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Abstract
Solving multi-objective optimization problems is a challenging task that demands efficient software tools
and systematic analytical approaches. In this paper two evolutionary multi-objective optimization algorithms
– namely the evolution strategy (ES) and the NSGA II – are applied to two complex real-world problems. The
parameter settings of the evolutionary algorithms have been chosen and optimized according to statistical
design plans. A new ranking method for measuring the quality of pareto-fronts is introduced. The layout of
mold temperature control systems and the scheduling of elevators show typical complexity aspects that are
necessary to illustrate a systematic approach of solving real-world multi-objective optimization problems.

Keywords: Multi-objective evolutionary algorithms, Statistical design of experiments,
Pareto-ranking method, Mold temperature control, Elevator supervisory group control.

1 INTRODUCTION

Evolutionary algorithms (EA) are general purpose methods
for solving complex optimization problems. These meta-
heuristics depend on optimal parameter settings that are
usually not easy to find. Problems in industry often differ
strongly from the well known ’toy’-functions that are typi-
cally used in the EA community. The complexity of time
consuming real-world problems limits the number of exper-
iments that can be performed to tune the parameter set-
tings of an EA. Furthermore, typical real-world problems are
multi-objective, i.e. they are combinations of several quality
demands that may also contradict each other. In this ar-
ticle a systematic and constructive approach is introduced
to handle these difficult problems by means of EA and sta-
tistical design of experiments (DoE). Classic DoE requires
expressive scalar quality measures [1]. Providing these val-
ues for multi-objective problems is usually not straight for-
ward [2]. Therefore, a new ranking method for measuring
Pareto fronts is introduced.

The paper has the following structure: First, two selected
real-world problems are described – the mold temperature
control problem and the elevator supervisory group control
problem. A description of two multi-objective evolutionary
optimizers (an aggregating Evolution Strategy (ES) and the
Nondominated Sorting Genetic Algorithm II (NSGA II)) is
presented. A new multi-objective ranking method is intro-
duced. Some fundamentals of the classical statistical de-
sign of experiments are given. Finally of the article the re-
sults of the experimental design are discussed to get an im-
pression of the behavior of the algorithms.

2 MOLD TEMPERATURE CONTROL SYSTEMS (MTCS)

The optimal layout of mold temperature control systems is
decisive for maximizing the product quality and for minimiz-
ing the production cycle times in injection molding and die
casting [3]. Mold temperature control systems can be de-
scribed as a network of deep hole bores that penetrate a
casting tool.

The bores lead a water-oil emulsion near the die surface
to heat up, cool down or stabilize the temperature of the
tool. A well balanced die surface temperature can be es-
tablished by the structure of the mold temperature control
circuits. The layout of the mold temperature control system
is usually designed by human expert knowledge. Objective
and fast measures are necessary to estimate the tempera-
ture balance in a casting tool to support the complex deci-
sions made by the experts. Here, an automatic optimization
strategy is introduced that uses efficient temperature esti-
mation models and intelligent geometrical encoding strate-
gies [4, 5].

Figure 1 : Polyline description of a MTCS applied to a
sphere.

A new polyline approach models efficiently the bore struc-
tures (see Figure 1). A sequence of 3D-vertices of the poly-
line defines uniquely a circuit of bores. A vector composed
of the vertex co-ordinate values is use to describe a circuit
(phenotype). The real-value vertex vector is the input (geno-
type) of the optimization strategies.

Several effects, restrictions and demands are essential to
all MTCS: the temperature on the die surface depends on
the geometric position and structure of the bores; each bore
is interconnected to another bore to form a well defined cir-
cuit that starts and ends in two points at the tool surface;
all bores must not intersect the tool surface, the die surface
nor each other; the length and number of bores influence
the manufacturing costs and stability of the tool negatively;
an intensive but also well distributed temperature distribu-
tion has a positive effect on the temperature balance in the
tool.



FEM models are exact and flexible but often very time con-
suming. Here, an innovative radiation model is used as a
surrogate for generating fast evaluations of the temperature
effects. Each bore is modeled as a ”neon lamp” that illumi-
nates the die surface. The light intensity is the analogon to
the heat radiation of a bore. The die surface is described
by triangulations. The radiation effect is calculated via the
sum of influences that the bores between two consecutive
points
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The aggregated temperature effect ')( is composed of three
parts: the arithmetic average sum over all illumination influ-
ences of all bores on all triangles (describing the absolute
cooling effect), the temperature mean distribution (modeling
the uniformity of the illumination) and the normalized maxi-
mum effect value.

