algorithm chooses a individual to replace by this child in a single neg-
ative tournament of size s

tournament

. This process is repeated until a predefined
termination criterion is met. Pseudo-code for this search heuristic is shown in
Figure 1.1.

Listing 1.1. Pseudo-code implementation of the TinyGP search heuristic. Variables
! denote probability spaces. !RNG is the probability space used to model the random
number generator function randomUniformNumber, which generates uniform distributed
random numbers in the closed interval between 0 and 1. The recombination operator
rec must be defined on pairs of individuals.

pop c r e a t e I n d i v i d u a l s (number = µ , !

create

)

whi le (termination criterion not met) {

7

c h i l d i f (randomUniformNumber (!RNG  p

rec

)) {
mother tournament (pop , s

tournament

, !

tournament

)

f a t h e r tournament (pop , s

tournament

, !

tournament

)

rec(mother , f a t h e r , !

rec

)

} e l s e {
parent tournament (pop , s

tournament

, !

tournament

)

mut(parent , !

mut

)
}

r e p l a c e d negat iveTournament (pop , s

tournament

, !

tournament

)

pop[replaced] c h i l d

}

re tu rn (pop)

Selection Strategy Tournament selection in TinyGP proceeds as follows: First,
an individual is selected from the population by uniform random sampling as
the current best individual. This individual the fitness is then compared to com-
petitors s

tournament

times. Each time a competitor has a better (smaller) fitness
value, it takes the place as the current best individual. Competitors are cho-
sen by uniform random sampling from the entire population. Therefore, there
is a non-zero probability that the same individual enters the same tournament
multiple times.

The negative tournament selection operator employs the same strategy, its
only di↵erence being that the order relation < is being replaced by its converse
>, so that the worst individual taking part in the tournament is returned as
result.

Real-world implementations of the tournament selection operator often in-
clude extensions and optimizations. For example, individuals participating in a
tournament are often sampled beforehand, without replacement, avoiding the
ine�ciency of duplicated individuals in tournaments.

Figure 1.2 gives a pseudo-code implementations of the tournament and nega-
tive tournament selection operators described above and referred to in Figure 1.1.

Listing 1.2. Pseudo-code implementation of tournament selection. Variables ! denote
probability spaces.

tournament f unc t i on (pop , s

tournament

, !

tournament

)

b e s t I n d i v i d u a l sampleWithoutRep lacement (pop ,

number = 1 , !

uniform

)

b e s t F i t n e s s 1

f o r (i i n 1 : s

tournament

) {
compe t i t o r sampleWithoutRep lacement (pop ,

number = 1 , !

uniform

)

i f (fit(competitor) < bestFitness) {
b e s t F i t n e s s fit(competitor)

8

b e s t I n d i v i d u a l compe t i t o r

}
}

re tu rn (b e s t I n d i v i d u a l)

}

negat iveTournament f unc t i on (pop , s

tournament

, !

tournament

)

w o r s t I n d i v i d u a l sampleWithoutRep lacement (pop ,

number = 1 , !

uniform

)

w o r s t F i t n e s s 1

f o r (i i n 1 : s

tournament

) {
compe t i t o r sampleWithoutRep lacement (pop ,

number = 1 , !

uniform

)

i f (fit(competitor) > worstFitness) {
wo r s t F i t n e s s fit(competitor)
wo r s t I n d i v i d u a l compe t i t o r

}
}

re tu rn (w o r s t I n d i v i d u a l)

}

Diversity Preservation The TinyGP system does not implement any internal
means of diversity preservation, but can be extended with well-known exter-
nal measures, such as fitness sharing, crowding, niching, and automatic restarts
without much e↵ort. For simplicity, these extensions where not implemented and
not included in this study.

Parameters Table 2 gives all parameters of the TinyGP search heuristic. Note
the comparatively large default population size, which is typical for classical
steady state GP search heuristics.

Table 2. Parameters of the TinyGP search heuristic.

Variable (Symbol) Domain Default

Population Size mu (µ) N 300
Tournament Size tournamentSize (s

tournament

) N 2
Recombination Probability recombinationProbability (p

rec

) [0, 1] 0.9

There are no additional hard parameter constraints in the RGP implemen-
tation of the TinyGP search heuristic, although the tournament size s

tournament

should be smaller than or equal to the population size µ.

