
Chapter 15
Sequential Model-Based Parameter
Optimization: an Experimental Investigation of
Automated and Interactive Approaches

Frank Hutter, Thomas Bartz-Beielstein, Holger H. Hoos, Kevin Leyton-Brown, and

Kevin P. Murphy

Abstract This work experimentally investigates model-based approaches for opti-

mizing the performance of parameterized randomized algorithms. Such approaches

build a response surface model and use this model for finding good parameter set-

tings of the given algorithm. We evaluated two methods from the literature that

are based on Gaussian process models: sequential parameter optimization (SPO)

(Bartz-Beielstein et al. 2005) and sequential Kriging optimization (SKO) (Huang

et al. 2006). SPO performed better “out-of-the-box,” whereas SKO was competitive

when response values were log transformed. We then investigated key design de-

cisions within the SPO paradigm, characterizing the performance consequences of

each. Based on these findings, we propose a new version of SPO, dubbed SPO+,

which extends SPO with a novel intensification procedure and a log-transformed

objective function. In a domain for which performance results for other (model-

free) parameter optimization approaches are available, we demonstrate that SPO+

achieves state-of-the-art performance. Finally, we compare this automated param-

eter tuning approach to an interactive, manual process that makes use of classical

Frank Hutter
Department of Computer Science, University of British Columbia, 201-2366 Main Mall, Vancou-
ver BC, V6T 1Z4, Canada, e-mail: hutter@cs.ubc.ca

Thomas Bartz-Beielstein
Institute of Computer Science, Cologne University of Applied Sciences, 51643 Gummersbach,
Germany, e-mail: thomas.bartz-beielstein@fh-koeln.de

Holger H. Hoos
Department of Computer Science, University of British Columbia, 201-2366 Main Mall, Vancou-
ver BC, V6T 1Z4, Canada, e-mail: hoos@cs.ubc.ca

Kevin Leyton-Brown
Department of Computer Science, University of British Columbia, 201-2366 Main Mall, Vancou-
ver BC, V6T 1Z4, Canada, e-mail: kevinlb@cs.ubc.ca

Kevin P. Murphy
Department of Computer Science, University of British Columbia, 201-2366 Main Mall, Vancou-
ver BC, V6T 1Z4, Canada, e-mail: murphyk@cs.ubc.ca

363T. Bartz-Beielstein et al. (eds.), Experimental Methods for the Analysis of Optimization
Algorithms, DOI 10.1007/978-3-642-02538-9_15, © Springer-Verlag Berlin Heidelberg 2010

364 F. Hutter, T. Bartz-Beielstein, H. H. Hoos, K. Leyton-Brown, and K. P. Murphy

regression techniques. This interactive approach is particularly useful when only

a relatively small number of parameter configurations can be evaluated. Because

it can relatively quickly draw attention to important parameters and parameter in-

teractions, it can help experts gain insights into the parameter response of a given

algorithm and identify reasonable parameter settings.

15.1 Introduction

Many high-performance algorithms—and, in particular, many heuristic solvers for

computationally challenging problems—expose parameters to allow end users to

adapt the algorithm to target applications. Optimizing parameter settings is thus

an important task in the context of developing, evaluating and applying such al-

gorithms. Recently, a substantial amount of research has been aimed at defining

effective, automated procedures for parameter optimization (also called algorithm
configuration or parameter tuning). More specifically, the goal is to find parameter

settings of a given target algorithm that optimize a given performance metric on a

given set (or distribution) of problem instances. The performance metric is usually

based on the runtime required to solve a problem instance or—in the case of opti-

mization problems—on the solution quality achieved within a given time budget.

Several variations of this problem have been investigated in the literature. These

formulations vary in the number and type of target algorithm parameters allowed.

Much existing work deals with relatively small numbers of numerical (often contin-

uous) parameters; see, e.g., Coy et al. (2001), Audet and Orban (2006), Adenso-Diaz

and Laguna (2006). Some relatively recent approaches permit both larger numbers

of parameters and categorical domains; see, e.g., Birattari et al. (2002), Beielstein

(2003), Bartz-Beielstein and Markon (2004), Bartz-Beielstein et al. (2004c), Hut-

ter et al. (2007, 2009b). A different problem formulation also permits parameter

adaptation on a per-instance basis; see, e.g., Hutter et al. (2006).

Approaches also differ in whether or not explicit models (so-called response
surfaces) are used to describe the dependence of target algorithm performance on

parameter settings. There has been a substantial amount of work on both model-

free and model-based approaches. Some notable model-free approaches include

F-Race by Birattari et al. (2002), Balaprakash et al. (2007), CALIBRA by Adenso-

Diaz and Laguna (2006), and ParamILS by Hutter et al. (2007). State-of-the-art

model-based approaches use Gaussian stochastic processes (also known as Krig-

ing models) to fit a response surface model. These models aim to minimize the

mean squared error between predicted and actual responses, using a nonparamet-

ric function to represent the mean response. One particularly popular and widely

studied version of Gaussian stochastic process models in the statistics literature is

known under the acronym DACE, for design and analysis of computer experiments
(Sacks et al. 1989). Combining such a predictive model with sequential decisions

about the most promising next design point (often based on a so-called expected im-
provement criterion) gives rise to a sequential optimization approach. An influential

15 Sequential Model-Based Parameter Optimization: An Experimental Investigation 365

contribution in this field was the efficient global optimization (EGO) procedure by

Jones et al. (1998), which addressed the optimization of deterministic black-box

functions. In the context of parameter optimization, EGO could be used to optimize

deterministic algorithms with continuous parameters on a single problem instance.

Two independent lines of work extended EGO to noisy functions, which in the con-

text of parameter optimization, allow the consideration of randomized algorithms:

the sequential Kriging optimization (SKO) algorithm by Huang et al. (2006), and

the sequential parameter optimization (SPO) procedure by Bartz-Beielstein et al.

(2004b, 2005).

In the first part of this chapter, we maintain this focus on Gaussian process (GP)
models; while in the second part, we consider the use of classical models in an

interactive approach. Throughout, we limit ourselves to the simple case of only

one problem instance. Such an instance may be chosen as representative of a set

or distribution of similar instances. This restriction allows us to sidestep problems

arising from performance variation across a set or distribution of problem instances

and to focus on other core conceptual issues, while retaining significant practical

relevance. (The management of such variation is an interesting and important topic

of study; indeed, we have already begun to investigate it in our ongoing work. We

note that this problem can be addressed by the algorithm of Williams et al. (2000),

though only in the case of deterministic target algorithms.)

This chapter leverages our own previous work in a number of ways. In partic-

ular, a short version of Sects. 15.1–15.5 was published by Hutter et al. (2009a).

Here, we formalize mathematical and algorithmic concepts from that paper much

more thoroughly and provide more details throughout. The general sequential opti-

mization approach using Kriging models has a long tradition in the statistics liter-

ature (Mockus et al. 1978, Jones et al. 1998) and was adapted to the optimization

of algorithm parameters by Bartz-Beielstein et al. (2004a,b). Bartz-Beielstein et al.

(2005) summarized results from SPO applications in various problem domains and

Bartz-Beielstein (2006) described SPO’s methodology in detail. Bartz-Beielstein

and Preuss (2006) and Bartz-Beielstein et al. (2008b) studied the allocation of a

fixed computational budget to SPO’s initial design and to the evaluation of each

parameter setting. The interactive approach used in Sect. 15.6 was first presented

by Beielstein (2003), Bartz-Beielstein (2003), and Bartz-Beielstein and Markon

(2004).

In the following, we use the term sequential parameter optimization (SPO) to

refer to the methodological framework, i.e., a sequential approach to improve and

understand an algorithm’s performance by optimizing its parameters. The sequential
parameter optimization toolbox (SPOT) is a software framework supporting both

automated and interactive applications of this approach. Further discussion of SPOT

is offered in Chap. 14, while the general SPO framework is presented in Chap. 2.

Finally, we study three fully-automatic SPO procedures, which we refer to as SPO

0.3, SPO 0.4, and SPO+. In the first part of the chapter, where we study these

procedures in detail, we sometimes also use the term SPO to refer to the algorithmic

framework of which SPO 0.3, SPO 0.4, and SPO+ are instantiations.

366 F. Hutter, T. Bartz-Beielstein, H. H. Hoos, K. Leyton-Brown, and K. P. Murphy

The first part of our study thoroughly investigates the two fundamental compo-

nents of any model-based optimization approach in this setting: the procedure for

building the predictive model and the sequential procedure that uses this model to

find performance-optimizing parameter settings of the target algorithm. We begin

in Sect. 15.2 by describing our experimental setup, focusing especially on the two

target algorithms we consider: CMA-ES (Hansen and Ostermeier 1996, Hansen and

Kern 2004), a prominent gradient-free numerical optimization algorithm, and SAPS

(Hutter et al. 2002), a high-performance local search algorithm for the propositional

satisfiability problem. In Sect. 15.3, we compare the model-based optimization pro-

cedures SKO and SPO. Overall, we found that SPO produced more robust results

than SKO in terms of the final target algorithm performance achieved. Consequently,

the remainder of our study focuses on the mechanisms that underly SPO.

In Sect. 15.4, we investigate the effectiveness of various methods for determining

the set of parameter settings used for building the initial parameter response model.

Here we found that using more complex initial designs did not consistently lead

to improvements over more naïve methods. More importantly, we also found that

parameter response models built from log-transformed performance measurements

tended to be substantially more accurate than those built from raw data (as used

by SPO). In Sect. 15.5, we turn to the sequential experimental design procedure.

We introduce a simple variation in SPO’s intensification mechanism which led to

significant and substantial performance improvements. Next, we consider two pre-

vious expected improvement criteria for selecting the next parameter setting to eval-

uate, and derive a new expected improvement criterion specifically for optimization

based on predictive models trained on log-transformed data. These theoretical im-

provements, however, did not consistently correspond to improvements in observed

algorithm performance. Nevertheless, we demonstrate that overall, our novel variant

of SPO—dubbed SPO+—achieved an improvement over the best previously known

results on the SAPS parameter optimization benchmark.

Section 15.6 presents the second part of our study, in which we investigate a dif-

ferent perspective on optimizing the parameters of an algorithm. Specifically, we

explore the interactive use of statistical tools in parameter optimization, which (like

automated tuning) is also supported by the SPOT. Our approach is based on re-
sponse surface methodology (RSM), which can be characterized as a collection of

mathematical and statistical techniques that are useful for the modeling and analysis

of problems in which a response of interest is influenced by several variables and the

objective is to maximize or minimize this response (Montgomery 2001, Beielstein

2003). We show how to assess the relative importance of each parameter as well as

interactions between parameters, and to manually refine the region of interest based

on this knowledge. While the automated tuning option requires nearly no statistical

knowledge, it can be computationally expensive. In contrast, the interactive option

requires some knowledge about statistics (especially classical regression analysis),

but can reduce computational costs and help the algorithm designer to learn which

parameters deserve attention. This is particularly useful in cases where target algo-

rithm evaluations are costly compared to the overall computational resources and

time available for the parameter optimization process.

15 Sequential Model-Based Parameter Optimization: An Experimental Investigation 367

Finally, Sect. 15.7 concludes the chapter with a discussion of advantages and

drawbacks of automated and interactive approaches and the identification of inter-

esting directions for future work.

15.2 Target Algorithms and Experimental Setup

Our first target algorithm was the covariance matrix adaptation evolution strategy
(CMA-ES). CMA-ES is a prominent gradient-free global optimization algorithm for

continuous functions (Hansen and Ostermeier 1996, Hansen and Kern 2004). It is

based on an evolutionary strategy that uses a covariance matrix adaptation scheme.

We used the Matlab implementation CMA-ES 2.54,1 which is integrated into the

SPO toolbox version 0.4 and was used as an example application for parameter op-

timization in the SPOT manual (Bartz-Beielstein et al. 2008a). CMA-ES has two

obvious parameters: the number of parents, NPARENTS, and a factor NU ≥ 1 re-

lating the number of parents to the population size. (The population size is defined as

�NPARENTS × NU + 0.5�.) Bartz-Beielstein et al. (2008a) modified CMA-ES’s

interface to expose two additional parameters: the “learning rate for the cumulation

for the step size control,” CS, and the damping parameter, DAMPS (for details,

see Hansen (2006), where NPARENTS, NU, CS, and DAMPS are called N , ν,
cσ , and dσ , respectively). We used exactly the same region of interest (ROI; also

called experimental region) considered in Bartz-Beielstein et al. (2008a)’s SPOT

example based on CMA-ES. Table 15.1 provides a summary of the target algo-

rithms, parameters, and regions of interest we used.

Table 15.1: Target algorithms, parameters, and the regions of interest (parameter domains) consid-
ered

Target algorithm Parameter Domain Type

NPARENTS [1, 50] integer
CMA-ES NU [2, 10] continuous

CS (0, 1] continuous
DAMPS [0.25, 0.99] continuous

α (1, 1.4] continuous
SAPS ρ [0, 1] continuous

Psmooth [0, 0.2] continuous
wp [0, 0.06] continuous

For each run of CMA-ES, we allowed a limited number of function evaluations

and used the resulting solution quality (i.e., the minimal function value found) as the

response variable to be optimized. We considered four canonical 10-dimensional

1 The newest CMA-ES version, 3.0, differs mostly in its interface and its support of “separable”
CMA (see the change log at http://www.lri.fr/~hansen/cmaes_inmatlab.html).

368 F. Hutter, T. Bartz-Beielstein, H. H. Hoos, K. Leyton-Brown, and K. P. Murphy

test functions with a global minimum function value of zero that were previ-

ously used in published evaluations of CMA-ES. Specifically, we considered the

Sphere function (used in the SPOT example mentioned above) and the Ackley,

Griewangk, and Rastrigin functions (used by Hansen and Kern (2004)). Follow-

ing Bartz-Beielstein et al. (2008a), for the Sphere function we initialized CMA-ES

at the point [10, ..., 10]T ∈ R10. To test global search performance, in the other

test functions we initialized CMA-ES further away from the optima, at the point

[20, ..., 20]T ∈ R10. For the first two functions, we optimized mean solution quality

reached by CMA-ES within 1, 000 function evaluations. For the latter two func-

tions, which are more challenging, we set a limit of 10, 000 function evaluations.

This setup is summarized in Table 15.2.

Table 15.2: Experimental setup for the CMA-ES test cases

Test function Dimensionality Initial point [·1 ∈ R10] # Function evaluations allowed

Sphere 10 10 1, 000
Ackley 10 20 1, 000

Griewangk 10 20 10, 000
Rastrigin 10 20 10, 000

The second target algorithmwe considered was Scaling And Probabilistic Smooth-
ing (SAPS) (Hutter et al. 2002), a high-performance dynamic local search algorithm

for the propositional satisfiability problem. We used the standard UBCSAT imple-

mentation (Tompkins and Hoos 2004) of SAPS and defined the region of interest

(Table 15.1) to closely follow an earlier parameter optimization study of SAPS

by Hutter et al. (2007), with the difference that we did not discretize parameter

values. (Hutter et al. did so because the parameter optimization procedure used in

that work required it.) For SAPS, our goal was to minimize median runtime (mea-

sured in local search steps) for solving the “quasigroups with holes” (QWH) SAT

instance used by Hutter et al. (2007). This instance belongs to a family of distribu-

tions that has received considerable interest in the SAT community. We chose this

particular instance to facilitate direct comparison of the performance achieved by

the parameter optimization procedures considered here and by Hutter et al. (2007).

