
Contents

1

Empirical Analysis of Genetic Programming System Performance 1

Oliver Flasch and Thomas Bartz-Beielstein

Chapter 1

A FRAMEWORK FOR THE EMPIRICAL
ANALYSIS OF GENETIC PROGRAMMING
SYSTEM PERFORMANCE

Oliver Flasch and Thomas Bartz-Beielstein
Cologne University of Applied Sciences, Germany

Abstract This chapter introduces a framework for statistical sound, reproducible
empirical research in Genetic Programming (GP). It provides tools to
understand GP algorithms and heuristics and their interaction with prob-
lems of varying difficulty. Following an approach where scientific claims
are broken down to testable statistical hypotheses andGP runs are treated
as experiments, the framework helps to achieve statistically verified results
of high reproducibility.

Keywords: Genetic Programming, Symbolic Regression, Design of Experiments, Se-
quential Parameter Optimization, Reproducible Research, Multi-Objective
Optimization

1. Introduction

This chapter introduces a framework for empirical analysis of Genetic
Programming (GP) system components and their influence on GP per-
formance. Main ideas are borrowed from the empirical approach to re-
search in evolutionary computation described in Bartz-Beielstein, 2006.
Performing a well-founded experimental analysis provides valuable in-
sight into GP components.

In current GP research, much repeated work in experimental plan-
ning, setup and result analysis is required when proposing improvements
inGP system components such as selection and variation operators, indi-
vidual representations, or search heuristics. To measure the performance
benefit of an improved GP system component, a set of test functions has
to be implemented, GP system parameters have to be chosen, experi-
ments have to be designed and a statistical result analysis has to be

2 Genetic Programming Theory and Practice V

conducted. As obtaining results of statistical significance often requires
many independent runs, distributed execution is necessary.

While this effort is necessary for GP research, it might constitute a
barrier of entry to newcomers. Even worse, time spent re-implementing
GP research infrastructure is lost for working on core issues. As each
group working in GP research has to provide not only their own GP
system, but also supporting infrastructure often tightly coupled to local
conditions, reproducing results is often difficult. Fortunately, much of
the infrastructure for reproducible research in GP can be provided as a
framework and implemented as open-source software.

Today, several high quality GP systems exist that could constitute
the basis of this framework. For instance, DataModeler is a flexible
high-performance GP system geared to real-world symbolic regression.
(Vladislavleva, 2008; Kotanchek et al., 2007; Smits and Vladislavleva,
2006) RGP1 is an open-source GP system based on the statistical soft-
ware environment R. (Flasch et al., 2010; R Development Core Team,
2011) Compared to DataModeler system, RGP is still quite immature,
yet basic features for multi-objective typed GP are implemented effi-
ciently.

The framework introduced in this chapter is applicable to most GP
systems. Presently, a prototype hosted by the statistical software envi-
ronment R exists, supporting the RGP system. Currently, the frame-
work has the following features:

a modularGP system fast enough for real-world applications (RGP)
a set of test problems of scalable difficulty
tools for automatic parameter tuning based on the sequential pa-
rameter optimization toolbox (SPOT) (Bartz-Beielstein, 2010)
tools for statistical analysis of GP results
tools for result visualization and automated result reporting
support for distributed execution compute clusters

The framework’s implementation is under active development and will
be published as a supplemental part of the first author’s PhD thesis. A
preliminary version in form of an R package will be available on the
RGP website.

This chapter will introduce the framework by means of an example
study. To provide baseline results, the well-known TinyGP system (Poli,
2004) is examined on a small set of scalable symbolic regression test prob-
lems. Then, the performance benefits of several improvements to a still
simple GP system, Generational Multi-Objective GP (GMOGP), are

1The RGP package is available via the Comprehensive R Archive Network (CRAN) at http:

//cran.r-project.org/ or directly at http://rsymbolic.org/projects/show/rgp.