9

2.3 Generational Multi-Objective GP

Generational Multi-Objective GP (GMOGP) is a generational multi-objective
GP search heuristic that combines ideas of state-of-the-art multi-objective GP
search heuristics with design concepts of modern generational multi-objective
evolutionary algorithms. The main reason for its design and inclusion in the set
of search heuristics provided by RGP is to answer the question of whether it
is possible to reach performance comparable to complex state-of-the art search
heuristics like Ordinal Pareto GP (OPGP) with an conceptually simpler gener-
ational multi-objective GP search heuristic.

Algorithm Structure As its name implies, GMOGP is based on a classical gener-
ational (µ+�) strategy. After creating an initial population pop(0) of µ random
individuals, the iterative evolution process starts by choosing � pairs of par-
ents by uniform random sampling without replacement. Pairwise recombination
is applied before mutation, yielding � children. Next, µ individuals are chosen
from the (µ + � + ⌫)-sized set union of parents, children and ⌫ newly initial-
ized individuals by the Pareto selection operator detailed in the next paragraph,
replacing the parent population. This iterative process is stopped when a pre-
defined termination criterion is met. Figure 1.3 outlines the GMOGP search
heuristic in pseudo-code.

Listing 1.3. Pseudo-code implementation of the GMOGP search heuristic. Variables
! denote probability spaces. The recombination operator rec must be defined on pairs
of individuals.

pop c r e a t e I n d i v i d u a l s (number = µ , !

create

)

whi le (termination criterion not met) {
pa r e n t s sampleWithoutRep lacement (pop ,

number = 2⇥ � ,

!

uniform

)

mothers pa r e n t s [1 : �]

f a t h e r s pa r e n t s [(�+ 1) : 2⇥ �]

c h i l d r e n mut

pop

(rec

pop

(mothers , f a t h e r s , !

rec

) , !

mut

)
n ew I n d i v i d u a l s c r e a t e I n d i v i d u a l s (number = ⌫ , !

create

)

s e l e c t i o n P o o l pa r e n t s [c h i l d r e n [n ew I n d i v i d u a l s

s u r v i v o r s selhGMOGP i(s e l e c t i o nPo o l , number = µ)

pop s u r v i v o r s

}

re tu rn (pop)

Selection Strategy The selection operator selhGMOGP i is based on non-dominated
sorting (NDS) of the selection pool based on the three criteria goodness of fit
on training data, genotypic complexity, and genotypic age (see next paragraph).

10

Ties in the NDS are broken by crowding distance. Thus, the selection strat-
egy matches the selection strategy of the well-established NSGA-IIEMOA. [4]
Alternatively, ties in the NDS may be broken by hypervolume contribution,
transforming the selection strategy into that of the SMSEMOA, although, due
to time constraints, this option is not examined further in this work. [3]

The selection criteria genotypic complexity and genotypic age can be enabled
and disabled individually, yielding three valid configurations of the GMOGP
search heuristic:

– single-objective selection based on goodness of fit only (GMOGP-F)
– multi-objective selection based on goodness of fit and individual age (GMOGP-

FA)
– multi-objective selection based on goodness of fit and individual complexity

(GMOGP-FC)
– multi-objective selection based on goodness of fit, individual age, and geno-

typic individual complexity (GMOGP-FCA)

Depending on the configuration selected, other algorithm components may be
disabled. Explicit diversity preservation through Age-Fitness Pareto Optimiza-
tion (see next paragraph) is available only when the individual age criterion is
enabled.