To evaluate the qualityQ(θ) of a proposed parameter setting θ in an offline eval-

uation stage of the algorithm, we always performed additional test runs of the target

algorithm with setting θ. In particular, for the CMA-ES test cases, we computed

Q(θ) as the mean solution cost achieved by CMA-ES using θ across 100 test runs.

For the higher-variance SAPS domain, we computed Q(θ) as the median runtime

achieved by SAPS with setting θ across 1, 000 test runs. We define the solution cost
ck of a parameter optimization run after k runs of the target algorithm as the qual-

ity Q(θ) of the parameter setting θ the method would output if terminated at that

point. The final performance of a parameter optimization run is the performance at

the end of the run. In order to measure the performance of a parameter optimization

method, we performed 25 runs of the method with different random seeds, report-

ing mean and standard deviation of the final performance across these 25 repetitions.

15 Sequential Model-Based Parameter Optimization: An Experimental Investigation 369

Table 15.3: Summary of notation. The upper part of the table contains symbols used in the pseu-
docode, the middle part contains SPO parameters, and the lower part general notation

Symbol Meaning

Θ Space of allowable parameter settings (region of interest)
θ Parameter setting, element of Θ

θi:j Vector of parameter settings, [θi,θi+1, . . . , θj]
D Dimensionality of Θ (number of parameters to be tuned)
y Response variable (performance of target algorithm)

history Structure keeping track of target runs executed and responses, as well as incumbents
N(θ) Number of previous target algorithm runs with setting θ; depends on history
ĉ(θ) Empirical cost statistic over the N(θ) runs with θ (e.g., mean runtime); depends on history
M Predictive model

r Number of repeats in SPO (increases over time). Initial value: SPO parameter
maxR Maximal number of repeats in SPO

d Size of initial design in SPO
m Number of parameter settings to evaluate in each iteration in SPO
p Number of previous parameter setting to evaluate in each iteration of SPO+

Q(θ) Test quality (cost) of parameter setting θ
ck Solution cost Q(θ) of incumbent parameter setting θ at step k

We also performed paired Max-Wilcoxon signed rank tests for differences in final

performance. We chose a paired test because, using identical random seeds, the ith
repetition of every parameter optimization method used the same initial design and

response values. For the experiments in Sect. 15.5.3 this pairing did not apply, and

consequently, we used the (unpaired) Mann–Whitney U test instead.

15.3 Existing Methods for Sequential Model-Based Optimization
of Noisy Functions

In this section, we review two existing model-based optimization methods for

noisy responses: the sequential Kriging optimization (SKO) algorithm by Huang

et al. (2006), and the sequential parameter optimization (SPO) procedure by Bartz-

Beielstein et al. (2004b, 2005).

15.3.1 General Gaussian Process Regression

In order to model the dependence of a response variable (in our case, the perfor-

mance of a given target algorithm) on parameter settings, both SKO and SPO use

a form of Gaussian stochastic process, a nonparametric regression method that pre-

dicts both the mean and variance of a response variable. We first give the basic

370 F. Hutter, T. Bartz-Beielstein, H. H. Hoos, K. Leyton-Brown, and K. P. Murphy

equations for Gaussian process regression and then describe the differences in the

ways this approach is used by SKO and SPO.

To apply Gaussian process regression, first we need to select a parameterized ker-

nel function kλ : Θ×Θ → R+ that quantifies the similarity between two parameter

settings. We also need to set the variance σ2 of Gaussian-distributed measurement

noise. The predictive distribution of a zero-mean Gaussian stochastic process for

response yn+1 at input θn+1 given training data D = {(θ1, y1), . . . , (θn, yn)},
measurement noise with variance σ2, and kernel function k is then

p(yn+1|θn+1,θ1:n,y1:n) = N (yn+1|k∗T[K+σ2I]−1y1:n), k∗∗−k∗T(K+σ2I)−1,
(15.1)

where

K =

⎛⎜⎝k(θ1,θ1) . . . k(θ1,θn)
. . .

k(θn,θ1) . . . k(θn,θn)

⎞⎟⎠ (15.2)

k∗ = (k(θ1,θn+1), . . . , k(θn,θn+1)) (15.3)

k∗∗ = k(θn+1,θn+1) + σ2, (15.4)

I is the n-dimensional identity matrix, and p(a|b) = N (a|c, d) denotes that the

conditional distribution of a given b is a Gaussian with mean b and variance c; see,
e.g., Rasmussen and Williams (2006) for a derivation. A variety of kernel functions

can be used, the most common of which is of the form

K(θi,θj) =
d∑

k=1

exp(−λk(θik − θjk)
2), (15.5)

where λ1, . . . , λd are the kernel parameters. This kernel is most appropriate if the

response is expected to vary smoothly in the input parameters θ. The kernel parame-

ters and the observation noise variance σ2 constitute the hyper-parameters φ, which
are typically set by maximizing the marginal likelihood p(y1:N) with a gradient-

based optimizer. Using the chain rule, the gradient is

∂ log p(y1:N)

∂φj
=

∂ log p(y1:N)

∂(K + σ2I)

∂(K + σ2I)

∂φj
.

In noise-free Gaussian process models, the observation noise variance is fixed to

σ2 = 0.
Learning a Gaussian stochastic process model from data can be computationally

expensive. Inverting the n×nmatrix [K+σ2I] takes timeO(n3), and has to be done
in every step of the hyper-parameter optimization. Various approximations can be

used to reduce this toO(n2); see, e.g., Quinonero-Candela et al. (2007). We refer to

the process of optimizing hyper-parameters and computing the inverse as fitting the

model. Subsequent predictions are cheaper than fitting the model, requiring matrix-

vector multiplications and thus time O(n2). This is still substantially slower than

15 Sequential Model-Based Parameter Optimization: An Experimental Investigation 371

Algorithm Framework 15.1: Sequential model-based Optimization
Input : Target algorithm A
Output : Incumbent parameter setting θinc

[history, θinc] ← Initialize();
M ← ∅;
repeat

[M,θinc] ← FitModel(M, history, θinc);
Θnew ← SelectNewParameterSettings(M, θinc, history);
[history,θinc] ← Intensify(Θnew , θinc, M, history);

until TerminationCriterion() ;
return θinc;

Procedure 15.2: ExecuteRuns(history, θ, numRuns)

for i = 1, . . . , numRuns do
Execute target algorithm A with parameter setting θ, store response in y;
Append θ to history.θ;
Append y to history.y;

end
return history

prediction with a parametric model, the time complexity of which is independent of

n.

15.3.2 A Common Framework for Sequential Model-Based
Optimization

In this section, we describe SKO and SPO in a unified framework, which is outlined

in the form of pseudocode in Algorithm Framework 15.1. One common building

block of all parameter-optimization algorithms is a procedure that executes the tar-

get algorithm with a given parameter setting and stores the response. This build-

ing block is described in our Procedure 15.2, ExecuteRuns. On the first invocation,

history.θ and history.y are initialized to be empty lists.

Table 15.3 summarizes our notation and defines some global variables used in

SKO and SPO. Note in particularN(θ) and ĉ(θ);N(θ) denotes the number of runs

we have so far executed with a parameter setting θ, and ĉ(θ) denotes the empirical

performance across the N(θ) runs that have been performed for θ.

15.3.2.1 Initialization

We outline the initialization of SKO and SPO in Procedures 15.3 and 15.4, respec-

tively. Procedure Initialize() is called as

372 F. Hutter, T. Bartz-Beielstein, H. H. Hoos, K. Leyton-Brown, and K. P. Murphy

Procedure 15.3: Initialize() in SKO
Θ denotes the space of allowable parameter settings (the region of interest); D denotes
the number of parameters to be tuned.

k ← 10D;
θ1:k ← LatinHypercubeDesign(Θ, k);
for i = 1, . . . , k do

history ← ExecuteRuns(history, θi, 1);
end
θk+1:k+D ← the D settings θj out of θ1:k with smallest ĉ(θj);
for i = 1, . . . , D do

history ← ExecuteRuns(history, θk+i, 1);
end
θinc ← random element of argminθ∈{θ1,...,θd} ĉ(θ);
return [history, θinc];

Procedure 15.4: Initialize() in SPO
Θ denotes the space of allowable parameter settings (the region of interest). The number
of LHD parameter settings, d, and the number of repetitions, r, are parameters of SPO

θ1:d ← LatinHypercubeDesign(Θ, d);
for i = 1, . . . , d do

history ← ExecuteRuns(history, θi, r);
end
θinc ← random element of argminθ∈{θ1,...,θd} ĉ(θ);
history.Θhist ← {θinc};
return [history, θinc]

[history,θinc] = Initialize().

SKO starts with a Latin hypercube design of 10 × D parameter settings, where

D is the number of parameters to be optimized. It executes the target algorithm at

these settings and then performs an additional run for theD settings with the lowest

response. The incumbent θinc is chosen as the setting with the lowest empirical cost

ĉ(θ) out of these D settings. In SPO, d parameter settings are chosen with a Latin

hypercube design, and the target algorithm is executed r times for each of them; d
and r are algorithm parameters. In practice, the initial design size d is chosen as

the minimum number of points required to fit a reasonably accurate model. (Here,

we used d = 250 and r = 2 as discussed in Sect. 15.4.1; however, in the direct

comparison to SKO, we used the initial design of SKO within SPO to limit the

number of confounding factors in the comparison.) The incumbent θinc is chosen

as the parameter setting with the lowest empirical cost ĉ(θ).

15.3.2.2 Fit of Response Surface Model

Both SKO and SPO base their predictions on a combination of a linear model and

a Gaussian process (GP) model fit on the residual errors of the linear model. How-

15 Sequential Model-Based Parameter Optimization: An Experimental Investigation 373

Procedure 15.5: FitModel(M, history, θinc) in SKO
SKO sets its incumbent θinc based on the learnt model

if M == ∅ or last hyper-parameter optimization occurred more than n steps ago then
Fit GP modelM and hyper-parameters for data {(history.θi, history.yi)}i∈{1,...,n};

else
Fit GP model M for data {(history.θi, history.yi)}i∈{1,...,n}, re-using
hyper-parameters saved in previous M;

end
Θseen ← ⋃n

i=1{history.θi};
for all θ ∈ Θseen do

[μθ , σ
2
θ
] ← Predict(M, θ);

end
θinc ← random element of argminθ∈Θ(μθ + σθ);
return [M,θinc];

Procedure 15.6: FitModel(M, history, θinc) in SPO
Recall that ĉ(θ) is the cost statistic across all runs with setting θ. SPO does not update its
incumbent θinc in this procedure

Θseen ← ⋃n
i=1{history.θi};

Fit GP model M and hyper-parameters for data {θ, ĉ(θ)}θ∈Θseen
, using fixed σ2 = 0;

return [M,θinc];

ever, both of them default to using only a single constant basis function in the linear

model, thus reducing the linear model component to a constant offset term, the mean

response value. Throughout this chapter, we use these defaults; the model we use is

thus an offset term plus a zero-mean GP model. Our implementation of SPO uses

the DACE Matlab toolbox to construct this predictive model, while SKO imple-

ments the respective equations itself. The exact equations used in both SKO and the

DACE toolbox implement methods to deal with ill-conditioning; we refer the reader

to the original publications for details (Huang et al. 2006, Bartz-Beielstein 2006,

Lophaven et al. 2002).

Procedure FitModel is called as

[M,θinc] = FitModel(M, history,θinc). (15.6)

When it is first called, M = ∅. Note that FitModel may update the incumbent

configuration, θinc. SKO makes use of this, while SPO does not. (Instead, SPO

updates θinc in Procedure Intensify.)
SKO uses Gaussian process regression in the conventional manner to fit noisy re-

sponse data directly; we describe this in Procedure 15.5. Note that when a GP model

is trained directly on noisy response data, measurement noise is assumed to be nor-

mally distributed, an assumption that is violated in many applications of parameter

optimization. While distributions of solution qualities across multiple runs of a ran-

domized heuristic algorithm can often be approximated quite well with a Gaussian

distribution, it is well known that the distributions of runtimes of randomized heuris-

tic algorithms for solving hard combinatorial problems tend to exhibit substantially

374 F. Hutter, T. Bartz-Beielstein, H. H. Hoos, K. Leyton-Brown, and K. P. Murphy

fatter tails; see, e.g., Chap. 4 of Hoos and Stützle (2005). Also note that Gaussian

process regression assumes symmetric noise and fits the arithmetic mean of the re-

sponse that is used as input. Thus, if the inputs are raw response values, Gaussian

processes model mean response. Commonly, the response value is transformed in

order to yield a better model fit (see Sect. 15.4.2 for a more detailed discussion

of transformations). In particular, a log transformation appears to be reasonable in

many circumstances. However, note that under a log transformation, Gaussian pro-

cess regression fits the mean of the transformed response, which corresponds to the

geometric mean rather than the arithmetic mean of the true response.

As also described in Procedure 15.9, after fitting its model, SKO updates the

new configuration, θinc, based on the new model. The parameter setting that min-

imizes a GP model’s mean prediction is not necessarily the best choice for the in-

cumbent, because it may be based on dramatically fewer function evaluations than

other, similar-scoring configurations. Recognizing this fact, SKO implements a risk-

averse strategy: it picks the previously evaluated parameter setting that minimizes

predicted mean plus one predicted standard deviation.

SPO uses Gaussian process regression in a very different, nonstandard way, de-

scribed in Procedure 15.6. It first computes the user-defined empirical performance

metric ĉ(θ) for each parameter setting θ evaluated so far, and then fits a noise-free
GP model to learn a mapping from parameter settings to the performance metric.

This approach has several benefits and drawbacks. If we have executed a single

run with parameter setting θ1 and many runs with setting θ2, naturally our confi-

dence in performance estimate ĉ(θ1) will be lower than our confidence in ĉ(θ2).
SPO ignores this fact and collapses all information for a parameter setting θ to a

single value ĉ(θ), discarding all information on variance. On the other hand, fitting

the GP model to the performance metric directly enables SPO to optimize almost

arbitrary user-defined performance metrics, which could not be done with standard

GP models. Examples include median performance, variance across runs, and trade-

offs between mean and variance. To our best knowledge, SPO is the only existing

model-based method with such flexibility in the objective function being optimized.

Another benefit is that the assumption of normally-distributed response values is

dropped. The final benefit of collapsing the data to a single point per parameter set-

ting lies in the reduction in computational complexity thus achieved. While SKO

has cubic scaling behavior in the number of target algorithm runs performed, SPO

only takes time cubic in the number of disjoint parameter settings evaluated.

15.3.2.3 Selection of New Parameter Settings to Evaluate

Following Jones et al. (1998), both SKO and SPO use an expected improvement

criterion (EIC) to determine which parameter settings to investigate next, thereby

drawing on both the mean and variance predictions of the GP model. This criterion

trades off learning about new, unknown parts of the parameter space and intensifying

the search locally in the best known region (a so-called exploration/exploitation

trade-off).