Empirical Analysis of Genetic Programming System Performance 3

studied empirically. Thus, the remainder of this chapter is structured
as follows: Section 2 introduces the different GP search heuristics con-
sidered in the example study. Scalable test problems are described in
Section 3. Section 4 introduces the experimental setup and formulates
research questions. Results are described in Section 5, which is followed
by a discussion and conclusions in Section 6. The chapter closes with an
outlook to further work in Section 7.

2. GP Search Heuristics

In this work, the termGP search heuristic denotes the concrete search
strategy used in a GP system, which is in principle independent of the
concrete GP search space. Classical GP uses a steady state Genetic
Algorithm (GA) with tournament selection to search genotype space. In
the GP literature, many different concrete variants have been described.
It is possible to de-couple the search heuristic from the search space,
giving rise to a wide variety of possible hybrid algorithms.

Historically, every GP system implemented its own search heuristics,
while exhaustive comparisons of GP search heuristics, isolated from the
concrete GP search space, are scarce. Many modern GP systems of-
ten employ multi-objective evolutionary algorithms (EMOAs) as search
heuristic. Steady state algorithms with Pareto tournament selection
seem to be the predominant EMOA variants used in modern GP sys-
tems. In simple GP systems mainly designed for research and teaching,
single-objective steady state evolutionary algorithms (EAs) with tour-
nament selection are still widespread.

This section describes the two GP search heuristics examined in this
example study. The firstGP search heuristic selected for this study is the
straight forward single-objective tournament selection-based TinyGP
search heuristic. The second GP search heuristic is based on a genera-
tional multi-objective EA and adds modern means of controlling bloat
and preserving population diversity.

Common Components

The components of a GP system responsible for individual initializa-
tion and variation (i.e. mutation and recombination) are in principle
independent of the search heuristic. The same applies to the concrete
individual representation and the means used for individual evaluation.
As the main focus of the study lies on comparing the performance of
different search heuristics, classical tree GP variants of these common
components were used. (Koza, 1992) Parameters of these common com-

4 Genetic Programming Theory and Practice V

Table 1-1. Parameters of the RGP system independent of the search heuristic used.

Variable (Symbol) Domain Default

Subtree Mutation Probability mutationSubtreesP (pmst) [0, 1] 1

3

Subtree Mut. Insert/Delete Prob. mutationSubtreesPinsertDelete [0, 1] 0.5
Subtree Mut. Subtree Prob. mutationSubtreesPsubtree [0, 1] 0.9
Subtree Mut. Constant Prob. mutationSubtreesPconstant [0, 1] 0.5
Subtree Mut. Constant Minimum mutationSubtreesConstantMin R -1
Subtree Mut. Constant Maximum mutationSubtreesConstantMax R 1
Subtree Mut. Depth Maximum mutationSubtreesDepthMax N 2
Function Mutation Probability mutationFunctionsP (pfun) [0, 1] 1

3

Constant Mutation Probability mutationConstantsP (pcon) [0, 1] 1

3

Constant Mut. Mean mutationConstantsMu R 0
Constant Mut. SD mutationConstantsSigma R 1

Individual Size Limit individualSizeLimit N 64
Error Measure errorMeasure G → R sample rmse

ponents are shown in Table 1-1. Default parameters were used for all
experiments.

TinyGP

TinyGP is a popular small GP implementation mainly used in teach-
ing. It implements a simple steady-state single-objective search heuristic
with tournament selection that is loosely based on Koza’s work on GP.
(Koza, 1992) The TinyGP search heuristic can be seen as a deliberately
minimal single-objective example for the popular class of steady-state
GP search heuristics. For this reason, it was implemented in RGP and
included in this study as a reference.

Selection Strategy. Tournament selection in TinyGP proceeds as
follows: First, an individual is selected from the population by uniform
random sampling as the current winner. This individual’s fitness is then
compared to competitors stournament times. Each time a competitor has
a better (smaller) fitness value, it takes the place as the current winner.
Competitors are chosen by uniform random sampling from the entire
population. Therefore, there is a non-zero probability that the same
individual enters the same tournament multiple times.

The negative tournament selection operator employs the same strat-
egy, its only difference being that the order relation < is being replaced
by its converse >, so that the worst individual taking part in the tour-
nament is returned as result.