Diversity Preservation GMOGP implements elements of Schmidt and Lipson’s
Age-Fitness Pareto Optimization (AFPO) algorithm for preserving genotypic
diversity and avoiding premature convergence. [16] In each generation, a fixed
number of newly initialized individuals are inserted into the population to main-
tain genetic diversity. Of course, these new individuals will be of low fitness
on average and would be quickly selected for replacement without having the
chance to obtain local optima through a series of variation steps. This problem
is countered by the introduction of genotypic age : G ! N, as defined as follows:

age(gnew) := 0,

age[mut(g)] := age(g) + 1, (1)

age[rec(gA, gB)] := max[age(gA), age(gB)],

where gnew is a new genotype just inserted into the selection pool, and g, gA, and
gB are individuals already existing in a population. The genotypic age of a new
individual is defined as 0, mutation of an existing individual increases its age by
one, and the age of the recombination of two parents is the maximum of their
ages. Therefore, the age of an individual is the age of its oldest ancestor, even
if no genetic material of that ancestor is left. Genotypic age is then considered
as another optimization criterion to minimize, in addition to the minimization
criteria fitness and genotypic complexity. This leads to an emergent dynamic
age-layering of the population, as young individuals are not dominated by older
more fit or less complex genotypes. Therefore, younger individuals are allowed
to evolve independently of older individuals, until they reach the same age, i.e.
have been subject to the same number of variation steps. Ideally, this approach

11

should preserve genetic diversity and enable the discovery of new local and global
optima throughout the entire duration of a GP run. The diversity preservation
mechanism can be disabled by setting the boolean search heuristic parameter
Age Layering to false.

Parameters Table 3 presents all parameters of the GMOGP search heuristic.

Table 3. Parameters of the GMOGP search heuristic.

Variable (Symbol) Domain Default

Population Size mu (µ) N 300
Children per Generation lambda (�) N 20
New Individuals per Generation nu (⌫) N

0

1
Enable Complexity Criterion complexityCriterion B true

Enable Age Criterion ageCriterion B true

Recombination Probability recombinationProbability (p
rec

) [0, 1] 0.1

In the RGP implementation of this search heuristic, these parameters are
subject to the following constraint:

� 
j
µ

2

k
(Children Set Size)

As parents are sampled without replacement from an uniform distribution and
two parents are needed for recombination, the number of children per generation
must be smaller than or equal to half the population size.

3 Scalable Test Functions

Test problems of controllable di�culty, i.e. scalable test functions, are a flexible
tool for assessing the relative performance benefits of di↵erent GP system com-
ponents under varying conditions. This study focuses on symbolic regression, to-
day perhaps the GP application of highest practical importance. Unfortunately,
defining finely scalable test functions for symbolic regression holds many chal-
lenging surprises. Conventional measures of problem di�culty, such as informa-
tion criteria [6], that are good predictors for the performance of fixed-structure
modelling approaches like modern statistical regression techniques, often fail to
predict the performance of symbolic regression runs.3 Symbolic regression on
test functions of comparatively simple structure can prove extremely di�cult
for state-of-the-art symbolic regression systems. [8]

The framework described in this chapter implements three scalable test prob-
lem classes for symbolic regression:

– Taylor polynomial approximations of analytical functions

3 See Section 4 for definitions of performance measures for symbolic regression.

12

– Time series compositions

– Test functions with spurious variables

Taylor polynomial approximations of arbitrary analytical functions can be
can be symbolically created by the framework.4 Consider, as an example, Taylor
polynomial approximations of increasing degree of the sine function at point 0.
Approximations of higher degree should be more di�cult to fit by a GP system
with a standard set of arithmetic building blocks, as the required (genotypic)
expressions quickly grow in size. The polynomial degree therefore determines
problem di�culty in a comprehensible manner. Unfortunately, problem di�culty
in this test function class is only controllable in coarse steps, as the discovery
of polynomials of higher degrees quickly becomes intractable even for state-of-
the-art symbolic regression. Nonetheless, this test function class can be of use
for symbolic regression techniques that support the definition of background
information on the solution structure.

Time series compositions provide a test function class inspired by classical
time series analysis. Starting from simple linear or quadratic trend components,
complications such as sinusoidal periodic components and noise can be added to
gradually increase test function di�culty. A benefit of this test function class is
that it provides realistic test cases that are solvable by comparatively compact
symbolic expressions and therefore discoverable by modern symbolic regression
techniques. Di�culty control is still quite coarse-grained, as it depends on adding
periodic components and noise.