15 Sequential Model-Based Parameter Optimization: An Experimental Investigation 375

Procedure 15.7: SelectNewParameterSettings(M,θinc, history) in SKO
Θnew ← the single parameter setting found by optimizing the augmented expected
improvement criterion from (Huang et al. 2006) using the Nelder–Mead simplex method.
return Θnew

Procedure 15.8: SelectNewParameterSettings(M,θinc, history) in SPO
Note that m is a parameter of SPO

// ===== Select m parameter settings with expected improvement
Θrand ← set of 10, 000 elements drawn uniformly at random from Θ;
for all θ ∈ Θrand do

[μθ , σ
2
θ
] ← Predict(M, θ);

EI(θ) ← Compute expected improvement criterion E[I2(θ)] (see Sect. 15.5.2)
given μθ and σ2

θ
;

end
Θnew ← the m elements of Θrand with highest EI(θ);
return Θnew;

Procedure SelectNewParameterSettings is called as

Θnew = SelectNewParameterSettings(M,θinc, history). (15.7)

SKO selects a single new parameter setting by maximizing an augmented expected

improvement criterion using the Nelder-Mead simplex method. The augmentation

adds a bias away from parameter settings for which predictive variance is low; see

Huang et al. (2006). SPO, on the other hand, evaluates the E[I2] expected improve-

ment criterion (Schonlau et al. 1998) at 10, 000 randomly-selected parameter set-

tings, and chooses the m with the highest expected improvement; see Sect. 15.5.2

for more details. In this work, we use the defaultm = 1. For completeness, we give

the simple pseudocode for these methods in Procedures 15.8 and 15.7.

15.3.2.4 Intensification

Any parameter optimization method must make decisions about which parameter

setting θinc to return to the user as its incumbent solution, both if interrupted during

the search progress and (especially) upon completion. Candidate parameter settings

are suggested by Procedure SelectNewParameterSettings, and in order to decide

whether they, the current incumbent, or even another parameter setting should be-

come the new incumbent, we need to perform additional runs of the target algorithm.

Which parameter settings to use, how many runs to execute with each of them, and

how to determine the new incumbent based on those runs is specified in Procedure

Intensify, which is called as

[history,θinc] = Intensify(Θnew,θinc,M, history). (15.8)

376 F. Hutter, T. Bartz-Beielstein, H. H. Hoos, K. Leyton-Brown, and K. P. Murphy

Procedure 15.9: Intensify(Θnew , θinc, M, history) in SKO
SKO does not update its incumbent in this procedure

θ ← the single element of Θnew;
history ← ExecuteRuns(history, θ, 1);
return [history,θinc];

Procedure 15.10: Intensify(Θnew , θinc, M, history) in SPO 0.3
After performing runs for the incumbent and the new parameter settings, SPO updates the
incumbent. Side effect: may increase the global number of repeats, r

for all θ ∈ Θnew do
history ← ExecuteRuns(history, θ, r);

end
history ← ExecuteRuns(history, θinc, r/2);
Θseen ← ⋃n

i=1{history.θi};
θinc ← random element of argminθ∈Θseen

ĉ(θ);
if θinc ∈ history.Θhist then r ← min{2r,maxR};
history.Θhist ← history.Θhist ∪ {θinc};
return [history,θinc];

Note that this procedure allows an update of the incumbent, θinc. SPO makes use of

this option, while SKO updates its incumbent in Procedure FitModel (see Procedure

15.5).

In order to provide more confident estimates for its incumbent, SPO implements

an explicit intensification strategy. In SPO, predictive uncertainty cannot be used

in the context of updating the incumbent parameter setting, because the underly-

ing noise-free GP model predicts uncertainty to be exactly zero at all previously

evaluated parameter settings. Instead, the number of evaluations performed for a

parameter setting is used as a measure of confidence. SPO performs additional runs

for its incumbent parameter setting θinc in order to challenge that configuration.

This is done to make sure that θinc did not merely happen to yield low response

values in the limited number of target algorithm runs previously performed with

θinc. The number of evaluations used in this context differs between SPO versions

0.3 and 0.4; Procedures 15.10 and 15.11 reflect the differences between these two

versions. In contrast, SKO does not implement an explicit intensification strategy; it

only performs a single run with each parameter setting considered.

15.3.3 Empirical Comparison of SKO and SPO

We empirically compared SKO and SPO on the CMA-ES test cases, based on the

same initial design (the one used by SKO) and with a limit of 200 runs of the target

algorithm.

We chose this low limit on the number of runs because the original SKO imple-

mentation was very slow: even limited to as few as 200 runs of the target algorithm,

15 Sequential Model-Based Parameter Optimization: An Experimental Investigation 377

Procedure 15.11: Intensify(Θnew , θinc, M, history) in SPO 0.4
After performing runs for the incumbent and the new parameter settings, SPO updates the
incumbent. Side effect: may increase the global number of repeats, r

for all θ ∈ Θnew do
history ← ExecuteRuns(history, θ, r);

end
history ← ExecuteRuns(history, θinc, r −N(θinc));
Θseen ← ⋃n

i=1{history.θi};
θinc ← random element of argminθ∈Θseen

ĉ(θ);
if θinc ∈ history.Θhist then r ← min{r + 1,maxR};
history.Θhist ← history.Θhist ∪ {θinc};
return [history,θinc];

SKO runs took about one hour.2 SKO spent most of its time performing numerical

optimization of the expected improvement criterion. The iterations of SKO became

slower as a run progressed, and therefore we could only afford to perform tuning

runs for 200 runs of the target algorithm. For this reason and because SKO can

only optimize mean performance, we did not perform experiments with SKO for

the SAPS scenario, which features quite high observation noise and in which the

objective is to minimize median runtime.

We reimplemented SPO 0.3 and 0.4, as well as a new version, SPO+ (defined

in Sect. 15.5.1). We verified that the performance of our reimplemented SPO 0.4

matched that of the original SPO 0.4 implementation. The SPO runs were substan-

tially faster than those of SKO. They took about 2 minutes per repetition,3 85% of

which was spent running the target algorithm.

Our first set of experiments used original, untransformed CMA-ES solution qual-

ity as the objective function to be minimized; we show the results in Fig. 15.1. On

the Sphere function, the LHD already contained very good parameter settings, and

the challenge was mostly to select the best of these and stick with it. From the fig-

ure, we observe that SPO largely succeeded in doing this, while SKO did not. On

the Ackley function, SKO’s performance was quite good, except for a drastic spike

close to 200 runs of the target algorithm. On the Griewangk and Rastrigin functions,

the variation of performance across multiple runs of CMA-ES was very high. Cor-

2 We ran SKO on a 3 GHz Pentium 4 with 4 GB RAM running Windows XP Professional, Service
Pack 3. We report wall clock time on an otherwise idle system. (We did not use Linux machines for
these experiments because SKO only compiled for Windows.) In order to ascertain that the target
algorithm has exactly the same behavior as for other methods running under Linux, we gathered
the function values SKO requested by means of a wrapper script that connected to the machines
the SPO experiments were carried out on, performed a requested run of the target algorithm there,
and returned the result of the run. This incurred very little overhead. Finally, some SKO runs failed
due to problems in the numerical optimization of the expected improvement criterion. We repeated
those runs until they completed. These repetitions were nondeterministic due to measurement noise
in the objective function.
3 These experiments were carried out on a cluster of 55 dual 3.2 GHz Intel Xeon CPUs with 2 GB
RAM each and 2 MB cache per CPU, running OpenSuSE Linux 10.1. Each run only used one
CPU and we report CPU time.

378 F. Hutter, T. Bartz-Beielstein, H. H. Hoos, K. Leyton-Brown, and K. P. Murphy

50 100 150 200

10
−6

10
−5

10
−4

10
−3

number of target algorithm runs k

c
o

st
 c

k

SKO
SPO 0.3
SPO 0.4
SPO+

(a) CMA-ES Sphere

50 100 150 200

10
1

number of target algorithm runs k

c
o

st
 c

k

SKO
SPO 0.3
SPO 0.4
SPO+

(b) CMA-ES Ackley

50 100 150 200

10
−3

10
−2

10
−1

number of target algorithm runs k

c
o

st
 c

k

SKO
SPO 0.3
SPO 0.4
SPO+

(c) CMA-ES Griewangk

50 100 150 200

10
1

10
2

10
3

number of target algorithm runs k

c
o

st
 c

k

SKO
SPO 0.3
SPO 0.4
SPO+

(d) CMA-ES Rastrigin

Fig. 15.1: Comparison of SKO and three variants of SPO for optimizing CMA-ES on the Sphere
function. We plot the solution cost ck of each method (mean solution quality CMA-ES achieved
in 100 test runs on each of the 4 test functions using the method’s chosen parameter settings) as
a function of the number of algorithm runs, k, it was allowed to perform. These values are aver-
aged across 25 runs of each method. All models were based on SKO’s initial design and original
untransformed data

respondingly, all approaches showed large variation in the quality of the parameter

settings they selected over time. (Intuitively, the parameter optimization procedure

detects a new region, which seems promising based on a few runs of the target al-

gorithm. Then, after additional target algorithm runs, that region is discovered to be

worse than initially thought, and the optimizer moves on. During the period it takes

to discover the true, poor nature of the region, the search returns a poor incumbent.)

SPO+ showed the most robust performance of the four parameter optimization pro-

cedures.

Secondly, we experimented with log-transformed qualities (see Sect. 15.4.2 for a

more detailed discussion of log-transformations). Figure 15.2 shows that this trans-

formation improved SKO performance quite substantially and did not affect the SPO

variants much. We attribute this to the fact that the quality of the model is much

more important in SKO. While SPO “only” uses the model in order to make deci-

sions about the next parameter setting to evaluate, SKO also uses it in order to select

its incumbent. After the log transformation, SKO and SPO+ performed comparably.

15 Sequential Model-Based Parameter Optimization: An Experimental Investigation 379

50 100 150 200

10
−6

10
−5

number of target algorithm runs k

c
o

st
 c

k

SKO
SPO 0.3
SPO 0.4
SPO+

(a) CMA-ES Sphere

50 100 150 200

10
1

number of target algorithm runs k

c
o

st
 c

k

SKO
SPO 0.3
SPO 0.4
SPO+

(b) CMA-ES Ackley

50 100 150 200

10
−3

10
−2

10
−1

10
0

number of target algorithm runs k

c
o

st
 c

k

SKO
SPO 0.3
SPO 0.4
SPO+

(c) CMA-ES Griewangk

50 100 150 200

10
1

10
2

10
3

number of target algorithm runs k

c
o

st
 c

k

SKO
SPO 0.3
SPO 0.4
SPO+

(d) CMA-ES Rastrigin

Fig. 15.2: Comparison of SKO and three variants of SPO for optimizing CMA-ES on the Sphere
function. We plot the solution cost ck of each method (mean solution quality CMA-ES achieved
in 100 test runs on each of the 4 test functions using the method’s chosen parameter settings) as a
function of the number of algorithm runs, k, it was allowed to perform. These values are averaged
across 25 runs of each method. All models were based on SKO’s initial design and log-transformed
data (for SPO as discussed in Sect. 15.4.2)

For three main reasons, we decided to focus the remainder of this study on various

aspects of the SPO framework. Firstly, our main interest is in complex scenarios, in

which the predictive model might not actually perform very well. In such scenar-

ios, we believe it is important to employ an explicit intensification criterion instead

of relying on the model alone to select incumbents. Secondly, SPO has the advan-

tage of being able to optimize a variety of user-defined objective functions, while

the Gaussian process model underlying SKO can only fit the mean of the data. In

practice, users might be more interested in statistics other than mean performance,

such as the best out of ten algorithm runs. SPO implements this performance metric

and also allows for many other options. Finally, the SKO implementation we used

was simply too slow to perform the type of experiments with tens of the thousands

of target algorithm runs that interested us. Nevertheless, a worthwhile direction for

future work would be to experiment with explicit intensification mechanisms in the

SKO framework.

380 F. Hutter, T. Bartz-Beielstein, H. H. Hoos, K. Leyton-Brown, and K. P. Murphy

15.4 Model Quality

It is not obvious that a model-based parameter optimization procedure needs models

that accurately predict target algorithm performance across all parameter settings,

particularly including very bad ones. Nevertheless, all else being equal, models with

good overall accuracy are generally helpful to such methods, and are furthermore

essential to more general tasks such as performance robustness analysis. In this

section, we investigate the effects of two key model-design choices on the accuracy

of the GP models used by SPO.

15.4.1 Choosing the Initial Design

In the overall approach described in Algorithm Framework 15.1, an initial parameter

response model is determined by constructing a GP model based on the target al-

gorithm’s performance on a given set of parameter settings (the initial design). This
initial model is then subsequently updated based on runs of the target algorithm ith

additional parameter settings. The decision about which additional parameter set-

tings to select is based on the current model.

It is reasonable to expect that the quality of the final model (and the performance-

optimizing parameter setting determined from it) would depend on the quality of

the initial model. Therefore, we studied the overall accuracy of the initial parame-

ter response models constructed based on various initial designs. The effect of the

number of parameter settings in the initial design, d, as well as the number of rep-

etitions for each parameter setting, r, has been studied before (Bartz-Beielstein and

Preuss 2006), and we thus fixed them in this study.4 Specifically, we used r = 2 and
d = 250, such that when methods were allowed 1, 000 runs of the target algorithm,

half of them were chosen with the initial design.

Here, we study the effect of the method for choosing which 250 parameter set-

tings to include in the initial design, considering four methods: (1) a uniform random

sample from the region of interest; (2) a random Latin hypercube design (LHD); (3)

the LHD used in SPO; and (4) a more complex LHD based on iterated distributed
hypercube sampling (IHS) (Beachkofski and Grandhi 2002).

We evaluated the parameter response models obtained using these initialisation

strategies by assessing how closely model predictions at previously unseen parame-

ter settings matched the true performance achieved using these settings. In particu-

lar, we were interested in how useful the predictions were for determining whether

a given parameter setting performed better or worse than others. In order to an-

swer this question, we evaluated the Spearman correlation coefficient between true

and predicted performance for 250 randomly-sampled test parameter settings. This

4 We do note, however, that this previous work has not conclusively answered the question of how
best to set the initial design size, and thus that this question continues to present an open research
problem.

15 Sequential Model-Based Parameter Optimization: An Experimental Investigation 381

Rand R−LHD SPO IHS

0.1

0.2

0.3

0.4

0.5

0.6

0.7
C

C
 (

pr
ed

, a
ct

ua
l)

(a) CMAES-Sphere

Rand R−LHD SPO IHS

−0.2

0

0.2

0.4

0.6

C
C

 (
p

re
d
,
a
ct

u
a
l)

(b) CMAES-Ackley

Rand R−LHD SPO IHS

0.1

0.2

0.3

0.4

0.5

C
C

 (
p

re
d
,
a
ct

u
a
l)

(c) CMAES-Griewangk

Rand R−LHD SPO IHS

0.2

0.3

0.4

0.5

0.6

0.7

C
C

 (
p
re

d
,

a
ct

u
a
l)

(d) CMAES-Rastrigin

Rand R−LHD SPO IHS

0.1

0.2

0.3

0.4

0.5

0.6

0.7

C
C

 (
pr

ed
, a

ct
ua

l)

(e) SAPS-QWH

Fig. 15.3: Performance of models based on different initial designs and raw, untransformed data.
We computed the Spearman correlation coefficient (CC) between actual and predicted performance
for 250 randomly selected test parameter settings and show boxplots across 25 independent repe-
titions. Each repetition used the same test parameter settings

Rand R−LHD SPO IHS

0.82

0.84

0.86

0.88

0.9

0.92

0.94

C
C

 (
p
re

d
,
a
ct

u
a
l)

(a) CMAES-Sphere

Rand R−LHD SPO IHS

0.1

0.2

0.3

0.4

0.5

0.6

C
C

 (
p
re

d
,
a
ct

u
a
l)

(b) CMAES-Ackley

Rand R−LHD SPO IHS

0.3

0.4

0.5

0.6

C
C

 (
p
re

d
,
a
ct

u
a
l)

(c) CMAES-Griewangk

Rand R−LHD SPO IHS

0.5

0.6

0.7

0.8

C
C

 (
p
re

d
,
a
ct

u
a
l)

(d) CMAES-Rastrigin

Rand R−LHD SPO IHS

0.82

0.84

0.86

0.88

0.9

0.92

0.94

C
C

 (
p
re

d
,
a
ct

u
a
l)

(e) SAPS-QWH

Fig. 15.4: Performance of models based on different initial designs and log-transformed data. We
compute the Spearman correlation coefficient (CC) between actual and predicted performance for
250 randomly selected test parameter settings and show boxplots across 25 independent repetitions.
Each repetition used the same test parameter settings

382 F. Hutter, T. Bartz-Beielstein, H. H. Hoos, K. Leyton-Brown, and K. P. Murphy

value lies on the interval [-1,1], with 1 indicating perfect correlation of the predicted
and the true ranks, 0 indicating no correlation, and −1 perfect anti-correlation.