Algorithm Structure. In the first step of the algorithm, a popu-
lation pop(0) of µ random individuals is created. Next, the steady-state
evolution process starts by randomly selecting either a recombination or
a mutation operator. The probability for selecting the recombination

Empirical Analysis of Genetic Programming System Performance 5

Table 1-2. Parameters of the TinyGP search heuristic.

Variable (Symbol) Domain Default

Population Size mu (µ) N 300
Tournament Size tournamentSize (stournament) N 2
Recombination Probability recombinationProbability (prec) [0, 1] 0.9

operator is given by the parameter prec. In case of recombination, the
algorithm selects two parents via two independent tournaments of size
stournament. In case of mutation, a single parent is chosen in a single
tournament. In both cases, a single child is creating by applying the
chosen variation operator to the parent(s). Next, the algorithm chooses
an individual to replace by this child in a single negative tournament of
size stournament. This process is repeated until a predefined termination
criterion is met.

Diversity Preservation. The TinyGP system does not implement
any internal means of diversity preservation.

Parameters. Table 1-2 gives all parameters of the TinyGP search
heuristic.

Generational Multi-Objective GP

Generational Multi-Objective GP (GMOGP) is aGP search heuristic
that combines ideas of multi-objective GP search heuristics with ideas
of generational multi-objective evolutionary algorithms.

Selection Strategy. The selection operator is based on non-
dominated sorting (NDS) of the selection pool based on the three crite-
ria goodness of fit on training data, genotypic complexity, and genotypic
age. Ties in the NDS are broken by crowding distance, as in the well-
established NSGA-II EMOA. (Deb et al., 2000)

The additional selection criteria can be enabled individually, yielding
three configurations:

single-objective selection based on goodness of fit (GMOGP-F)
multi-objective selection based on goodness of fit and individual
age (GMOGP-FA)
multi-objective selection based on goodness of fit and individual
complexity (GMOGP-FC)
multi-objective selection based on goodness of fit, individual age,
and genotypic individual complexity (GMOGP-FCA)

6 Genetic Programming Theory and Practice V

Table 1-3. Parameters of the GMOGP search heuristic.
Variable (Symbol) Domain Default

Population Size mu (µ) N 300
Children per Generation lambda (λ) N 20
New Individuals per Generation nu (ν) N0 1
Enable Complexity Criterion complexityCriterion B true
Enable Age Criterion ageCriterion B true
Recombination Probability recombinationProbability (prec) [0, 1] 0.1

Algorithm Structure. GMOGP is based on a generational (µ+λ)
strategy. After creating an initial population pop(0) of µ random individ-
uals, the iterative evolution process starts by choosing λ pairs of parents
by uniform random sampling without replacement. Pairwise recombina-
tion is applied before mutation, yielding λ children. Next, µ individuals
are chosen from the (µ+ λ+ ν)-sized set union of parents, children and
ν newly initialized individuals by the Pareto selection operator detailed
in the next paragraph, replacing the parent population. This iterative
process is stopped when a predefined termination criterion is met.

Diversity Preservation. GMOGP implements elements of the
Age-Fitness Pareto Optimization (AFPO) algorithm for preserving geno-
typic diversity. (Schmidt and Lipson, 2010) This diversity preservation
mechanism can be disabled by setting the parameter Age Layering to
false.

Parameters. Table 1-3 presents all parameters of the GMOGP
search heuristic. These parameters are subject to the following con-
straint on the children set size:

λ ≤
⌊µ

2

⌋

3. Scalable Test Functions

Test problems of controllable difficulty, i.e. scalable test functions, are
a flexible tool for assessing the relative performance benefits of different
GP system components under varying conditions. This study focuses
on symbolic regression. Unfortunately, defining finely scalable test func-
tions for symbolic regression holds many challenges. Conventional mea-
sures of problem difficulty, such as information criteria (Kiesepp, 1997),
that are good predictors for the performance of fixed-structure mod-
elling approaches like modern statistical regression techniques, often fail
to predict the performance of symbolic regression runs. See Section 4 for
definitions of performance measures for symbolic regression. Symbolic