The third class of scalable test problems is based on the simple yet very ef-
fective idea of adding spurious variables to the set of fitness cases to conceal the
true functional dependency between driving variables and output for arbitrary
test functions. [9] To increase the di�culty of a given function, additional func-
tion arguments (spurious variables) are added that do not influence the function
value. As this fact is hidden from the symbolic regression system, and spurious
variables might be correlated with the function value by chance, problem di�-
culty can be gradually increased in fine-grained steps by increasing the number
of spurious variables.

3.1 Spurious Variable Test Functions

In the experiments conducted for this study, three scalable test functions de-
scribed below where used. For each test function, 1 to 10 spurious variables
where added to gradually increase problem di�culty. Fitness cases where cre-
ated by uniform random sampling in the indicated training and test intervals.
Both training and tests set consisted of the number of fitness cases indicated
below.

4 This is realized by the YACAS computer algebra system embeddable into the R
environment.[13]

13

P1 (Simple Sine) Discovering the input-output relation of the simple sine func-
tion should be trivial even for very simple symbolic regression system, if no
spurious variables are introduced.

f

P1

(x
1

) := sin(⇡x
1

) (2)

The training interval of the Simple Sine test function is fixed to [�⇡,⇡], the
test interval is fixed to [� 3

2

⇡,

3

2

⇡], and the number of fitness cases is fixed to
N

P1

:= 32. The GP function set used with this test function is {+,�, ⇤, /, sin}.

P2 (Newton Problem) Compared to the Simple Sine, the Newton Problem poses
a slightly harder test case as the minimal true expression has slightly larger
genotypic size. It was mainly included in this study as a more practical example
based on a well known natural law.

f

P2

(x
1

, x

2

, x

3

) :=
x

1

x

2

x

2

3

(3)

The training interval of the Newton Problem test function is [0, 1], the test
interval [0, 2], and the number of fitness cases is fixed to N

P2

:= 64. The GP
function set used with this test function is {+,�, ⇤, /}.

P3 (Sine Cosine) This test function is a simplified variant of test problem
(P12) given in Michael F.Korn’s work on accuracy in symbolic regression. [8] It
is considered di�cult because it constraints constants as arguments to non-linear
functions.

f

P3

(x
1

, x

2

) := 6 sin(x
1

� 3) cos(x
2

� 3) (4)

The training interval of the Sine Cosine test function is [�⇡,⇡], the test interval
[� 3

2

⇡,

3

2

⇡], and the number of fitness cases is fixed to N

P3

:= 128. The GP
function set used is {+,�, ⇤, /, sin, cos}.

4 Experimental Setup

Following the experimental framework presented in [1], a sound experimental
setup requires the specification of the
1. optimization problem
2. performance measure
3. initialization method
4. termination method

4.1 Optimization Problems in GP

Optimization problems in GP have two components: (a) a test function, say f ,
and (b) a measure, which determines the distance between the true function f

and its GP approximation, say f̂ . Test functions are presented in Sect. 3. The

14

measure, which will be used in our comparisons can be describes as follows.
Consider an input value, say xi, a prediction model f̂(x), and the true value yi.
The prediction model f̂ is estimated by GP from a training sample. The loss
function, which measures the errors between the yi’s and the f̂(xi)’s, is defined
as

L(y, f̂(x)) = (y � f̂(x))2. (5)

The training error is the square root of the average loss over the training sample
vuut 1

N

NX

i=1

L(yi, f̂(xi)), (6)

where N denotes the number of fitness cases as introduced in Sect. 3.1. This
value depends on the test function, e.g., N = 32 was chosen for f

P1

.
1. During the pre-experimental planning phase, a large number of function

evaluations n
0

, the so-called budget, is used the determine an adequate per-
centage ofGP runs that reach a pre-defined (small) distance to the optimum.

2. Run length distributions (RLDs), as introduced by [12], are generated to
estimate a suitable budget n  n

0

for the actual experiments.
To avoid floor and ceiling e↵ects, we determine adequate problem design, e.g.,

number of function evaluations as well as reasonably chosen training, validation,
and test sets.

4.2 Performance Measures

To avoid overfitting the test error

E[L(yt, f̂(xt)], (7)

i.e., the expected prediction error over an independent test sample xt, is pre-
ferred. The comparison of the algorithm designs is based on these test-set data.5

To enable fair comparisons and to avoid floor and ceiling e↵ects, RLDs of the
TinyGP implementation are generated.