The results of this analysis for our five test cases are summarized in Fig. 15.3.

Overall, for the original untransformed data we observed little variation in predictive

quality due to the procedure used for constructing the initial design. This observation

is consistent with others that have been made in the literature; for example, Santner

et al. (2003, p.149) state: “It has not been demonstrated that LHDs are superior

to any designs other than simple random sampling (and they are only superior to

simple random sampling in some cases).”

15.4.2 Transforming Performance Data

The second issue we investigated was whether more accurate models could be ob-

tained by using log-transformed performance data for building and updating the

model. Our consideration of this transformation was motivated by the fact that our

main interest is in minimizing positive functions with spreads of several orders of

magnitude that arise in the optimization of runtimes. Indeed, we have used log-

transformations for predicting runtimes of algorithms in different contexts before

(see., e.g., Leyton-Brown et al. (2002)). All of the test functions we consider for

CMA-ES are also positive functions; in general, non-positive functions can be trans-

formed to positive functions by subtracting a lower bound. In the context of model-

based optimization, log transformations were previously advocated by Jones et al.

(1998). The problem studied in that work was slightly different in that the functions

considered were noise free. We adapt Jones et al. ’s approach by first computing per-

formance metrics (such as median runtime) and then fitting a GP model to the log-

transformed metrics. Note that this is different from fitting a GP model to the log-

transformed noisy data as done by Williams et al. (2000) and Huang et al. (2006).

As discussed earlier, the performance metric that is implicitly optimized under this

latter approach is geometric mean performance, which is a poor choice in situations

where performance variations change considerably depending on the parameter set-

ting. In contrast, when first computing performance metrics and then applying a

transformation, any performance metric can be optimized, and we do not need to

assume a Gaussian noise model. Finally, Bartz-Beielstein et al. (2008b) and Konen

et al. (2009) report similar results based on square-root or cube-root transformations

as indeed does Leyton-Brown (2003); see also the discussion of transformations in

Chap. 2 of this book.

We experimentally evaluated the impact of log transformations. For the same

data as in the previous section (initial designs with 250 parameter settings, 2 repe-

titions each), we fit noise-free GP models based on log-transformed cost statistics.

That is, for each of the 250 parameter settings, θ1, . . . ,θ250, we first computed

the mean of the two responses, ĉ(θi), and then constructed a model using the data

{(θ1, ĉ(θ1)), . . . , (θ250, ĉ(θ250))}. We then computed predictions for the same 250

test parameters settings used in the previous section and evaluated the Spearman

15 Sequential Model-Based Parameter Optimization: An Experimental Investigation 383

0 0.5 1 1.5 2

x 104

0

0.5

1

1.5

2

x 104

Observed value

Cr
os

s−
va

lid
ate

d
pr

ed
ict

io
n

(a) Untransformed data.

−6 −4 −2 0 2 4

−6

−4

−2

0

2

4

log10(observed value)

lo
g 10

(c
ro

ss
−v

al
id

at
ed

 p
re

di
ct

io
n)

(b) Untransformed data on log-log
scale; only means are plotted.

−6 −4 −2 0 2 4

−6

−4

−2

0

2

4

log10(observed value)

lo
g 10

(c
ro

ss
−v

ali
da

ted
 p

re
di

cti
on

)

(c) Log-transformed data on log-log
scale.

Fig. 15.5: Performance of noise-free GP models for CMA-ES-sphere based on an initial design
using a random LHD; in (a) and (c) we plot mean ± one standard deviation of the prediction.
For better visual comparison to (c), (b) shows exactly the same mean predictions as (a), but on a
log–log scale, restricted to the 228/250 data points whose predicted response values were positive

correlations between predicted and true responses. As can be seen from the results

reported in Fig. 15.4, the use of log-transformed performance data tended to re-

sult in much better model accuracy than the use of raw performance data. In some

cases, the improvements were quite drastic. For example, for CMA-ES-sphere, the

Spearman correlation coefficient improved from below 0.4 to above 0.9 when us-

ing models based on log-transformed performance data. Figure 15.5 illustrates the

predictive accuracy and predictive uncertainty of these two models.

15.5 Sequential Experimental Design

Having studied the initial design, we now turn our attention to the sequential search

for performance-optimizing parameters. Since log transformations consistently led

384 F. Hutter, T. Bartz-Beielstein, H. H. Hoos, K. Leyton-Brown, and K. P. Murphy

to improved performance, and since random LHDs yielded performance comparable

to that of more complex designs, we fixed these two design choices.

15.5.1 Intensification Mechanism

In order to achieve good results when optimizing parameters based on a noisy per-

formance metric such as runtime or solution quality achieved by a randomized al-

gorithm, it is important to perform a sufficient number of runs for the parameter set-

tings considered. However, runs of a given target algorithm on interesting problem

instances are typically computationally expensive. There is thus a delicate trade-off

between the number of algorithm runs performed on each parameter setting and the

number of parameter settings considered over the course of the optimization pro-

cess.

Realizing the importance of this trade-off, SPO implements a mechanism for

gradually increasing the number of runs to be performed for each parameter setting

during the parameter optimization process. In particular, SPO increases the number

of runs to be performed for each subsequent parameter setting whenever the incum-

bent θinc selected in an iteration was already the incumbent in some previous itera-

tion. SPO 0.3 (Bartz-Beielstein et al. 2005, Bartz-Beielstein 2006, Bartz-Beielstein

and Preuss 2006) doubles the number of subsequent target algorithm runs whenever

this happens; SPO 0.4 only increments the number of runs by one each time; see

Procedures 15.10 and 15.11 in Sect. 15.3.2.4. Both versions perform additional runs

for the current incumbent, θinc, to make sure it is used in as many runs of the target

algorithm as any new parameter setting. 5

While the intensification mechanisms of SPO 0.3 and SPO 0.4 work well in most

cases, we have encountered runs of SPO in high-noise scenarios in which there are

many parameter settings with few, “lucky” target algorithm runs that allow them to

become incumbents. In those runs of SPO, a new incumbent was picked in almost

every iteration, because the previous incumbent had been found to be poor after

additional runs were performed on it. This situation continued throughout the entire

parameter optimization process, leading to a final choice of parameter settings that

had only been evaluated using very few (“lucky”) target algorithm runs and that

performed poorly in independent test runs.6

5 Another approach for allocating an appropriate number of target algorithm runs to each param-
eter setting is Chen et al. (2003)’s optimal computational budget allocation (OCBA). Lasarczyk
(2007) implemented OCBA as an explicit intensification method to improve SPO’s selection pro-
cedure, especially in high-noise scenarios. This implementation was done in R (Ihaka and Gen-
tleman 1996), and forthcoming versions of SPOT, which will also be based on R, will include
OCBA.
6 One possible explanation of this scenario is that SPO has problems when the number of LHD
points is large (e.g., d = 250 in our experiments) in high-noise scenarios. SPO selects its incumbent
as the previously visited parameter setting with the best empirical performance across the runs
performed with it. All parameter settings in the LHD count as “previously visited”. Thus, the

15 Sequential Model-Based Parameter Optimization: An Experimental Investigation 385

Procedure 15.12: Intensify(Θnew , θinc, M, history) in SPO+

Recall that N(θ) denotes the number of algorithm runs which have been performed for
θ; it depends on the history

for all θ ∈ Θnew do
r ← 1;
history ← ExecuteRuns(history, θ, 1);
numBonus ← 1;
if N(θ) > N(θinc) then

history ← ExecuteRuns(history, θinc, 1);
numBonus ← 0;

end
while true do

if ĉ(θ) > ĉ(θinc) then

// ===== Reject challenger, perform bonus runs for θinc

history ← ExecuteRuns(history, θinc,
min(numBonus,maxN−N(θinc)));
break;

end
if N(θ) ≥ N(θinc) then

// ===== Challenger becomes incumbent
θinc ← θ;
break;

end
if TerminationCriterion() then

return [θinc, history];
end
r ← min(2r,N(θinc)−N(θ));
history ← ExecuteRuns(history, θ, r);
numBonus ← numBonus +r;

end
end
return [history,θinc];

This observation motivated us to introduce a different intensification mechanism

that guarantees increasing confidence about the performance of the parameter set-

tings we select as incumbents. In particular, inspired by the mechanism used in

FocusedILS (Hutter et al. 2007), we maintain the invariant that we never choose

an incumbent unless it is the parameter setting with the most function evaluations.

Promising parameter settings are given additional function evaluations until either

they cease to appear promising or they receive enough function evaluations to be-

come the new incumbent. We provide pseudocode for this new intensification mech-

anism in Procedure 15.12.

In detail, our new intensification mechanism works as follows. In the first iter-

ation, the incumbent is chosen exactly as in SPO, because all parameter settings

receive the same number of function evaluations. From then on, in each iteration

we select a set of parameter settings and compare them to the incumbent θinc. We

larger the LHD, the more runs need to be performed in order for decisions about the incumbent to
be based on a minimum number of runs.

386 F. Hutter, T. Bartz-Beielstein, H. H. Hoos, K. Leyton-Brown, and K. P. Murphy

Procedure 15.13: SelectNewParameterSettings(M,θinc, history) in SPO+

Recall that p andm are parameters of SPO+. We usem = 1 and p = 5 in our experiments

// ===== Select m parameter settings with expected improvement
Θrand ← set of 10, 000 elements drawn uniformly at random from Θ;
for all θ ∈ Θrand do

[μθ , σ
2
θ
] ← Predict(M, θ);

EI(θ) ← Compute expected improvement criterion given μθ and σ2
θ
;

end
Θnew ← the m elements θ of Θrand with highest EI(θ);

// ===== Select p previously used parameter settings
Θ ← ⋃n

i=1{history.θi};
Θprevious ← p elements θ ∈ Θ, drawn without repetitions with prob. proportional to
1/ĉ(θ);
return Θnew ∪Θprevious;

denote the number of runs that have so far been executed with parameter setting θ as

N(θ), and the corresponding empirical performance as ĉ(θ). For each selected set-

ting θ, we iteratively perform runs until N(θ) ≥ N(θinc) and/or ĉ(θ) > ĉ(θinc).
7

Whenever we reach a point where N(θ) ≥ N(θinc) and ĉ(θ) ≤ ĉ(θinc), we select
θ as the new incumbent. On the other hand, if we ever observe ĉ(θ) > ĉ(θinc),
we reject θ. Note this criterion for rejection is very aggressive. Indeed, rejection

frequently occurs after a single run, at a point where a statistical test would not be

able to conclude that θ is worse than θinc. Upon rejecting a configuration θ, we also
perform as many additional runs for θinc as were just performed for evaluating θ.
This ensures that the number of runs used for intensification is comparable to that

used for exploration of new parameter settings.

The parameter settings we evaluate against θinc at each iteration include one new

parameter setting selected based on an expected improvement criterion (here E[I2],
see Sect. 15.5.2). They also include p previously evaluated parameter settings θ1:p,

where p is an algorithm parameter and in this work always set to 5. This set is con-

structed by selecting p previously evaluated settings θ with probability proportional

to 1/ĉ(θ), without replacement. Procedure 15.13 provides pseudocode for this se-

lection of parameter settings to evaluate against θinc.

This mechanism guarantees that at each step there will be a positive probabil-

ity of reevaluating a potentially optimal parameter setting after it has been rejected.

It allows us to be aggressive in rejecting new candidates, since we can always get

back to the most promising ones. Note that if the other SPO variants (0.3 and 0.4)

discover the true optimal parameter setting θbest but observe one or more very “un-

lucky” runs on it, θbest will never be revisited, because the underlying noise-free GP

model attributes a high mean and zero uncertainty to any previously visited parame-

ter setting for which poor empirical performance has been observed across the target

7 We batch runs to reduce overhead, starting with a single new run for each θ and doubling the
number of new runs iteratively up to a maximum of N(θinc)−N(θ) runs.

15 Sequential Model-Based Parameter Optimization: An Experimental Investigation 387

algorithm runs performed for it. Therefore, no expected improvement criterion will

select such a parameter setting again in later iterations.

SPO 0.3 SPO 0.4 SPO+

−6.5

−6

−5.5
lo

g 10
(c

os
t c

10
00

)

(a) CMAES-Sphere

SPO 0.3 SPO 0.4 SPO+

0.7

0.8

0.9

1

1.1

1.2

1.3

lo
g 10

(c
os

t c
10

00
)

(b) CMAES-Ackley

SPO 0.3 SPO 0.4 SPO+

−15

−10

−5

0

lo
g 10

(c
os

t c
10

00
)

(c) CMAES-Griewangk

SPO 0.3 SPO 0.4 SPO+

1

2

3

4

lo
g 10

(c
os

t c
10

00
)

(d) CMAES-Rastrigin

Fig. 15.6: Comparison of different intensification mechanisms for optimizing CMA-ES perfor-
mance. We show boxplots of solution cost c1,000 achieved in the 25 runs of each parameter opti-
mizer for each test case

Table 15.4: The p-values for pairwise comparisons of different intensification mechanisms for
optimizing the performance of CMA-ES on our standard benchmarks. These p-values correspond
to the data in Fig. 15.6 and are based on a pairwise Max-Wilcoxon test as described in Sect. 15.2

Sphere Ackley Griewangk Rastrigin

SPO 0.3 versus SPO 0.4 0.07 0.015 0.95 1

SPO 0.3 versus SPO+ 0.20 0.020 0.00006 0.0005
SPO 0.4 versus SPO+ 0.56 0.97 0.00009 0.0014

We denote as SPO+ the variant of SPO that uses a random LHD, log-transformed

data (for positive functions only; otherwise untransformed data), expected im-

provement criterion E[I2], and the new intensification criterion just described.

We compared SPO 0.3, SPO 0.4, and SPO+—all based on a random LHD and

log-transformed data—for our CMA-ES test cases and summarize the results in

Fig. 15.6 and Table 15.4. For the Ackley function, SPO 0.4 performed best on aver-

age, but only insignificantly better than SPO+, one of whose runs performed quite

poorly. For the Sphere function, on average SPO+ performed insignificantly bet-

388 F. Hutter, T. Bartz-Beielstein, H. H. Hoos, K. Leyton-Brown, and K. P. Murphy

ter than the other SPO variants, showing better median performance and no poor

outliers among its 25 runs. For the other two functions, SPO+ performed both sig-

nificantly and substantially better than either SPO 0.3 or SPO 0.4, finding parameter

settings that led to CMA-ES performance orders of magnitude better than those

obtained from SPO 0.3.