Empirical Analysis of Genetic Programming System Performance 7

regression on test functions of comparatively simple structure can prove
extremely difficult for state-of-the-art symbolic regression systems. (
Korns, 2011)

The framework described in this chapter implements multiple scalable
test problem classes for symbolic regression, including test functions
with spurious variables. This class of scalable test problems is based
on the simple yet very effective idea of adding spurious variables to the
set of fitness cases to conceal the true functional dependency between
driving variables and output for arbitrary test functions. (Kotanchek
et al., 2006) To increase the difficulty of a given function, additional
function arguments (spurious variables) are added that do not influence
the function value. As this fact is hidden from the symbolic regression
system, and spurious variables might be correlated with the function
value by chance, problem difficulty can be gradually increased in fine-
grained steps by increasing the number of spurious variables.

Spurious Variable Test Functions

In the experiments conducted for this study, the three scalable test
functions described below were used. For each test function, 1 to 10
spurious variables were added to gradually increase problem difficulty.
Fitness cases were created by uniform random sampling in the indicated
training and test intervals. Both training and test set consisted of the
number of fitness cases indicated below.

P1 (Simple Sine). Discovering the input-output relation of the
simple sine function should be trivial even for a very simple symbolic
regression system, if no spurious variables are introduced.

fP1(x1) := sin(πx1)

The factor π has been introduced to test the GP system’s capability of
fitting constants. The training interval of the Simple Sine test function
is fixed to [−π, π], the test interval is fixed to [−3

2
π, 3

2
π], and the number

of fitness cases, i.e. the test function sample size, is fixed to NP1 := 32.
The GP function set used with this test function is {+,−, ∗, /, sin}.

P2 (Newton Problem). Compared to the Simple Sine, the Newton
Problem poses a slightly harder test case, as the true expression has
slightly larger genotypic size. It was included in this study as a more
practical example based on a well known natural law.

fP2(x1, x2, x3) :=
x1x2
x2
3

8 Genetic Programming Theory and Practice V

The training interval of the Newton Problem test function is (0, 1], the
test interval (0, 2], and the number of fitness cases is fixed to NP2 := 64.
The GP function set used with this test function is {+,−, ∗, /}.

P3 (Sine Cosine). This test function is a simplified variant of test
problem (P12) given in Michael F.Korn’s work on accuracy in symbolic
regression. (Korns, 2011) It is considered difficult because it constraints
constants as arguments to non-linear functions.

fP3(x1, x2) := 6 sin(x1 − 3) cos(x2 − 3)

The training interval of the Sine Cosine test function is [−π, π], the test
interval [−3

2
π, 3

2
π], and the number of fitness cases is fixed to NP3 := 128.

The GP function set used is {+,−, ∗, /, sin, cos}.

4. Experimental Setup

Following the experimental framework presented by Bartz-Beielstein,
2006, a sound experimental setup requires specification of the (1) opti-
mization problem, (2) performance measure, (3) initialization method,
and (4) termination method.

Optimization Problems in GP

Optimization problems in GP have two components: (a) a test func-
tion, say f , and (b) a measure, which determines the distance between

the true function f and its GP approximation, say f̂ . Test functions
were presented in Section 3. The measure, which will be used in our
comparisons can be described as follows: Consider an input value, say
xi, a prediction model f̂(x), and the true value yi. The prediction model

f̂ is estimated by GP from a training sample. The loss function, which
measures the errors between the yi’s and the f̂(xi)’s, is defined as

L(y, f̂(x)) = (y − f̂(x))2.

The training error is the square root of the average loss over the training
sample

√

√

√

√

1

N

N
∑

i=1

L(yi, f̂(xi)),

where N denotes the number of fitness cases as introduced in Section 3.
This value depends on the test function, e.g., N = 32 was chosen for
fP1.

Empirical Analysis of Genetic Programming System Performance 9

1 During the pre-experimental planning phase, a large number of
function evaluations n0, the so-called budget, is used the determine
an adequate percentage ofGP runs that reach a pre-defined (small)
distance to the optimum.