4.3 Initialization and Termination Methods

Classical ramped half-and-half initialization was used in all experiments. To
determine suitable termination methods, RLDs were generated. The number of
fitness case evaluations, i.e., the number of fitness cases times the number of test
function evaluations was chosen as the termination criterion.
5 In addition to our considerations, we will sketch out further enhancements of our
testing framework: Typically, models will have tuning parameters, say ↵, so we can
describe predictions as f̂↵(x). In forthcoming steps of our experimental analysis, we
are interested in finding good ↵ values while avoiding overfitting, i.e., two di↵erent
problems are to be solved: First, estimating the performance of di↵erent models f̂↵

in order to chose the best model, and second, estimating its prediction error on new
data. If su�cient data is available, the data set can be partitioned into a training
set x

train

, a validation set x

val

, and a test set x

test

.

15

4.4 Research Questions

TinyGP is considered as a baseline algorithm, which implements essential GP
features. A common belief in the GP community can be stated as follows:

Scientific Claim 1 Complex problems require complex algorithms.

Or, stated di↵erently: TinyGP can solve tiny problems whereas hard problems
require more complex algorithms.

From a naive point of view, Claim 1 goes without saying—one may simply
consider that the opposite assumption is true. Therefore, it can be taken as
a guideline for performing experiments and present results that are based on
solid scientific and statistical assumptions. We will proceed as follows: In order
to perform a sound statistical analysis, we will define a hierarchy of complex
(hard) problems. Scalable test functions as introduced in Sec. 3.1 are well suited
for our goals: increasing the number of spurious variables should decrease the
success rate of the GP system.

Then we will define a reference GP implementation that comprehends the
essential features of GP systems in a very simple and understandable manner.
The TinyGP system is considered as an ideal candidate, because it is well-known,
easy to obtain, and easy to implement.

4.5 Pre-Experimental Planning

During the first stage of our experiments, no parameter tuning will be performed.
Our main goal is to discover (positive) correlations between algorithm complexity
and problem di�culty using default algorithm parameter settings.

First experiments were set up to calibrate the reference algorithm, i.e., TinyGP,
to the problem.

Statistical Hypothesis 1 (H-1) TinyGP requires more function evaluations
to reach the same success rate if the problem complexity increases.

RLDs are suitable means to measure performance and to determine an adequate
budget. This is necessary, because floor and ceiling e↵ects can be avoided. A large
number of function evaluations, i.e. a budget of n

0

= 1e6, was chosen to generate
the RLDs. The set of test functions consists of {f

P1

, f

P2

, f

P3

}. Program code
and results from these runs are available on-line and can be used to check if the
experimental setup for new studies is correct.

The investigation of H-1 has two significant results: First, we ensure that the
reference algorithm is able to solve this problem (at least it should be able to
improve an existing candidate solution). Second, the correct number of test func-
tion evaluations for comparisons is determined. We detect test functions which
are far too easy (or too hard) for the reference algorithm. The case, that the
reference algorithm is unable to solve the test function needs further considera-
tions.

Next, we introduce the base-line variant of the new algorithm, i.e.,GMOGP-
F, which should be analyzed.

16

Statistical Hypothesis 2 (H-2) GMOGP-F is competitive with the refer-
ence algorithm.

To analyze H-2 the same setup as for H-1 was used.
These two series of experiments belong to the pre-experimental planning

phase, because they are needed to set up fair comparisons. If one hypothesis has
to be rejected, the experimental set up should be reconsidered, e.g., the set of test
function should be modified or the computational budget should be increased.

4.6 Experiments

The third series of experiments is performed to analyze the influence of new GP
components on the algorithm’s performance. Here, we will analyze new selection
schemes, namely aging, complexity, and a combination of these two.

Statistical Hypothesis 3 (H-3) Introducing multi-objective selection based on
goodness of fit and individual age improves the GMOGP-F performance.

To investigate H-3, the following setup was used. The set of test functions consists
of {f

P1

, f

P2

}, and a budget of n

0

= 250, 000 was used. The age criterion as
described in Table 3 was set to true. With respect to the experimental setup
for hypothesis H-2, the remaining parameters remained unmodified.