500 600 700 800 900 1000

10
−6

10
−5

10
−4

number of target algorithm runs k

c
o

st
 c

k

SPO 0.3
SPO 0.4
SPO+

(a) CMA-ES Sphere

500 600 700 800 900 1000

10

15

20

number of target algorithm runs k

c
o

st
 c

k

SPO 0.3
SPO 0.4
SPO+

(b) CMA-ES Ackley

500 600 700 800 900 1000

10
−3

10
−2

10
−1

10
0

number of target algorithm runs k

c
o

st
 c

k

SPO 0.3
SPO 0.4
SPO+

(c) CMA-ES Griewangk

500 600 700 800 900 1000

10
1

10
2

10
3

number of target algorithm runs k

c
o

st
 c

k

SPO 0.3
SPO 0.4
SPO+

(d) CMA-ES Rastrigin

Fig. 15.7: Solution cost ck (mean solution quality CMA-ES achieved in 100 test runs using the
method’s chosen parameter settings) of SPO 0.3, SPO 0.4, and SPO+, as a function of the number
of target algorithm runs, k, the method is allowed. We plot means of ck across 25 repetitions of
each parameter optimization procedure

More importantly, as can be seen in Fig. 15.7, over the course of the optimization

process, SPO+ showed much less variation in the quality of the incumbent param-

eter setting than the other SPO variants did. This was the case even for the Ackley

function, where SPO+ did not perform best on average at the very end of its trajec-

tory, and can also be seen on the Griewangk and Rastrigin functions, where SPO+

clearly produced the best results.

We now take a more in-depth look at how the mean solution costs ck come about.

To do this, for each of the four test cases, we extracted the finally-chosen parameter

settings from nine automated parameter optimization runs: the best, median, and

worst settings of each of SPO 0.3, SPO 0.4, and SPO+, all with respect to test

15 Sequential Model-Based Parameter Optimization: An Experimental Investigation 389

SPO.3b SPO.4b SPO+b SPO.3mSPO.4mSPO+m SPO.3wSPO.4w SPO+w IA

−10

−9

−8

−7

−6

−5

Lo
g1

0 (
co

st
c 10

00
)

(a) CMAES-Sphere

SPO.3b SPO.4b SPO+b SPO.3mSPO.4mSPO+m SPO.3wSPO.4w SPO+w IA

−3

−2

−1

0

1

Lo
g1

0 (
co

st
c 10

00
)

(b) CMAES-Ackley

SPO.3b SPO.4b SPO+b SPO.3mSPO.4mSPO+m SPO.3wSPO.4w SPO+w IA
−1

0

1

2

3

4

5

6

Lo
g1

0 (
co

st
c 10

00
)

(c) CMAES-Rastrigin

SPO.3b SPO.4b SPO+b SPO.3mSPO.4mSPO+m SPO.3wSPO.4w SPO+w IA
−20

−15

−10

−5

Lo
g1

0 (
co

st
c 10

00
)

(d) CMAES-Griewangk

Fig. 15.8: Boxplots comparing automatically-identified parameter settings to those found with the
interactive procedure. In the axis labels, “b” stands for the parameter setting of the best run of that
parameter optimizer (with respect to “original” test performance), “m” stands for the median-best
one, and “w” for the worst. IA stands for the interactively found setting. Each run of the interactive
process used fewer than 200 function evaluations, whereas the automated optimization procedures
were allowed 1,000 evaluations per run. In order to avoid clutter in subfigure (c), we plot data
points below 0.1 as 0.1 (-1 after log10 transformation); note the poor performance of SPO 0.3’s
worst run

390 F. Hutter, T. Bartz-Beielstein, H. H. Hoos, K. Leyton-Brown, and K. P. Murphy

SPO.3b SPO.4b SPO+b SPO.3mSPO.4m SPO+m SPO.3w SPO.4w SPO+w IA

−20

−15

−10

−5

0
Lo

g1
0 (

co
st

c 10
00

)

(a) CMAES-Griewangk, 1,000 test runs of CMA-ES used for evaluation

Fig. 15.9: Same as Fig. 8(d), but using 1,000 instead of 100 runs of CMA-ES to evaluate each
parameter setting. Note the very poor performance of some CMA-ES runs with the parameter
setting from the worst run of SPO 0.4. For this parameter setting, the cloud of points with much
higher solution cost than any of the other runs contains 14 points

set performance. Recall that this test set performance is the mean solution quality

across 100 test runs of CMA-ES. To obtain an independent estimate of a parameter

setting’s true performance, we performed an additional 100 test runs of CMA-ES

for each of these nine parameter settings, with a set of random number seeds disjoint

from those used in the original test set.

In Fig. 15.8, we plot the performance of these nine parameter settings for the 100

new seeds. (The figure also shows a parameter setting IA, found by our interactive

approach. We defer its discussion until Sect. 15.6.) For test case CMA-ES-Sphere,

all selected parameter settings performed very similarly. In test case CMA-ES-

Ackley, SPO+ seemed to perform slightly better than SPO 0.3 and 0.4, especially

in their respective worst runs.

In test case CMA-ES-Rastrigin, note that most selected parameter settings

yielded comparable performance, with the exception of the one identified in the

worst repetition of SPO 0.3. With several runs whose performance was about five

orders of magnitude worse than the remaining runs, this parameter setting was re-

sponsible for the poor mean performance across the 25 runs indicated in Fig. 7(d).

Note that the SPO 0.3 run returning this poor parameter setting selected it just be-

fore running out of its budget of 1,000 calls to CMA-ES. Likewise, one mostly poor

SPO 0.4 run selected a good setting just before reaching the limit on target algorithm

runs. As we can see in Fig. 7(d), SPO+ performed much more robustly.

In test case CMA-ES-Griewangk, the situation is somewhat more complicated.

While Fig. 7(c) shows very sensitive behavior of SPO 0.3 and SPO 0.4, we do not

see any evidence for this in Fig. 8(d). Since the evaluation in Fig. 8(d) used 100

different random seeds (different from both the initial random seeds used during

parameter optimization and from the “test” random seeds used to produce Fig. 8(d))

there was no guarantee of obtaining similar performance. Indeed, the measured per-

formances for the parameter settings from the worst run of SPO 0.3 and 0.4 were

quite different than previously observed; while they yielded poor mean performance

15 Sequential Model-Based Parameter Optimization: An Experimental Investigation 391

before, they did quite well based on the new set of 100 test seeds. We repeated the

evaluation with a larger set of 1,000 random seeds and show the result in Fig. 15.9.

In this experiment, 14 of the 1,000 CMA-ES runs for the worst repetition of SPO

0.4 showed extremely poor performance. For the setting from the worst run of SPO

0.3, even these 1,000 test runs did not explain the poor performance in Fig. 7(c).

To study this further, we performed 100, 000 additional test runs for this setting and
found that nine of them yielded similarly poor performance as the 14/1000 poor

CMA-ES for the setting above (best function values around 102). Another roughly
8500 runs yielded results around 10−2 and the rest (about 91, 500 runs) yielded re-

sults < 10−10. The optimization of target algorithms with such multimodal result

distributions requires a large number of target algorithm runs: in the case above, a

very sensitive setting performed just as well as a robust one based on as many as

1,000 runs of the target algorithm.

15.5.2 Expected Improvement Criterion

E[I] E[I^2] E[I_exp]

−6.5

−6

−5.5

lo
g 10

(c
os

t c
10

00
)

(a) CMAES-Sphere

E[I] E[I^2] E[I_exp]
0.8

0.9

1

1.1

1.2

1.3

lo
g 10

(c
os

t c
10

00
)

(b) CMAES-Ackley

E[I] E[I^2] E[I_exp]
−16

−14

−12

−10

−8

−6

−4

lo
g 10

(c
os

t c
10

00
)

(c) CMAES-Griewangk

E[I] E[I^2] E[I_exp]
0.2

0.3

0.4

0.5

0.6

0.7

lo
g 10

(c
os

t c
10

00
)

(d) CMAES-Rastrigin

Fig. 15.10: Comparison of different expected improvement criteria for optimizing the performance
of CMA-ES on our standard benchmarks. We show boxplots of performance c1000 achieved in the
25 runs of each optimizer for each test case

In sequential model-based optimization, parameter settings to be investigated are

selected based on an expected improvement criterion (EIC). This aims to address

the exploration/exploitation trade-off between learning about new, unknown parts

392 F. Hutter, T. Bartz-Beielstein, H. H. Hoos, K. Leyton-Brown, and K. P. Murphy

Table 15.5: The p-values for pairwise comparisons of different expected improvement criteria for
optimizing the performance of CMA-ES on our standard benchmarks. These p-values correspond
to the data in Fig. 15.10 and are based on a pairwise Max-Wilcoxon test as described in Sect. 15.2

Sphere Ackley Griewangk Rastrigin

E[I] vs E[I2] 0.29 0.55 0.016 0.90
E[I] vs E[Iexp] 0.63 0.25 0.11 0.030
E[I2] vs E[Iexp] 0.54 0.32 0.77 0.38

of the parameter space and intensifying the search locally in the best known region.

We briefly summarize two common versions of the EIC, and then describe a novel

variation that we also investigated.

The classic expected improvement criterion used by Jones et al. (1998) is defined

as follows. Given a deterministic function f and the minimal value fmin seen so far,

the improvement at a new parameter setting θ is defined as

I(θ) := max{0, fmin − f(θ)}. (15.9)

Of course, this quantity cannot be computed, since f(θ) is unknown. We therefore

compute the expected improvement, E[I(θ)]. To do so, we require a probabilistic

model of f , in our case the GP model. Let μθ := E[f(θ)] be the mean and σ2
θ be

the variance predicted by our model, and define u := (fmin − μθ)/σθ . Then one

can show that E[I(θ)] has the following closed-form expression:

E[I(θ)] = σθ × [u× Φ(u) + ϕ(u)], (15.10)

where ϕ and Φ denote the probability density function and cumulative distribution

function of a standard normal distribution, respectively.

A generalized expected improvement criterion was introduced by Schonlau et al.

(1998), who considered the quantity

Ig(θ) := max{0, [fmin − f(θ)]g} (15.11)

for g ∈ {0, 1, 2, 3, . . .}, with larger g encouraging more global search behavior. The

value g = 1 corresponds to the classic EIC. SPO uses g = 2, which takes into

account the uncertainty in our estimate of I(θ), since E[I2(θ)] = (E[I(θ)])2 +
Var(I(θ)) and can be computed by the closed-form formula

E[I2(θ)] = σ2
θ × [(u2 + 1)× Φ(u) + u× ϕ(u)]. (15.12)

One issue that seems to have been overlooked in previous work is the interaction

between log-transformations of the data and the EIC. When we use a log trans-

formation, we do so in order to increase predictive accuracy, yet our loss function

continues to be defined in terms of the untransformed data (e.g., actual runtimes).

Hence we should optimize the criterion

15 Sequential Model-Based Parameter Optimization: An Experimental Investigation 393

Iexp(θ) := max{0, fmin − eh(θ)}, (15.13)

where h(·) predicts log performance and fmin is the untransformed best known

function value.

Let v := (ln(fmin)−μθ)/σθ . Then, we have the following closed-form expres-

sion (see the appendix for the proof):

E[Iexp(θ)] = fminΦ(v)− e
1
2σ

2

θ
+μθ × Φ(v − σθ). (15.14)

In Fig. 15.10 and Table 15.5, we experimentally compare SPO+ with these

three expected improvement criteria on the CMA-ES test cases, based on a ran-

dom LHD and log-transformed data. Overall, the differences are small. On average,

E[I2] yielded the best results for test case CMA-ES-sphere, and our new crite-

rion E[Iexp] performed best in the remaining cases. Even though not visually obvi-

ous from the boxplots, 2 of the 12 pairwise differences were statistically significant

based on a Max-Wilcoxon test.

15.5.3 Overall Evaluation

Table 15.6: Comparison of final performance of various parameter optimization procedures for
optimizing SAPS on instance QWH. We report mean ± standard deviation of performance c20000
(median search steps SAPS required on instance QWH in 1,000 test runs using the parameter
settings the method chose after 20, 000 algorithm runs), across 25 repetitions of each method.
Based on a Mann-Whitney U test, SPO+ performed significantly better than CALIBRA, BasicILS,
FocusedILS, and SPO 0.3 with p-values 0.015, 0.0002, 0.0009, and 4 × 10−9, respectively. The
p-value for a comparison against SPO 0.4 was 0.06

Procedure SAPS median runtime [search steps]

SAPS default from Hutter et al. (2002) 85.5× 103

CALIBRA(100) from Hutter et al. (2007) 10.7× 103 ± 1.1× 103

BasicILS(100) from Hutter et al. (2007) 10.9× 103 ± 0.6× 103

FocusedILS from Hutter et al. (2007) 10.6× 103 ± 0.5× 103

SPO 0.3 18.3× 103 ± 13.7× 103

SPO 0.4 10.4× 103 ± 0.7× 103

SPO+ 10.0× 103 ± 0.4× 103

In Sects. 15.5.1 and 15.5.2, we fixed the design choices of using log transfor-

mations and initial designs based on random LHDs. Now, we revisit these choices.

Using our new SPO+ intensification criterion and expected improvement criterion

E[I2], we studied how much the final performance of SPO+ changed when not

using a log-transformation and when using different methods to create the initial

design. Not surprisingly, none of the initial designs led to significantly better fi-

nal performance than any of the others. The result for the log transformation was

394 F. Hutter, T. Bartz-Beielstein, H. H. Hoos, K. Leyton-Brown, and K. P. Murphy

10
3

10
4

1

1.5

2

2.5

x 10
4

number of target algorithm runs k

co
st

 c
k

SPO 0.3
SPO 0.4
SPO+

Fig. 15.11: Comparison of SKO and two variants of SPO (discussed in Sect. 15.5.1) for optimiz-
ing CMA-ES on the Sphere function. Comparison of SPO variants (all based on a random LHD
and log-transformed data) for minimizing SAPS median runtime on instance QWH. We plot the
solution cost ck of each method (median search steps SAPS required on instance QWH in 1,000
test runs using the parameter settings the method chose after k algorithm runs), as a function of the
number of algorithm runs, k, it was allowed to perform. These values are averaged across 25 runs
of each method

more surprising. Although we saw in Sect. 15.4 that the log transformation consis-

tently improved predictive model performance, based on a Mann-Whitney U test it

turned out to significantly improve final parameter optimization performance only

for CMA-ES-sphere.

Finally, we compared the performance of SPO 0.3, 0.4, and SPO+ (all based on

random LHDs and using log-transformed data) to the parameter optimization meth-

ods studied by Hutter et al. (2007). We summarize the results in Table 15.6. While

SPO 0.3 performed worse than the other methods, SPO 0.4 performed comparably,

and SPO+ outperformed all methods with the exception of SPO 0.4 significantly.

Figure 15.11 illustrates the difference between SPO 0.3, SPO 0.4, and SPO+ for

this SAPS benchmark. Similar to what we observed for CMA-ES (Fig. 15.7), SPO

0.3 and 0.4 changed their incumbents very frequently, with SPO 0.4 showing more

robust behavior than SPO 0.3, and SPO+ in turn much more robust behavior than

SPO 0.4.

15.6 Interactive Exploration of Parameter Space

The automated methods discussed so far in this chapter can be very effective when

it is possible to perform a relatively large number of evaluations of the given tar-

get algorithm to be optimized. However, there are cases in which target algorithm

evaluations are overwhelmingly costly compared to the overall computational re-

sources and time available for the parameter optimization process. Real-world ap-

plications of this nature can be found in the optimization of engineering designs

in the aerospace and automotive industry (Alexandrov et al. 2001), in hydrological

15 Sequential Model-Based Parameter Optimization: An Experimental Investigation 395

applications (Mayer et al. 2002), and in climate modeling. In those examples, the

algorithms to be optimized control or model the behavior of complex systems, and

evaluating their performance for a single parameter configuration can take hundreds

of CPU hours. In such cases, the number of parameter configurations that can be

evaluated is severely limited, and approaches that achieve good results based on a

small number of evaluations are required. In the following, we explore an interactive

approach for model-based parameter optimization that utilizes human judgment and

insight in conjunction with statistical methods.