2 Run length distributions (RLDs), as introduced by Parkes and
Walser, 1996, are generated to estimate a suitable budget n ≤ n0

for the actual experiments.
To avoid floor and ceiling effects, we determine an adequate problem

design, e.g., number of function evaluations as well as reasonably chosen
training, validation, and test sets.

Performance Measures

To avoid overfitting, the test error E[L(yt, f̂(xt)], i.e., the expected
prediction error over an independent test sample xt, is preferred. The
comparison of the algorithm designs is based on these test-set data. In
addition to our considerations, we will sketch out further enhancements
of our testing framework: Typically, models will have tuning parameters,
say α, so we can describe predictions as f̂α(x). In forthcoming steps of
our experimental analysis, we are interested in finding good α values
while avoiding overfitting, i.e., two different problems are to be solved:
First, estimating the performance of different models f̂α in order to
chose the best model, and second, estimating its prediction error on new
data. If sufficient data is available, the data set can be partitioned into
a training set xtrain, a validation set xval, and a test set xtest.

Initialization and Termination Methods

Classical ramped half-and-half initialization was used in all experi-
ments. (Koza, 1992) To determine suitable termination methods, RLDs
were generated. The number of fitness case evaluations, i.e., the number
of fitness cases times the number of test function evaluations was chosen
as the termination criterion.

Research Questions

TinyGP is considered as a reference algorithm, which implements es-
sential GP features. A common belief in the GP community can be
stated as follows:

Scientific Claim 1 Complex problems require complex algorithms.

Or, stated differently: TinyGP can solve tiny problems whereas hard
problems require more complex algorithms.

10 Genetic Programming Theory and Practice V

From a naive point of view, Claim 1 goes without saying—one may
simply consider that the opposite assumption is true. Therefore, it can
be taken as a guideline for performing experiments and present results
that are based on solid scientific and statistical assumptions. We will
proceed as follows: In order to perform a sound statistical analysis,
we will define a hierarchy of complex (hard) problems. Scalable test
functions as introduced before are well suited for our goals: increasing
the number of spurious variables should decrease the success rate of the
GP system.

Then we will define a reference GP implementation that comprehends
the essential features of GP systems in a very simple and understand-
able manner. The TinyGP system is considered as an ideal candidate,
because it is well-known, easy to obtain, and easy to implement.

Pre-Experimental Planning

During the first stage of our experiments, no parameter tuning will be
performed. Our main goal is to discover (positive) correlations between
algorithm complexity and problem difficulty using default algorithm pa-
rameter settings.

First experiments were set up to calibrate the reference algorithm,
i.e., TinyGP, to the problem.

Statistical Hypothesis 1 (H-1) TinyGP requires more function eval-
uations to reach the same success rate if the problem complexity in-
creases.

RLDs are suitable means to measure performance and to determine an
adequate budget. A large number of function evaluations, i.e. a budget
of n0 = 1e6, was chosen to generate the RLDs. The set of test functions
consists of {fP1, fP2, fP3}.

The investigation of H-1 has two significant results: First, we en-
sure that the reference algorithm is able to solve this problem (at least
it should be able to improve an existing candidate solution). Second,
the correct number of test function evaluations for comparisons is deter-
mined. We are able to detect test functions which are far too easy (or too
hard) for the reference algorithm. The case, that the reference algorithm
is unable to solve the test function needs further considerations.

Next, we introduce the baseline variant of the new algorithm, i.e.,
GMOGP-F, which should be analyzed.

Statistical Hypothesis 2 (H-2) GMOGP-F is competitive with the
reference algorithm.

To analyze H-2 the same setup as for H-1 was used.

Empirical Analysis of Genetic Programming System Performance 11

These two series of experiments belong to the pre-experimental plan-
ning phase, because they are needed to set up fair comparisons. If one
hypothesis has to be rejected, the experimental set up should be recon-
sidered, e.g., the set of test function should be modified or the compu-
tational budget should be increased.