Statistical Hypothesis 4 (H-4) Introducing multi-objective selection based on
goodness of fit and individual complexity improves the GMOGP-F performance.

To investigate H-4, a similar setup as for hypothesis H-3 was used. The com-
plexity criterion as described in Table 3 was set to true. With respect to the
experimental setup for hypothesis H-2, the remaining parameters remained un-
modified.

Statistical Hypothesis 5 (H-5) Introducing multi-objective selection based on
goodness of fit, individual age and individual complexity improves the GMOGP-
F performance.

To investigate H-5, a similar setup as for hypothesis H-3 was used. The com-
plexity as well as the age criterion (Table 3) was set to true. With respect to
the experimental setup for hypothesis H-2, the remaining parameters remained
unmodified.

5 Results

To generate the experimental data needed to test the statistical hypotheses es-
tablished in Section 4, experiments for each hypothesis where declaretively for-
mulated in the test framework. These experiments where then automatically
executed on a 48 core PBS-compatible compute cluster. Generation of result
reports and visualizations is also automated by the framework.

17

Statistical Hypothesis H-1 Table 4 and Figure 2(a) show that TinyGP’s success
rates decrease as problem complexities increase. As the algorithm can get stuck
in local optima and basing RLD calculation on test data instead of training data
adds additional noise, this decrease is not strictly monotonic. Nonetheless, data
do not indicate that H-1 has to be rejected. During pre-experimental planning,
the Sine Cosine test problem proved too di�cult for the reference algorithm
(TinyGP), and was therefore excluded from the main experiments.

Statistical Hypothesis H-2 On both test functions studied, GMOGP-F shows
slightly better performance than the reference, as visible in Table 4. Hypoth-
esis H-2 does not have to be rejected. This concludes the analysis of the pre-
experimental planning phase.

Statistical Hypothesis H-3 As visible in Table 4, as well as in Figure 5, introducing
age as a secondary optimization criterion (GMOGP-FA) significantly increases
algorithm performance on the Newton Problem test function. Hypothesis H-3
holds.

Statistical Hypothesis H-4 In contrast, introducing complexity as a secondary
optimization criterion (GMOGP-FC) degrades algorithm performance in this
experimental framework, as visible in Table 4.

Statistical Hypothesis H-5 Introducing both complexity and age as additional
optimization criteria (GMOGP-FCA) also degrades algorithm performance in
comparison with the single-objective case (GMOGP-F), but not so much as
GMOGP-FC.

Table 4. Run length distributions at 250, 000 fitness function evaluations.

Di�culty (# Spurious Variables)
Search Heuristic Test Function 1 2 3 4 5 6 7 8 9 10

TinyGP
Simple Sine 95 75 70 65 55 55 50 50 55 30
Newton Problem 80 80 60 70 60 35 40 45 35 10
Sine Cosine 10 20 20 15 10 0 5 15 5 5

GMOGP-F
Simple Sine 100 100 100 100 100 100 100 95 100 95
Newton Problem 90 90 90 80 50 75 65 55 40 30

GMOGP-FA
Simple Sine 100 100 100 100 100 95 100 100 100 100
Newton Problem 100 100 85 85 80 95 80 75 65 55

GMOGP-FC
Simple Sine 100 85 100 80 65 85 75 90 75 70
Newton Problem 65 60 30 30 15 10 20 15 0 5

GMOGP-FCA
Simple Sine 100 100 100 100 100 95 95 95 100 90
Newton Problem 95 80 75 50 30 50 60 55 35 35

18

Fig. 1. Run length distribution plots: The number of fitness function evaluations are
shown on the x-axis, algorithm success rates (test fitness ¡ 0.1) are shown on the y-
axis. Each plot shows 10 di�culty levels (number of spurious variables) of a single test
function for a single search heuristic. For each combiniation of search heuristic, test
function, and di�culty level, 20 independent GP runs were performed.

simple_sine_tinygp (Test Fitness < 0.1)

Fitness Evaluations

R
LD

 (%
)