15.6.1 Using SPOT Interactively

The sequential parameter optimization toolbox (SPOT) was developed to improve

the performance of algorithms and to gain insight into their working mechanisms

(Beielstein 2003). When using SPOT interactively, the experimenter makes use of

the statistical analysis techniques supported by the toolbox to sequentially select

new settings for the given target algorithm. The general flow of the interactive se-

quential parameter optimization process is illustrated in Fig. 14.2 on page 346. We

will illustrate this interactive approach by means of a case study, in which we focus

primarily on the performance of CMA-ES on the Rastrigin function. This function

was chosen because the previously studied, fully-automated SPO procedures SPO

0.3 and SPO 0.4 performed relatively poorly compared to SPO+(see, e.g., Fig. 15.1).

The interactive approach might shed some light on this poor performance, since it

provides tools for understanding the structure of the search space (ROI) and the

determination of factor effects. Later, we also report results for CMA-ES on the

other three classical test problems from global optimization introduced in Sect. 15.2

(Sphere, Griewangk, and Ackley). We note that, while in principle, the interactive

approach can be applied to the optimization of any objective function, the linear

regression models used in the following fit arithmetic mean performance. Further,

although experimenters working in the context of real-world performance optimiza-

tion tasks often rely upon prior knowledge about the target algorithm, here we as-

sume, for the sake of generality, that no prior knowledge is available regarding im-

portant parameters, optimal experimental designs or regression models (predictors)

for the target algorithm. We do, however, assume some general knowledge about

reasonable ranges for parameters of evolutionary strategies, such as CMA-ES.

15.6.1.1 Pre-experimental Planning

In the pre-experimental planning phase, we have to select an initial design, a pre-

dictor, and a quality measure. Our goal is to improve CMA-ES, which requires the

specification of the four parameters NPARENTS, NU, CS, and DAMPS. As a

rule of thumb, we assert that the experimenter should not invest more than about

a quarter of the available budget (here the number of CMA-ES runs) in the first

396 F. Hutter, T. Bartz-Beielstein, H. H. Hoos, K. Leyton-Brown, and K. P. Murphy

design.8 In most circumstances, it is unwise to plan too comprehensive a design at

this outset (Box et al. 1978).

In light of our goal of keeping the number of configurations to be evaluated rel-

atively small, we have chosen a Box–Behnken design as the initial design (Box and

Behnken 1960, Pukelsheim 1993). Box–Behnken designs are central composite de-

signs that augment 2k designs with center points (see also the discussion of de-

signs in Chap. 3 of this book). Box–Behnken designs can be used to calibrate full

quadratic models; furthermore, they are rotatable and, when the number of factors

is four or fewer, require fewer runs than central composite designs. (Chapts. 2 and 3

in this book discuss further design considerations.) Box–Behnken designs avoid the

corners of the region of interest and allow experimenters to work around extreme

factor combinations. This is especially important for the optimization of CMA-ES,

because large NPARENTS and large NU values at the same time are expected to

produce poor results. The four-factor Box–Behnken design used in the first step of

our analysis requires 27 runs (Pukelsheim 1993).

We now discuss how the region of interest (ROI) was determined for our exper-

iments. We note that this determination of the ROI settings is an integral part of

the interactive approach and more elaborate than in the previously discussed auto-

mated approach. Imagine that a single run of CMA-ES has a budget of t = 10, 000
function evaluations. (Note that here we discuss the number of function evalu-

ations performed by every CMA-ES run, not the number of CMA-ES parame-

ter settings that can be evaluated by the experimenter.) As a rule of thumb, the

smallest number of generations for evolutionary algorithms that use some step-

length adaptation is g = 10. This gives an upper limit for the population size of

NPARENTS × NU = 1, 000, so NPARENTSmax = 100 and NUmax = 10
are reasonable values. The lower bounds of the region of interest for these two vari-

ables was chosen asNPARENTSmin = 2 andNUmin = 2. Since no information

about reasonable settings for CS and DAMPS is known, we have chosen the max-

imum interval length, i.e., CS ∈ [0.1; 1] and DAMPS ∈ [0.25; 0.99]. In general,

we recommend liberally-chosen intervals in the absence of prior knowledge justify-

ing tighter bounds.

15.6.1.2 Prediction Model

First, we consider a linear model without interactions. We apply a logarithmic trans-

formation because it improves the fit. The transformation is motivated by model di-

8 Note, however, that there are exceptions to this rule. For example, Bartz-Beielstein and Preuss
(2006) state:

The experimental analysis clearly demonstrated that the determination of a suitable ini-
tial design is of crucial importance for the second phase, which performs a local tuning.
To play safe, we recommend increasing the number of initial design points. The number
of sequential optimization steps could be reduced in many situations without a significant
performance loss.

15 Sequential Model-Based Parameter Optimization: An Experimental Investigation 397

agnostics, e.g., residuals plotted versus predicted values and histogram plots of the

data. Our regression modeling is based on coded variables, i.e., {−1, 0,+1}, rather
than on the natural variables of the target algorithm. For example, consider a re-

gion of interest for some variable in the range from one to ten. The coded variables

{−1, 0,+1} correspond to the natural variables {1, 5.5, 10}. (Transformations and

standardizations are discussed in Chaps. 2 and 3 of this book. See also Kleijnen

(2008, p.30-31).) The linear regression model is given by

yi = β0 + β1x1 + β2x2 + β3x3 + β4x4 + ε,

where the xi’s are explanatory variables (or predictors) representing NPARENTS,

NU, CS, and DAMPS, and the βi’s can be estimated using the method of least

squares. Further details are presented in the Appendix to this book. Here, y denotes

the function value produced by the run of the target algorithm (CMA-ES). The

fitted least squares equation we obtained based on data from the first 27 runs was

ŷ = 3.8 + 0.93x1 + 1.37x2 − 1.84x3 + 0.39x4.

In addition, we also performed visual inspections, e.g., on the basis of added-

variable plots (see also Chap. 14). Box and Draper (1987) mention some elementary

checks for interaction and curvature. For example, a comparison of the average yc
at the center of the design with the average of the remaining points of the Box–

Behnken design y−c gives a measure of the overall curvature of the response surface.

15.6.1.3 Model Selection

Next, we check whether interaction terms should be included into the model. This

is done by increasing model complexity in a stepwise manner. R’s stepAIC()
function is used for performing model searches by the Akaike information criterion
(AIC) (Venables and Ripley 2002). Here, smaller AIC values are better. The func-

tion stepAIC() can be used for an automated stepwise selection procedure. It re-

quires a fitted model to define the starting process and a list of two formulae defining

the most complex and the simplest models. We have chosen the linear model with

two-factor interactions as the most complex model, and the model which includes

the four main factors only as the simplest model. The automated search leads to

a model which, in addition to the four main factors, includes interactions between

NPARENTS and NU, DAMPS and CS, and NU and CS. Figure 15.12 shows the

output from this analysis. We note that it is easy to be misled by this automated

model search, and experience shows that different variables could be selected if the

stepAIC() procedure were repeated on a new, similar data set (Dalgaard 2002).

In many cases, the decision between models cannot be based on the data alone,

but should take into consideration results from previous investigations or theoretical

considerations. Therefore, it is recommended that users carefully evaluate results

obtained by the stepAIC() procedure.

398 F. Hutter, T. Bartz-Beielstein, H. H. Hoos, K. Leyton-Brown, and K. P. Murphy

Stepwise Model Path
Analysis of Deviance Table
Initial Model:
Y ~ NPARENTS + NU + DAMPS + CS
Final Model:
Y ~ NPARENTS + NU + DAMPS + CS + NPARENTS:NU + DAMPS:CS +

NU:CS
Step Df Deviance Resid. Df Resid. Dev AIC

1 22 57.95982 30.62566
2 + NPARENTS:NU 1 7.082627 21 50.87720 29.10660
3 + CS:DAMPS 1 5.881372 20 44.99582 27.78979
4 + NU:CS 1 4.350343 19 40.64548 27.04437

Fig. 15.12: Output from R’s stepAIC() procedure

In the second step of the model selection process, we analyze the enhanced

model from the point of view of regression-based significance. Here, we apply

R’s dropterm() function to the final model from the stepAIC() procedure.

Venables and Ripley (2002) note that selecting the terms on the basis of the

stepAIC() criterion can be somewhat permissive in its choice of terms. We also

observed this in our own analysis (Fig. 15.13).

Call: lm(formula = Y ~ NPARENTS + NU + DAMPS + CS + NPARENTS:NU,
data = df0012normlogy)

Residuals:
Min 1Q Median 3Q Max

-3.79993 -0.79931 0.02917 1.04553 2.12640
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 3.8001 0.2996 12.686 2.59e-11 ***
NPARENTS 0.9279 0.4493 2.065 0.051483 .
NU 1.3686 0.4493 3.046 0.006142 **
DAMPS -1.8354 0.4493 -4.085 0.000531 ***
CS 0.3886 0.4493 0.865 0.396912
NPARENTS:NU 1.3307 0.7783 1.710 0.102040

Residual standard error: 1.557 on 21 degrees of freedom
Multiple R-squared: 0.6175, Adjusted R-squared: 0.5264
F-statistic: 6.78 on 5 and 21 DF, p-value: 0.0006601

Fig. 15.13: Result from R’s dropterm() analysis. Starting point for this analysis is the model
proposed by the stepwise selection method stepAIC()

We observe that the regression coefficients for NPARENTS, NU, and DAMPS

are large relative to their standard errors. Based on the conventional significance

level from the regression analysis, i.e., Pr(> |t|), we conclude that the model Y
∼ NPARENTS + NU + DAMPS should be used for the steepest descent. Predic-

15 Sequential Model-Based Parameter Optimization: An Experimental Investigation 399

tions of this model are illustrated in Fig. 15.14. The contour lines can be tentatively

accepted as a rough estimate of the underlying response function over the region

of interest explored so far. (Further details of the model selection based on the t-
statistics are discussed on p. 431 of the Appendix to this book.)

log(Y)

DAMPS

N
U

2

4

6

8

10

0.4 0.6 0.8 1.0

1

2

3

4

5

np

1

23

4

5

np

0.4 0.6 0.8 1.0

1

2

3

4

5

np

2

3

45

np

2

345

6

np

2

4

6

8

10

2

3

4

5

6
np

2

4

6

8

10

2

3

4

5

6
np

0.4 0.6 0.8 1.0

3

4
5

6

np

3

4

5

67

np

0

2

4

6

8

Fig. 15.14: Data from the first design (27 runs). These data were used to determine the steep-
est descent. These contour plots support the assumption that the values for DAMPS should
be increased, and values for NU should be decreased, whereas the impact of the population
size (NPARENTS) is relatively small. Predicted values are based on the regression equation
ŷ = 3.8+0.93x1+1.37x2−1.84x3. Values for NPARENTS are taken from the interval [2, 100],
which was split into nine subintervals. The slider on top of each panel indicates the value of popu-
lation size

15.6.1.4 Steepest Descent

We proceed with the steepest descent based on the model Y ∼ NPARENTS + NU
+ DAMPS + CS (note that we included factor CS; although this factor was not

judged to have a significant impact by the regression model, including it also did

not require any additional effort). The procedure of steepest descent is performed

as described on p. 354 in Chap. 14. Again, as the largest step width we recommend

400 F. Hutter, T. Bartz-Beielstein, H. H. Hoos, K. Leyton-Brown, and K. P. Murphy

the value that leads to the border of the ROI. Here, we obtained a step width of

δx4 = 0.036 in the natural variables for DAMPS, leading to 11 design points until

we hit the border of the ROI (DAMPS reaches its maximal value 0.99). Data from

the steepest descent experiments are shown in Table 15.7. A graph of these results to

determine the new region of interest following the direction of the steepest descent

is shown in Fig. 15.15.

Table 15.7: Steepest descent experiment

Y NPARENTS NU TCCS DAMPS CONFIG

1 39.29 51 6.00 0.55 0.62 26
2 24.31 49 5.70 0.54 0.66 27
3 18.63 46 5.40 0.53 0.69 28
4 13.49 44 5.11 0.52 0.73 29
5 27.61 41 4.81 0.51 0.77 30
6 2.00 39 4.51 0.50 0.81 31
7 0.01 36 4.21 0.49 0.84 32
8 0.00 34 3.91 0.48 0.88 33
9 1.99 31 3.61 0.47 0.92 34
10 0.99 29 3.32 0.46 0.95 35
11 1.99 26 3.02 0.45 0.99 36

26 28 30 32 34 36

0
10

20
30

40

Configuration

f(x
)

●●●
●

●

●

●
●

●

●●●

●●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

26 28 30 32 34 36

0
10

20
30

40
50

60
70

Configuration

f(x
)

Fig. 15.15: Left: Function values f(x) (Rastrigin) versus steps along the path of the steepest de-
scent. Indices denote the eleven steps from the steepest descent. Note that these values are based
on one repeat only, so variation in the data, e.g., the peak (index 5), is not surprising. These data
were used during the interactive approach. Right: Boxplots showing the variance of the data used
for the steepest descent. Same situation as on the left, but 100 repeats of each CMA-ES config-
uration. These experiments were performed after the CMA-ES tuning was finished. Information
from these runs was not used to determine the tuned CMA-ES parameter set

15 Sequential Model-Based Parameter Optimization: An Experimental Investigation 401

These settings are used for additional runs of CMA-ES. Figure 15.15 plots the

yield at each step along the path of the steepest descent. Based on visual inspection

of the yields in Fig. 15.15, the new central point was determined to be the eighth

point of the steepest descent since no significant decrease occurred during steps nine

through eleven. Furthermore, this new central point leaves some space for variation

of the DAMPS values, say, in the interval [0.8, 0.99].

15.6.1.5 Second Model and Steepest Descent

Based on the best value obtained with the steepest descent, we build a new model

with center point

xc = [NPARENTS,NU,CS,DAMPS] = [34, 3.91, 0.48, 0.88].

The specification of the new region of interest requires user knowledge. The new

center point was determined by interpreting graphical results based on the steep-

est descent. Next, we have to determine a new region around xc. Sometimes, es-

pecially when a classical factorial design is used during the first step, it can be

useful to increase the region of interest at this stage. However, we have chosen

a Box–Behnken design for the first step and therefore have to decrease the re-

gion of interest. As a rule of thumb, to be reconsidered on a case-by-case basis,

we use at least ± 1/5th of the values at the new central point. For example, if

the value of the new population size NPARENTS is 50, we define a new region

of interest for this values as the interval [40, 60]. Here, the new region of interest

reads as follows: NPARENTS ∈ [24, 44], NU ∈ [3, 5], CS ∈ [0.4, 0.6], and
DAMPS ∈ [0.8, 0.99].

Again, a Box–Behnken design with 27 points is used to set up a regression model

to determine the path of the steepest descent. Steps along this path are performed

until no improvement is obtained. Note that five repeats are used now (previous

experiments used only one repeat). The path among the steepest descents consists

of 14 steps. Thus, 70 experiments are performed. The final configuration reads

[NPARENTS,NU,CS,DAMPS] = [34, 3, 0.43, 0.98].

15.6.1.6 Final Exploration

Finally, we use graphical tools to get an overview of the experimental region used in

our experiments. Figure 15.16 displays a fit of the response surface which is based

on the complete data set. A local regression model based on R’s loess() function

is fitted to the data.