Experiments

The third series of experiments is performed to analyze the influence
of new GP components on the algorithm’s performance. Here, we will
analyze new selection schemes, namely aging, complexity, and a combi-
nation of these two.

Statistical Hypothesis 3 (H-3) Introducing multi-objective selection
based on goodness of fit and individual age improves the GMOGP-F
performance.

To investigate H-3, the following setup was used. The set of test func-
tions consists of {fP1, fP2}, and a budget of n0 = 250, 000 was used. The
age criterion as described in Table 1-3 was set to true. With respect
to the experimental setup for hypothesis H-2, the remaining parameters
remained unmodified.

Statistical Hypothesis 4 (H-4) Introducing multi-objective selection
based on goodness of fit and individual complexity improves the GMOGP-
F performance.

To investigate H-4, a similar setup as for hypothesis H-3 was used. The
complexity criterion as described in Table 1-3 was set to true. With
respect to the experimental setup for hypothesis H-2, the remaining
parameters remained unmodified.

Statistical Hypothesis 5 (H-5) Introducing multi-objective selection
based on goodness of fit, individual age and individual complexity im-
proves the GMOGP-F performance.

To investigate H-5, a similar setup as for hypothesis H-3 was used. The
complexity as well as the age criterion (Table 1-3) was set to true. With
respect to the experimental setup for hypothesis H-2, the remaining
parameters remained unmodified.

5. Results

To generate the experimental data needed to test the statistical hy-
potheses established in Section 4, experiments for each hypothesis were
performed.

12 Genetic Programming Theory and Practice V

Table 1-4. Run length distributions at 250, 000 fitness function evaluations.

Difficulty (# Spurious Variables)
Search Heuristic Test Function 1 2 3 4 5 6 7 8 9 10

TinyGP
Simple Sine 95 75 70 65 55 55 50 50 55 30
Newton Problem 80 80 60 70 60 35 40 45 35 10
Sine Cosine 10 20 20 15 10 0 5 15 5 5

GMOGP-F
Simple Sine 100 100 100 100 100 100 100 95 100 95
Newton Problem 90 90 90 80 50 75 65 55 40 30

GMOGP-FA
Simple Sine 100 100 100 100 100 95 100 100 100 100
Newton Problem 100 100 85 85 80 95 80 75 65 55

GMOGP-FC
Simple Sine 100 85 100 80 65 85 75 90 75 70
Newton Problem 65 60 30 30 15 10 20 15 0 5

GMOGP-FCA
Simple Sine 100 100 100 100 100 95 95 95 100 90
Newton Problem 95 80 75 50 30 50 60 55 35 35

Statistical Hypothesis H-1. Table 1-4 and Figure 1-1 show that
TinyGP’s success rates decrease as problem complexities increase. As
the algorithm can get stuck in local optima and basing RLD calculation
on test data instead of training data adds additional noise, this decrease
is not strictly monotonic. Nonetheless, data do not indicate that H-1
has to be rejected. During pre-experimental planning, the Sine Cosine
test problem proved too difficult for the reference algorithm (TinyGP),
and was therefore excluded from the main experiments.

Statistical Hypothesis H-2. On both test functions studied,
GMOGP-F shows slightly better performance than the reference, as
visible in Table 1-4. Hypothesis H-2 does not have to be rejected. This
concludes the analysis of the pre-experimental planning phase.

Statistical Hypothesis H-3. As visible in Table 1-4, as well
as in Figure 1-1, introducing age as a secondary optimization crite-
rion (GMOGP-FA) significantly increases algorithm performance on
the Newton Problem test function. Hypothesis H-3 can not be rejected.

Statistical Hypothesis H-4. In contrast, introducing complex-
ity as a secondary optimization criterion (GMOGP-FC) degrades al-
gorithm performance in this experimental framework, as visible in Ta-
ble 1-4. The hypothesis H-4 has to be rejected.

Statistical Hypothesis H-5. Introducing both complexity and age
as additional optimization criteria (GMOGP-FCA) also degrades algo-
rithm performance in comparison with the single-objective case (GMOGP-
F), but not so much asGMOGP-FC. Hypothesis H-5 has to be rejected.