0

20

40

60

80

100

50000 100000 150000 200000 250000

Spur. Var.
1
2
3
4
5
6
7
8
9

10

(a) Simple Sine test function, TinyGP search
heuristic

simple_sine_gmogp_fa (Test Fitness < 0.1)

Fitness Evaluations

R
LD

 (%
)

0

20

40

60

80

100

50000 100000 150000 200000 250000

Spur. Var.
1
2
3
4
5
6
7
8
9

10

(b) Simple Sine test function, GMOGP-FA
search heuristic

newton_tinygp (Test Fitness < 0.1)

Fitness Evaluations

R
LD

 (%
)

0

20

40

60

80

100

50000 100000 150000 200000 250000

Spur. Var.
1
2
3
4
5
6
7
8
9

10

(c) Newton Problem test function, TinyGP
search heuristic

newton_gmogp_fa (Test Fitness < 0.1)

Fitness Evaluations

R
LD

 (%
)

0

20

40

60

80

100

50000 100000 150000 200000 250000

Spur. Var.
1
2
3
4
5
6
7
8
9

10

(d) Newton Problem test function,
GMOGP-FA search heuristic

19

6 Discussion and Conclusions

In relation to hypotheses H-1 and H-2, it became clear that the scalable test func-
tion set based on the introduction of spurious variables works as expected on all
studied search heuristics. TinyGP could be established as a practical reference
algorithm. Therefore, a conceptual framework for statistically well-founded com-
parisons the relative performance benefits ofGP system components is available.
An R prototype realizing this framework in software is actively developed.

Within this framework, experiments show that GMOGP-F is competitive
with TinyGP, i.e. that a simple generational search heuristic is a viable re-
placement for steady-state heuristics more common in GP. Introducing an age
criterion (GMOGP-FA) improves GP performance significantly. On the other
hand, the introduction of a complexity criterion (GMOGP-FC and GMOGP-
FCA) does not result in the expected performance gain, contrary to results from
literature. This indicates an implementation or parameterization problem, which
demands further investigation. As all experiments where conducted with default
parameters, parameter optimization via SPO should help to provide optimal
parameter settings. This matter shows the value of the test framework as an
automated tool for discovering possible implementation and parameterization
problems.

7 Outlook

Only the most basic features of the test framework were demonstrated in this
chapter, many extensions are available or under active development. These in-
clude additional classes of scalable test functions, additional performance mea-
sures, additional result visualizations, tools for testing the statistical significance
of performance di↵erences in GP components, and tools for parameter optimiza-
tion.

In further work, the applicability of the additional scalable test function
classes will be experimentally analyzed. A study on automatic parameter tuning
for TinyGP, GMOGP and DataModeler based on SPOT will be conducted to
obtain statistically reliable results on the sensitivity of di↵erent GP systems to
their parameter settings. This statistical analysis requires enhanced experimental
designs, e.g., nested and split-plot designs, which are subject of our current
research.

In summary, the hypotheses-driven approach encouraged by the framework
introduced in this chapter, should lead to statistically validated results of high
reproducibility. In the future, this framework will be applied to study the perfor-
mance characteristics of real-world GP systems based on a larger set of realistic
scalable test problem classes.

Acknowledgements This work was supported the Bundesministerium für Bildung
und Forschung (BMBF) under the grant FIWA (AiF FKZ 17N2309). Many
thanks to Dr. Boris Naujoks, Tobias Brandt, and Jörg Stork for valuable ideas
and suggestions.

20

References

1. T. Bartz-Beielstein. Experimental Research in Evolutionary Computation—The
New Experimentalism. Natural Computing Series. Springer, Berlin, Heidelberg,
New York, 2006.

2. T. Bartz-Beielstein. SPOT: An R package for automatic and interactive tuning
of optimization algorithms by sequential parameter optimization. CIOP Technical
Report 05/10, Research Center CIOP (Computational Intelligence, Optimization
and Data Mining), Cologne University of Applied Science, Faculty of Computer
Science and Engineering Science, June 2010. Comments: Related software can be
downloaded from http://cran.r-project.org/web/packages/SPOT/index.html.

3. N. Beume, B. Naujoks, and M. Emmerich. SMS-EMOA: Multiobjective selection
based on dominated hypervolume. European Journal of Operational Research,
181(3):1653–1669, 2007.