Altogether 135 (= 27 + 11 + 27 + 70) runs of CMA-ES were used. The exper-

iments were performed on a 2.3 GHz Pentium 4 with 4 GB RAM running MAT-

LAB Version 7.6 on a Linux system. The SPOT runs for the interactive exploration

402 F. Hutter, T. Bartz-Beielstein, H. H. Hoos, K. Leyton-Brown, and K. P. Murphy

log(Y)

DAMPS

N
U

2

4

6

8

10

0.4 0.6 0.8 1.0

2

3

34
5

np

1

23

4

np

0.4 0.6 0.8 1.0

0
12

34
np

0
1
2

3

4
5

np

0
1
2
3

4

5

6
np

2

4

6

8

10

0
12

3

4

5
6

np
2

4

6

8

10

1
2
3
45

6

7

np

0.4 0.6 0.8 1.0

1
2
3
45

6

7

np

2
3
4

5

6

7

np

−4

−2

0

2

4

6

8

Fig. 15.16: Contour plot based on the complete data set (CMAES-Rastrigin with 135 function
evaluations). Smaller values are better. Better configurations are placed in the lower right corner
of the panels. The factor which has the smallest effect, CS, is held constant. NU is plotted versus
DAMPS, while values of the factor with the second smallest effect, namely NPARENTS (np),
are varied with the slider on top of each panel

required 39 seconds. Writing the reports and setting up the R scripts for the in-

teractive exploration took approximately one hour. Our experience from working

on real-world problems indicates that one working day is necessary to perform the

complete SPOT process if applied to a new simulation or optimization algorithm.

This includes discussions with domain experts to define performance criteria and

the specification and implementation of SPOT interfaces. Substantially more time

might be required in cases where target algorithm runs are very costly.

15.6.2 Further Interactive Tuning Results

We also applied our interactive tuning approach to the other three CMA-ES scenar-

ios introduced in Sect. 15.2. Here we briefly summarize the results.

15 Sequential Model-Based Parameter Optimization: An Experimental Investigation 403

15.6.2.1 Interactive Tuning of CMA-ES on the Sphere Function

Our experiments with CMA-ES on the Sphere function used a different setup (i.e.,

different values of starting point, dimension, and number of function evaluations);

see Table 15.2. However, regarding the region of interest, the same initial settings as

reported in Sect. 15.6.1.1 were used. Again, a Box–Behnken design was generated,

and 27 runs of CMA-ES were performed. Based on the results from these runs, the

following regression model was fitted:

ŷ = 2.13 + 9.25x1 + 1.13x2 + 0.003x3 − 0.74x4.

The regression analysis revealed that the value for NPARENTS should be de-

creased. The regression model as described in Sect. 15.6.1.2 and its refinement by

steepest descent produced

[NPARENTS,NU,CS,DAMPS] = [2.0, 3.5, 0.6, 0.9].

Note the drastic change in the NPARENTS values, whereas other predictors are

only slightly modified. Here, following the direction of the steepest descent resulted

in a significant improvement of CMA-ES’s performance. The function value could

be reduced from 7132 to 1.40 × 10−5, and—in a repeat of the steepest descent—

from 5862 to 1.27 × 10−6. Since we reached a region with small function values

and relatively little variation, we decided to stop the procedure at this stage and

perform a visual inspection based on contour plots (see Fig. 15.17). This required

no additional function evaluations.

The final configuration for the sphere function reads

[NPARENTS,NU,CS,DAMPS] = [2.0, 3.5, 0.6, 0.9].

Altogether 49 (= 27 + 2 × 11) runs of CMA-ES were used to produce this result.

15.6.2.2 Interactive Tuning of CMA-ES on the Ackley Function

The same initial settings as reported in Sect. 15.6.1.1 were used for the interactive

tuning of the Ackley function. Again, we generated a Box–Behnken design and

performed 27 runs of CMA-ES. Based on the results from these runs, the following

regression model was obtained (through fitting, as previously described):

ŷ = 1.75 + 0.88x2 + 0.21x3 − 0.61x4.

Compared to the fit of the functions considered so far, where the regression model

showed p-values smaller than 0.01 (e.g., a value of 0.0008 in the first regression

model), the fit of the regression model was relatively poor (p-value 0.2). This be-

havior can be explained as follows. Running CMA-ES on Ackley’s function with

parameters from the initial ROI produces many outliers which disturb the model-

404 F. Hutter, T. Bartz-Beielstein, H. H. Hoos, K. Leyton-Brown, and K. P. Murphy

log(Y)

DAMPS

N
U

2

4

6

8

10

0.4 0.6 0.8 1.0

np

−5

np

0.4 0.6 0.8 1.0

0

np

5

np np

2

4

6

8

10

10

np
2

4

6

8

10

10

np

0.4 0.6 0.8 1.0

10

np

5 5

np

−20

−15

−10

−5

0

5

10

15

X26 X27 X28 X29 X30 X31 X32 X33 X34 X35 X36

0
5

10
15

20

f(x
)

Fig. 15.17: Top: Contour plot based on the complete data set (CMAES-Sphere, 49 data points).
Smaller values are better. The factor which has the smallest effect, CS, is held constant. NU is
plotted versus DAMPS, while values of the factor with the last but one effect, namely NPAR-
ENTS (np), are varied with the slider on top of each panel. Bottom: Function values f(x) (Ackley)
versus steps along the path of the steepest descent. Indices denote the eleven steps from the steepest
descent. Note that these values are based on five repeats

15 Sequential Model-Based Parameter Optimization: An Experimental Investigation 405

ing process. CMA-ES generates good (< 5) and bad (> 15) solutions with the

same parameter setting. The SPOT tuning procedure applied in this study is based

on mean values. Figure 15.17 illustrates difficulties arising from this situation. The

RSM is based on mean values and produces unhelpful gradient information. There

is a relatively large gap between good and bad solutions. Note that the mean lies

exactly in this gap, so it represents a value that is never realized. We believe that

in this case tuning mean performance might not yield the most meaningful results.

Instead, one could use the trimmed distribution; this will be subject of forthcoming

studies.

We nevertheless present results from the interactive approach to complete our

study. A contour plot of the predicted function values of the CMA-ES for parameter

values from the region of interest used in the interactive tuning study of the Ackley

function is shown in Fig. 15.18. The final configuration reads

[NPARENTS,NU,CS,DAMPS] = [2, 2, 0.11, 0.55].

As in the case of the Sphere function, 27 initial runs were performed, followed by

the evaluations on the path of the steepest descent (2× 11). To obtain more insight,

we performed three additional runs during the steepest descent (3 × 11). Therefore,

a total of 82 runs (= 27 + 2×11 + 3 × 11) was used in this experiment.

15.6.2.3 Interactive Tuning of CMA-ES on the Griewangk Function

The same initial settings as reported in Sect. 15.6.1.1 was used. Again, a Box–

Behnken design was generated, and 27 runs of CMA-ES were performed. Based

on the results from these runs, the following regression model was fitted:

ŷ = −5.65 + 0.61x1 + 9.07x2 − 1.12x3 − 4.30x4.

A steepest descent (with two repeats) based on this first regression model led directly

to an improved CMA-ES configuration. To validate the improvement following

the path of the steepest descent, we repeated the corresponding runs twice. The

improved configuration reads

[NPARENTS,NU,CS,DAMPS] = [48, 2, 0.61, 0.80].

Since 49 = 27+(11×2) runs of CMA-ES already resulted in an improved config-

uration, we used 20 additional CMA-ES runs to obtain an overview of the region of

interest, scanning this region based on Latin hypercube sampling. The correspond-

ing contour plot is shown in Fig. 15.18. As for the Sphere function, 27 initial runs

were performed, followed by the evaluations on the path of the steepest descent (2×
11). Therefore, a total of 69 runs (27 + 2×11 + 20) was used in this experiment.

406 F. Hutter, T. Bartz-Beielstein, H. H. Hoos, K. Leyton-Brown, and K. P. Murphy

log(Y)

DAMPS

N
U

2

4

6

8

10

0.4 0.6 0.8 1.0

1.0

1.5
2.0
2.53.0

np

1.5

2.0

2.5

3.0
np

0.4 0.6 0.8 1.0

2.5

3.0

np

2.5

3.0

np

3.0

np

2

4

6

8

10

3.0

np
2

4

6

8

10

3.0

3.0

np

0.4 0.6 0.8 1.0

3.0

np
2.5 2.5

3.0

np

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

log(Y)

DAMPS

N
U

2

4

6

8

10

0.4 0.6 0.8 1.0

−15
−10

−5

−5

0

np

−25
−20

−15
−10

−5

−5

0
np

0.4 0.6 0.8 1.0

−25
−20

−15
−10

−5

np

−25
−20
−15

−10
−5

np

−25
−20

−15
−10

−5

np

2

4

6

8

10

−25
−20
−15

−10
−5

np
2

4

6

8

10

−20
−15
−10−5

0

np

0.4 0.6 0.8 1.0

−20
−15
−10
−5

0
0

np

−15
−10
−5

0

0

5

np

−40

−30

−20

−10

0

10

Fig. 15.18: Top: Contour plots based on the complete data set (CMA-ES Ackley based on 82
function evaluations). Smaller values are better. Better configurations are placed in the lower area
of the panels. The factor CS is held constant. NU is plotted versus DAMPS, while values of the
factor NPARENTS (np), are varied with the slider on top of each panel. Bottom: Contour plots
based on the complete data set (CMA-ES Griewangk based on 69 function evaluations). Smaller
values are better. Better configurations are placed in the lower region, i.e., small NU values are
important. The factor which has the smallest effect, CS, is held constant. NU is plotted versus
DAMPS, while values of the factor with the last but one effect, namely NPARENTS (np), are
varied with the slider on top of each panel

15 Sequential Model-Based Parameter Optimization: An Experimental Investigation 407

Table 15.8: Performance comparison of the parameter settings found by our automatic and inter-
active approaches. We give median and mean of solution costs c1000 across the 25 repetitions of
SPO+. For each function, we also give the number of target algorithm runs, K, used in the inter-
active approach and the resulting solution cost, cK , as well as the quantile corresponding to this
value in the empirical distribution of SPO+ results (e.g., 56% means that 14 of 25 SPO+ runs
yielded better results)

Test 25 repetitions of SPO+ Interactive approach
case median mean ± stddev K sol. cost quantile of SPO+ dist.

Sphere [×10−7] 4.16 5.55± 5.15 49 4.65 56%
Ackley 7.97 8.48± 2.61 82 12.25 96%

Griewangk [×10−4] 1.73 2.66± 2.53 69 2.22 56%
Rastrigin 2.50 2.62± 0.51 135 2.82 68%

15.6.3 Comparison of Solutions Found Automatically and
Interactively

Next, we evaluate how the interactively found parameter settings compare to the

automatically found ones in terms of CMA-ES performance achieved. Table 15.8

compares the performance of the manually identified parameter settings against the

distribution of performance achieved across 25 runs of SPO+. In all test cases, the

median-best SPO+ run achieved better performance than the manual procedure; be-

tween 56% (14/25) and 96% (24/25) of the automatically found parameter settings

performed better than the one identified manually. However, recall that the manual

process used many function evaluations less than the automatic procedure. Never-

theless, on two test cases, the manually identified parameter settings performed bet-

ter than the automatically found settings do on average. We also provide boxplots for

the performance of the interactively found settings in Fig. 15.8; their performance

is comparable to the one of the automatically found settings.

We conclude that often a manually executed classical regression analysis can

yield well-performing parameter settings using a very limited number of runs of

the target algorithm. The exception in our experiments was test case CMA-ES-

Ackley. For this test case, we observed a pronounced multimodal distribution during

the interactive tuning; we hypothesize that this caused problems for the classical

regression analysis. Although the distributions for test cases CMA-ES-Rastrigin

and CMA-ES-Griewangk were also multimodal, the poor runs were much rarer in

these test cases and rather played the role of outliers. (In the boxplots of Fig. 15.8 on

page 389, the poor runs in test cases CMA-ES-Rastrigin and CMA-ES-Griewangk

were indeed marked as outliers, while the multimodal distributions for CMA-ES-

Ackley were not seen as caused by outliers).

408 F. Hutter, T. Bartz-Beielstein, H. H. Hoos, K. Leyton-Brown, and K. P. Murphy

15.6.4 Discussion of the Interactive Approach

Similar to microscopes in biology, SPOT can be used as a “datascope” to gain in-

sight into algorithm behavior, by revealing factor effects and their importance to the

experimenter. Such insights can not only be used to guide the interactive parameter

optimization process, but also be of intrinsic value to the developer or end user of a

target algorithm.

The classical response surface methodology (as discussed in Chap. 15 of Box

et al. (1978)) underlying our interactive approach was developed not only for finding

parameter settings that achieve improved performance, but also to provide insights

into how the performance of a target algorithm is affected by parameter changes.

This latter question is related to the analysis of the response surface in the region of

interest, and contour plots as shown in Fig. 15.16 are useful tools to answer it.

In particular, from the results reported earlier in this section, we can conclude

that CMA-ES performs robustly on the test functions we studied in the sense that

its mean performance (e.g., as summarized by contour plots) varies only moderately

with changes in the parameters. We furthermore observed that large DAMPS values

and smaller NU values resulted in better CMA-ES performance, while the effect of

CS was rather marginal. Finally, small population sizes improved CMA-ES’s per-

formance on the Sphere function, corresponding nicely with theoretical results for

evolution strategies (Schwefel 1995, Beyer 2001). These statements can be under-

stood as hypotheses derived from our experimental results, and each of them could

be further studied by additional experiments, e.g., as described on p. 34 in Chap. 2

of this book.

In our case study illustrating the interactive approach, we used classical regres-

sion models, because these models can be interpreted quite easily; features of the

response surface can be seen directly from the regression equation Y = Xβ. This
is not the case for more sophisticated prediction models, such as neural networks or

Gaussian process models. Furthermore, as demonstrated here in the case of CMA-

ES, it is possible to obtain competitive results using such simple models. Neverthe-

less, in principle, more complex regression models could be used in the context of

the interactive sequential parameter optimization approach. Furthermore, we note

that observations and hypotheses regarding the dependence of a given target algo-

rithm’s performance on its parameter settings could also be obtained by analyzing

more complex models, including the Gaussian process models constructed by the

previously discussed, automatic sequential parameter optimization procedures.

Clearly, the interactive approach makes it easy to use results from early stages of

the sequential parameter optimization process to effectively guide decisions made

at later stages. For example, looking back at the initial stages of the process, the

experimenter can detect that the set of variables studied at this stage was chosen

poorly, or that inappropriate ranges were chosen for certain variables. Box et al.

(1978) state: “It is rather like looking at an old movie of a swimmer, who can now

do back flips from a high diving board, when he was a young child making his

first feeble attempts to keep his head above water. [. . .] The investigator must learn

from the swimmer, who was prepared to begin by putting his foot in the water and

15 Sequential Model-Based Parameter Optimization: An Experimental Investigation 409

was not afraid of getting wet.” We note that the models used in early stages of the

automated procedures discussed earlier in this chapter also provide guidance to later

stages of the process. However, the interactive process leaves room for expert human

judgment, which can often be more effective in terms of the improvement achieved

based on a small number of target algorithm runs.

The human expertise required to use the interactive approach successfully can be

seen as a drawback compared to fully automated approaches. However, by provid-

ing dedicated support for the various operations that need to be carried out in this

context, SPOT eases the burden on the experimenter and lowers the barrier to using

the interactive approach effectively.