Empirical Analysis of Genetic Programming System Performance 13

Figure 1-1. Run length distribution plots: The number of fitness function evaluations
are shown on the x-axis, algorithm success rates are shown on the y-axis. Each plot
shows 10 difficulty levels (number of spurious variables) of a single test function for
a single search heuristic. For each combination of search heuristic, test function, and
difficulty level, 20 independent GP runs were performed. The plots also illustrate that
harder test functions require more function evaluations to reach the same success rates
as simpler test functions.

0

20

40

60

80

100

0 50000 100000 150000 200000 250000
Fitness Evaluations

S
uc

ce
ss

 R
at

e
(%

)

Spur. Var.

1

2

3

4

5

6

7

8

9

10

simple_sine_tinygp (Test Fitness < 0.1)

(a) Simple Sine test function, TinyGP search
heuristic

0

20

40

60

80

100

0 50000 100000 150000 200000 250000
Fitness Evaluations

S
uc

ce
ss

 R
at

e
(%

)

Spur. Var.

1

2

3

4

5

6

7

8

9

10

simple_sine_gmogp_fa (Test Fitness < 0.1)

(b) Simple Sine test function, GMOGP-FA
search heuristic

0

20

40

60

80

100

0 50000 100000 150000 200000 250000
Fitness Evaluations

S
uc

ce
ss

 R
at

e
(%

)

Spur. Var.

1

2

3

4

5

6

7

8

9

10

newton_tinygp (Test Fitness < 0.1)

(c) Newton Problem test function, TinyGP search
heuristic

0

20

40

60

80

100

0 50000 100000 150000 200000 250000
Fitness Evaluations

S
uc

ce
ss

 R
at

e
(%

)

Spur. Var.

1

2

3

4

5

6

7

8

9

10

newton_gmogp_fa (Test Fitness < 0.1)

(d) Newton Problem test function, GMOGP-FA
search heuristic

14 Genetic Programming Theory and Practice V

6. Discussion and Conclusions

In relation to hypotheses H-1 and H-2, it became clear that the scal-
able test function set based on the introduction of spurious variables
works as expected on all studied search heuristics. TinyGP could be
established as a practical reference algorithm. Therefore, a conceptual
framework for statistically well-founded comparisons of the relative per-
formance benefits of GP system components is available. An R proto-
type realizing this framework in software is under development.

Within this framework, experiments show that GMOGP-F is com-
petitive with TinyGP, i.e. that a simple generational search heuristic
is a viable replacement for steady-state heuristics more common in GP.
The RLD plots of this chapter illustrate that harder test functions,
i.e. test functions with more spurious variables, require more function
evaluations to reach the same success rates as simpler test functions.
Introducing an age criterion (GMOGP-FA) improves GP performance
significantly. On the other hand, the introduction of a complexity crite-
rion (GMOGP-FC andGMOGP-FCA) does not result in the expected
performance gain, contrary to results from literature. This may indicate
an implementation or parameterization problem, demanding further in-
vestigation. As all experiments were conducted with default parameters,
parameter optimization via SPO should help to provide better param-
eter settings.

7. Outlook

Only basic features of the test framework were demonstrated in this
chapter. Many extensions are available, including tools for GP system
parameter optimization.

In further work, the usefulness of additional scalable test function
classes will be analyzed. A study on automatic parameter tuning for
TinyGP, GMOGP and DataModeler based on SPOT will be conducted
to investigate the sensitivity of GP systems to their parameter settings.
This statistical analysis requires enhanced experimental designs which
are subject of our research.

In summary, the hypotheses-driven approach encouraged by this frame-
work should lead to statistically validated results of high reproducibility.
In the future, this framework will be applied to study other GP systems
based on a larger set of realistic scalable test problem classes.

Acknowledgements. This work was supported the Bundesminis-
terium für Bildung und Forschung (BMBF) under the grant FIWA (AiF

Empirical Analysis of Genetic Programming System Performance 15

FKZ 17N2309). Many thanks to Boris Naujoks, Tobias Brandt, and
Jörg Stork for valuable ideas and suggestions.