4. K. Deb, S. Agrawal, A. Pratab, and T. Meyarivan. A Fast Elitist Non-
Dominated Sorting Genetic Algorithm for Multi-Objective Optimization: NSGA-
II. In M. Schoenauer, K. Deb, G. Rudolph, X. Yao, E. Lutton, J. J. Merelo, and
H.-P. Schwefel, editors, Proceedings of the Parallel Problem Solving from Nature
VI, pages 849–858, Berlin, Heidelberg, New York, 2000. Springer.

5. O. Flasch, O. Mersmann, and T. Bartz-Beielstein. RGP: An open source genetic
programming system for the R environment. In M. Pelikan and J. Branke, editors,
Genetic and Evolutionary Computation Conference, GECCO 2010, Proceedings,
Portland, Oregon, pages 2071–2072. ACM, 2010.

6. I. A. Kiesepp. Akaike information criterion, curve-fitting and the philosophical
problem of simplicity. British Journal for the Philosophy of Science, 48:21–48,
1997.

7. P. Koch, B. Bischl, O. Flasch, T. B. Beielstein, and W. Konen. On the tuning and
evolution of support vector kernels. CIOP Technical Report 04/11, Research Cen-
ter CIOP (Computational Intelligence, Optimization and Data Mining), Cologne
University of Applied Science, Faculty of Computer Science and Engineering Sci-
ence, March 2011.

8. M. F. Korns. Accuracy in symbolic regression. In R. Riolo, E. Vladislavleva, and
J. H. Moore, editors, Genetic Programming Theory and Practice IX, Genetic and
Evolutionary Computation, pages 129–151. Springer New York, 2011.

9. M. Kotanchek, G. Smits, and E. Vladislavleva. Pursuing the pareto paradigm
tournaments, algorithm variations & ordinal optimization. In R. L. Riolo, T. Soule,
and B. Worzel, editors, Genetic Programming Theory and Practice IV, volume 5 of
Genetic and Evolutionary Computation, chapter 12, pages 167–186. Springer, Ann
Arbor, 2006.

10. M. Kotanchek, G. Smits, and E. Vladislavleva. Trustable symoblic regression mod-
els. In R. L. Riolo, T. Soule, and e. Worzel, Bill, editors, Genetic Programming
Theory and Practice V, pages 203–222, 2007.

11. J. R. Koza. Genetic Programming: On the Programming of Computers by Means
of Natural Selection. MIT Press, Cambridge, MA, 1992.

12. A. J. Parkes and J. P. Walser. Tuning local search for satisfiability testing.
In Proceedings of the Thirteenth National Conference on Artificial Intelligence
(AAAI’96), pages 356–362, 1996.

13. A. Z. Pinkus and S. Winitzki. Yacas: A do-it-yourself symbolic algebra environ-
ment. In Proceedings of the Joint International Conferences on Artificial Intel-
ligence, Automated Reasoning, and Symbolic Computation, AISC ’02/Calculemus
’02, pages 332–336. Springer, 2002.

21

14. R Development Core Team. R: A Language and Environment for Statistical Com-
puting. R Foundation for Statistical Computing, Vienna, Austria, 2011. ISBN
3-900051-07-0.

15. M. Schmidt and H. Lipson. Distilling free-form natural laws from experimental
data. Science, 324(5923):81–85, April 2009.

16. M. D. Schmidt and H. Lipson. Age-fitness pareto optimization. In Proceedings
of the 12th annual conference on Genetic and evolutionary computation, GECCO
’10, pages 543–544, New York, NY, USA, 2010. ACM.

17. G. Smits and E. Vladislavleva. Ordinal pareto genetic programming. In G. G. Yen
et al., editors, Proceedings of the 2006 IEEE Congress on Evolutionary Computa-
tion, pages 3114–3120, Vancouver, BC, Canada, 16-21 July 2006. IEEE Press.

18. E. Vladislavleva. Model–based Problem Solving through Symbolic Regression via
Pareto Genetic Programming. PhD thesis, Tilburg University, 2008.

19. D. R. White. Software review: the ecj toolkit. Genetic Programming and Evolvable
Machines, 13(1):65–67, 2012.