15.7 Conclusions and Future Work

In this work, we experimentally investigated model-based approaches for optimiz-

ing the performance of parametrized, randomized algorithms. First, we restricted

our attention to procedures based on GP models, the most popular family of models

for this problem. We evaluated two approaches from the literature, and found that

“out-of-the-box” sequential parameter optimization (SPO) offered more robust per-

formance than the sequential Kriging optimization (SKO) approach. However, when

a log-transformation was used, SKO performed competitively. We then investigated

key design decisions within the SPO paradigm: the initial design; whether to fit

models to raw or log-transformed data; the expected improvement criterion; and the

intensification criterion. Of these four, the log transformation and the intensification

criterion substantially affected performance. Based on our findings, we proposed a

new version of SPO, dubbed SPO+, which yielded substantially better performance

than SPO for optimizing the solution quality of CMA-ES (Hansen and Ostermeier

1996, Hansen and Kern 2004) on a number of test functions, as well as the runtime

of SAPS (Hutter et al. 2002) on a SAT instance. In this latter domain, for which

performance results for other (model-free) parameter optimization approaches are

available, we demonstrated that SPO+ achieved state-of-the-art performance.

We then contrasted this automated tuning approach with an interactive approach

based on classical linear regression models. The interactive approach yielded well-

performing parameter settings based on very few function evaluations, and also

provided the basis for interesting hypotheses about CMA-ES’s performance un-

der different parameter settings. The interactive approach is particularly suitable in

situations where the evaluation of individual configurations is computationally very

expensive and therefore the overall number of parameter configurations evaluated

has to be kept as low as possible.

In the future, we plan to extend our work to deal with optimization of runtime

across a set of instances, along the lines of the approach of Williams et al. (2000).

We also plan to compare other types of models, such as random forests (Breiman

2001), to the Gaussian process approach. SPOT and the interactive approach al-

ready support the optimization of categorical parameters using tree-based regression

410 F. Hutter, T. Bartz-Beielstein, H. H. Hoos, K. Leyton-Brown, and K. P. Murphy

models (Chap. 14). We further plan to develop automated methods for the sequential

optimization of categorical variables.

Acknowledgements We thank Theodore Allen for making the original SKO code available to
us. This work was supported by NSERC Discovery Grant 238788, by the Bundesministerium
für Forschung und Bildung (BMBF) under the grant FIWA (AIF FKZ 17N2309, "Ingenieurnach-
wuchs"), and by the Cologne University of Applied Sciences under the grant COSA.

Appendix

We show that for a random variable X distributed according to a Gaussian distri-

bution N (μ, σ2), it is the case that E[max(fmin − exp(X), 0)] = fminΦ(v) −
e

1
2σ

2+μ×Φ(v−σ), where v = ln(fmin)−μ
σ . We denote the probability density func-

tion and cumulative distribution function of a standard normal distribution as ϕ and

Φ, respectively.

E[max(fmin − exp(X), 0)]

=

∫ ∞

−∞
max(fmin − exp(x), 0)p(x)dx

=

∫ ln(fmin)

−∞
(fmin − exp(x))

1

σ
ϕ(

x− μ

σ
)dx

= fminΦ(
ln(fmin)− μ

σ
)−
∫ ln(fmin)−μ

σ

−∞
exp[xσ + μ]

1√
2π

exp

[
−1

2
x2

]
dx

= fminΦ(
ln(fmin)− μ

σ
)−
∫ ln(fmin)−μ

σ

−∞
exp[

1

2
σ2 + μ]

1√
2π

exp

[
−1

2
(x− σ)2

]
dx

= fminΦ(
ln(fmin)− μ

σ
)− exp[

1

2
σ2 + μ]Φ(

ln(fmin)− μ

σ
− σ).

References

Adenso-Diaz B, Laguna M (2006) Fine-tuning of algorithms using fractional exper-

imental design and local search. Operations Research 54(1):99–114

Alexandrov NM, Lewis RM, Gumbert CR, Green LL, Newman PA (2001) Ap-

proximation and model management in aerodynamic optimization with variable-

fidelity models. Journal of Aircraft 38(6):1093–1101

Audet C, Orban D (2006) Finding optimal algorithmic parameters using the mesh

adaptive direct search algorithm. SIAM Journal on Optimization 17(3):642–664

15 Sequential Model-Based Parameter Optimization: An Experimental Investigation 411

Balaprakash P, Birattari M, Stützle T (2007) Improvement strategies for the f-

race algorithm: Sampling design and iterative refinement. In: Bartz-Beielstein T,

Aguilera MJB, Blum C, Naujoks B, Roli A, Rudolph G, Sampels M (eds) 4th

International Workshop on Hybrid Metaheuristics (HM’07), pp 108–122

Bartz-Beielstein T (2003) Experimental analysis of evolution strategies—overview

and comprehensive introduction. Interner Bericht des Sonderforschungsbereichs

531 Computational Intelligence CI–157/03, Universität Dortmund, Germany

Bartz-Beielstein T (2006) Experimental Research in Evolutionary Computation—

The New Experimentalism. Natural Computing Series, Springer, Berlin, Heidel-

berg, New York

Bartz-Beielstein T, Markon S (2004) Tuning search algorithms for real-world ap-

plications: A regression tree based approach. In: Greenwood GW (ed) Proceed-

ings 2004 Congress on Evolutionary Computation (CEC’04), Portland OR, IEEE,

Piscataway NJ, vol 1, pp 1111–1118

Bartz-Beielstein T, Preuss M (2006) Considerations of budget allocation for sequen-

tial parameter optimization (SPO). In: Paquete L, et al. (eds) Workshop on Em-

pirical Methods for the Analysis of Algorithms, Proceedings, Reykjavik, Iceland,

pp 35–40

Bartz-Beielstein T, Parsopoulos KE, Vrahatis MN (2004a) Analysis of particle

swarm optimization using computational statistics. In: Simos TE, Tsitouras C

(eds) Proceedings International Conference Numerical Analysis and Applied

Mathematics (ICNAAM), Wiley-VCH, Weinheim, Germany, pp 34–37

Bartz-Beielstein T, Parsopoulos KE, Vrahatis MN (2004b) Design and analysis of

optimization algorithms using computational statistics. Applied Numerical Anal-

ysis and Computational Mathematics (ANACM) 1(2):413–433

Bartz-Beielstein T, de Vegt M, Parsopoulos KE, Vrahatis MN (2004c) Designing

particle swarm optimization with regression trees. Interner Bericht des Sonder-

forschungsbereichs 531 Computational Intelligence CI–173/04, Universität Dort-

mund, Germany

Bartz-Beielstein T, Lasarczyk C, Preuß M (2005) Sequential parameter optimiza-

tion. In: McKay B, et al. (eds) Proceedings 2005 Congress on Evolutionary Com-

putation (CEC’05), Edinburgh, Scotland, IEEE Press, Piscataway NJ, vol 1, pp

773–780

Bartz-Beielstein T, Lasarczyk C, Preuss M (2008a) Sequential

parameter optimization toolbox, manual version 0.5, Septem-

ber 2008, available at http://www.gm.fh-koeln.de/imperia/

md/content/personen/lehrende/bartz_beielstein_thomas/

spotdoc.pdf

Bartz-Beielstein T, Zimmer T, Konen W (2008b) Parameterselektion für komplexe

modellierungsaufgaben der wasserwirtschaft – moderne CI-verfahren zur zeitrei-

henanalyse. In: Mikut R, Reischl M (eds) Proc. 18th Workshop Computational

Intelligence, Universitätsverlag, Karlsruhe, pp 136–150

Beachkofski B, Grandhi R (2002) Improved distributed hypercube sampling. Amer-

ican Institute of Aeronautics and Astronautics Paper 2002-1274

412 F. Hutter, T. Bartz-Beielstein, H. H. Hoos, K. Leyton-Brown, and K. P. Murphy

Beielstein T (2003) Tuning evolutionary algorithms—overview and comprehensive

introduction. Interner Bericht des Sonderforschungsbereichs 531 Computational
Intelligence CI–148/03, Universität Dortmund, Germany

Beyer HG (2001) The Theory of Evolution Strategies. Springer, Berlin, Heidelberg,

New York

Birattari M, Stützle T, Paquete L, Varrentrapp K (2002) A racing algorithm for con-

figuring metaheuristics. In: Proc. of GECCO-02, pp 11–18

Box G, Behnken D (1960) Some new three level designs for the study of quantitative

variables. Technometrics 2:455–475

Box GEP, Draper NR (1987) Empirical Model Building and Response Surfaces.

Wiley, New York NY

Box GEP, Hunter WG, Hunter JS (1978) Statistics for Experimenters. Wiley, New

York NY

Breiman L (2001) Random forests. Machine Learning 45(1):5–32

Chen J, Chen C, Kelton D (2003) Optimal computing budget allocation of

indifference-zone-selection procedures, working paper, taken from http://
www.cba.uc.edu/faculty/keltonwd. Cited 6 January 2005

Coy SP, Golden BL, Runger GC, Wasil EA (2001) Using experimental design to

find effective parameter settings for heuristics. Journal of Heuristics 7(1):77–97

Dalgaard P (2002) Introductory Statistics with R. Springer, Berlin, Heidelberg, New

York

Hansen N (2006) The CMA evolution strategy: a comparing review. In: Lozano J,

Larranaga P, Inza I, Bengoetxea E (eds) Towards a new evolutionary computation.

Advances on estimation of distribution algorithms, Springer, pp 75–102

Hansen N, Kern S (2004) Evaluating the CMA evolution strategy on multimodal

test functions. In: Yao X, et al. (eds) Parallel Problem Solving from Nature PPSN

VIII, Springer, LNCS, vol 3242, pp 282–291

Hansen N, Ostermeier A (1996) Adapting arbitrary normal mutation distributions

in evolution strategies: the covariance matrix adaptation. In: Proc. of CEC-96,

Morgan Kaufmann, pp 312–317

Hoos HH, Stützle T (2005) Stochastic Local Search – Foundations & Applications.

Morgan Kaufmann

Huang D, Allen TT, Notz WI, Zeng N (2006) Global optimization of stochastic

black-box systems via sequential kriging meta-models. Journal of Global Opti-

mization 34(3):441–466

Hutter F, Tompkins DAD, Hoos HH (2002) Scaling and probabilistic smoothing:

Efficient dynamic local search for SAT. In: Proc. of CP-02, pp 233–248

Hutter F, Hamadi Y, Hoos HH, Leyton-Brown K (2006) Performance prediction and

automated tuning of randomized and parametric algorithms. In: Proc. of CP-06,

pp 213–228

Hutter F, Hoos HH, Stützle T (2007) Automatic algorithm configuration based on

local search. In: Proc. of AAAI-07, pp 1152–1157

Hutter F, Hoos HH, Leyton-Brown K, Murphy KP (2009a) An experimental inves-

tigation of model-based parameter optimisation: SPO and beyond. In: Proc. of

GECCO-09, pp 271–278

15 Sequential Model-Based Parameter Optimization: An Experimental Investigation 413

Hutter F, Hoos HH, Leyton-Brown K, Stützle T (2009b) ParamILS: an automatic

algorithm configuration framework. Journal of Artificial Intelligence Research

36:267–306

Ihaka R, Gentleman R (1996) R: A language for data analysis and graphics. Journal

of Computational and Graphical Statistics 5(3):299–314

Jones DR, Schonlau M,WelchWJ (1998) Efficient global optimization of expensive

black box functions. Journal of Global Optimization 13:455–492

Kleijnen JPC (2008) Design and analysis of simulation experiments. Springer, New

York NY

Konen W, Zimmer T, Bartz-Beielstein T (2009) Optimierte Modellierung von Füll-

ständen in Regenüberlaufbecken mittels CI-basierter Parameterselektion. at – Au-

tomatisierungstechnik 57(3):155–166

Lasarczyk CWG (2007) Genetische Programmierung einer algorithmischen

Chemie. PhD thesis, Technische Universität Dortmund

Leyton-Brown K (2003) Resource allocation in competitive multiagent systems.

PhD thesis, Stanford University

Leyton-Brown K, Nudelman E, Shoham Y (2002) Learning the empirical hardness

of optimization problems: The case of combinatorial auctions. In: Proc. of CP-02

Lophaven SN, Nielsen HB, Sondergaard J (2002) Aspects of the Matlab tool-

box DACE. Tech. Rep. IMM-REP-2002-13, Informatics and Mathematical Mod-

elling, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark

Mayer AS, Kelley C, Miller CT (2002) Optimal design for problems involving flow

and transport phenomena in saturated subsurface systems. Advances in Water

Resources 12:1233–1256

Mockus J, Tiesis V, Zilinskas A (1978) The application of bayesian methods for

seeking the extremum. Towards Global Optimisation 2:117–129, north Holland,

Amsterdam

Montgomery DC (2001) Design and Analysis of Experiments, 5th edn. Wiley, New

York NY

Pukelsheim F (1993) Optimal Design of Experiments. Wiley, New York NY

Quinonero-Candela J, Rasmussen CE, Williams CK (2007) Approximation meth-

ods for gaussian process regression. In: Large-Scale Kernel Machines, Neural

Information Processing, MIT Press, Cambridge, MA, USA, pp 203–223, URL

http://mitpress.mit.edu/9780262026253
Rasmussen CE, Williams CKI (2006) Gaussian Processes for Machine Learning.

The MIT Press

Sacks J, Welch WJ, Welch TJ, Wynn HP (1989) Design and analysis of computer

experiments. Statistical Science 4(4):409–423

Santner TJ, Williams BJ, Notz WI (2003) The Design and Analysis of Computer

Experiments. Springer Verlag, New York

Schonlau M, Welch WJ, Jones DR (1998) Global versus local search in constrained

optimization of computer models. In: Flournoy N, Rosenberger W,WongW (eds)

New Developments and Applications in Experimental Design, vol 34, Institute of

Mathematical Statistics, Hayward, California, pp 11–25

414 F. Hutter, T. Bartz-Beielstein, H. H. Hoos, K. Leyton-Brown, and K. P. Murphy

Schwefel HP (1995) Evolution and Optimum Seeking. Sixth-Generation Computer

Technology, Wiley, New York NY

Tompkins DAD, Hoos HH (2004) UBCSAT: An implementation and experimenta-

tion environment for SLS algorithms for SAT & MAX-SAT. In: Proc. of SAT-04

Venables WN, Ripley BD (2002) Modern Applied Statistics with S-PLUS, 4th edn.

Springer, Berlin, Heidelberg, New York

Williams BJ, Santner TJ, Notz WI (2000) Sequential design of computer experi-

ments to minimize integrated response functions. Statistica Sinica 10:1133–1152

	Chapter 15 Sequential Model-Based Parameter Optimization: an Experimental Investigation of Automated and Interactive Approaches
	15.1 Introduction
	15.2 Target Algorithms and Experimental Setup
	15.3 Existing Methods for Sequential Model-Based Optimization of Noisy Functions
	15.3.1 General Gaussian Process Regression
	15.3.2 A Common Framework for Sequential Model-Based Optimization
	15.3.3 Empirical Comparison of SKO and SPO

	15.4 Model Quality
	15.4.1 Choosing the Initial Design
	15.4.2 Transforming Performance Data

	15.5 Sequential Experimental Design
	15.5.1 Intensification Mechanism
	15.5.2 Expected Improvement Criterion
	15.5.3 Overall Evaluation

	15.6 Interactive Exploration of Parameter Space
	15.6.1 Using SPOT Interactively
	15.6.2 Further Interactive Tuning Results
	15.6.3 Comparison of Solutions Found Automatically and Interactively
	15.6.4 Discussion of the Interactive Approach

	15.7 Conclusions and Future Work
	Appendix
	References