References

Bartz-Beielstein, Thomas (2006). Experimental Research in Evolution-
ary Computation—The New Experimentalism. Natural Computing
Series. Springer, Berlin, Heidelberg, New York.

Bartz-Beielstein, Thomas (2010). SPOT: An R package for automatic
and interactive tuning of optimization algorithms by sequential pa-
rameter optimization. CIOP Technical Report 05/10, Research Center
CIOP (Computational Intelligence, Optimization and Data Mining),
Cologne University of Applied Science.

Deb, K., Agrawal, S., Pratab, A., and Meyarivan, T. (2000). A Fast
Elitist Non-Dominated Sorting Genetic Algorithm for Multi-Objective
Optimization: NSGA-II. In Schoenauer, M. et al., editors, Proceedings
of the Parallel Problem Solving from Nature VI, pages 849–858, Berlin,
Heidelberg, New York. Springer.

Flasch, Oliver, Mersmann, Olaf, and Bartz-Beielstein, Thomas (2010).
RGP: An open source genetic programming system for the R environ-
ment. In Pelikan, Martin and Branke, Jürgen, editors, Genetic and
Evolutionary Computation Conference, GECCO 2010, Proceedings,
Portland, Oregon, pages 2071–2072. ACM.

Kiesepp, I. A. (1997). Akaike information criterion, curve-fitting and the
philosophical problem of simplicity. British Journal for the Philosophy
of Science, 48:21–48.

Korns, Michael F. (2011). Accuracy in symbolic regression. In Riolo,
Rick, Vladislavleva, Ekaterina, and Moore, Jason H., editors, Ge-
netic Programming Theory and Practice IX, Genetic and Evolutionary
Computation, pages 129–151. Springer New York.

Kotanchek, Mark, Smits, Guido, and Vladislavleva, Ekaterina (2006).
Pursuing the pareto paradigm tournaments, algorithm variations &
ordinal optimization. In Riolo, Rick L., Soule, Terence, and Worzel,
Bill, editors, Genetic Programming Theory and Practice IV, volume 5
of Genetic and Evolutionary Computation, chapter 12, pages 167–186.
Springer, Ann Arbor.

Kotanchek, Mark, Smits, Guido, and Vladislavleva, Ekaterina (2007).
Trustable symoblic regression models. In Riolo, Rick L., Soule, Ter-
ence, and Worzel, Bill, editors, editors, Genetic Programming Theory
and Practice V, pages 203–222.

Koza, John R. (1992). A genetic approach to the truck backer upper
problem and the inter-twined spiral problem. In Proceedings of IJCNN

16 Genetic Programming Theory and Practice V

International Joint Conference on Neural Networks, volume IV, pages
310–318. IEEE Press.

Parkes, A. J. and Walser, J. P. (1996). Tuning local search for satisfi-
ability testing. In Proceedings of the Thirteenth National Conference
on Artificial Intelligence (AAAI’96), pages 356–362.

Poli, R. (2004). TinyGP. See TinyGP GECCO 2004 competition at
http://cswww.essex.ac.uk/staff/sml/gecco/TinyGP.html.

R Development Core Team (2011). R: A Language and Environment
for Statistical Computing. R Foundation for Statistical Computing,
Vienna, Austria. ISBN 3-900051-07-0.

Schmidt, Michael D. and Lipson, Hod (2010). Age-fitness pareto op-
timization. In Proceedings of the 12th annual conference on Genetic
and evolutionary computation, GECCO ’10, pages 543–544, New York,
NY, USA. ACM.

Smits, G. and Vladislavleva, E. (2006). Ordinal pareto genetic program-
ming. In Yen, Gary G. et al., editors, Proceedings of the 2006 IEEE
Congress on Evolutionary Computation, pages 3114–3120, Vancouver,
BC, Canada. IEEE Press.

Vladislavleva, Ekaterina (2008). Model–based Problem Solving through
Symbolic Regression via Pareto Genetic Programming. PhD thesis,
Tilburg University.