In the polyline approach the multi-objective fitness function
has been modeled via a special multiplicative aggregation
method or via a Pareto approach. The aggregated fitness '
is a function of the standardized restrictions '+*-,�. , the man-
ufacturing costs ')/ (i.e. the length of the bores), and the
temperature effect ' ( :
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The allover penalty ' *-,B. is a linear combination of the num-
ber of collisions between two bores ' ;C< , the factor ' ? < de-
scribes the collision between the bores and the tool surface
and '2AD( is a penalty for the bores that reach out of the tool.9 ,
=
,
@
, $ are arbitrary weighting factors.

3 ELEVATOR SUPERVISORY GROUP CONTROL PROB-
LEM (ESGC)

High rise buildings require efficient elevator systems. The
elevator group controller determines the floors where the
elevators should go to and it assigns elevator cars to cus-
tomers. This assignment is based on a heuristic or policy
and should be optimal with respect to many (partially con-
flicting) goals, i.e. waiting times, energy consumption, main-
tenance costs, security, service intervals, or comfort.

Bartz-Beielstein and Markon proposed a simplified eleva-
tor group control simulation model: the sequential ring (S-
ring). It abstracts from specific building configurations and
enables the comparison of different heuristics. As it can be
reproduced easily it is well suited as a benchmark problem.

The state of the system is mapped to a binary string and the
system’s dynamic is given by a state transition table. Only
the number of floors E , the customer arrival rate F and the
number of elevator cars G in the system have to be speci-
fied to perform a simulation. Despite the model’s simplicity
it is hard to find an optimal policy, since H , the number of
different system states grows exponentially with the number
of floors E and G , the number of elevator cars: HI�KJ .LNM2O L .
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Figure 2 : S-ring elevator model.

The S-ring model determines approximatively the passen-
ger waiting time. This is the time measured from the in-
stance a passenger registers a call to the instance the pas-
senger enters the elevator car. Different traffic patterns oc-
cur during the day, i.e. up-peak traffic in the morning, inter-
floor traffic during the day in office buildings. The S-ring
model considered in the remainder of this article uses two
different traffic patterns with corresponding fitness values ' �

and ' � . The minimization of the (expected) aggregated wait-
ing times 'P�1' �

�
� ' �

� is the subject of the optimization pro-
cess. A “good” policy has to cope with these two conflicting
objectives while minimizing the resulting waiting times. A � Odimension real-valued vector is used to represent the policy.
In addition, stochastically disturbed fitness function values
complicate the optimization task. Summarizing, the S-ring
models a highly complex real-world optimization problem
with conflicting objectives and noisy fitness function values.

4 MULTI-OBJECTIVE EVOLUTIONARY OPTIMIZATION

Multi-objective optimization is the process of finding one or
more vectors of decision variables that simultaneously sat-
isfy all feasible constraints and optimize a vector of objective
functions that map the decision variables to two or more per-
formance criteria or objectives [2]. In real-world problems it
is extremely rare that only one single objective has to be
optimized. Usually, a solution for multiple optimization crite-
ria that may also contradict each other has to be found. In a
problem with multiple objectives, it is generally impossible to
obtain a total-ordering of all of the alternative solutions, with-
out invoking further rules or assumptions. To make choices
between solutions one needs selection criteria. Typically,
Pareto selection, scalarizing selection, and criterion selec-
tion are used.
In Pareto optimization the concept of dominance is used to
introduce an order into a vector space. A dominance re-
lation Q is defined that compares the elements of a vector
component-wise [6]. The set of all Pareto optimal vectors in
the decision variable space is called the Pareto set. The re-
spective set in the objective space is called the Pareto front.
Scalarizing methods have a great popularity in the domain
of multi-criteria decision making (MCDM). These methods
map the vector of objectives to a single objective. This al-
lows to apply methods that are well known in single objec-
tive optimization. The disadvantage of scalarizing is that
the scalars have to be chosen adequately, the complete
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Pareto front cannot be approximated within one run, and
non-convex Pareto fronts are difficult to handle [7].

Criterion selection considers just one objective in isolation,
each time a solution is evaluated for selection. It is not taken
into account in the context of this article.

factor symbol parameter�
� � � parent individuals� O � F < crossover probability��� � F L mutation probability��� � $ < distribution index for crossover��� � $ L distribution index for mutations��	 � 
 number of generations��� � E chromosome length (dimension)��� �  ( selection type��� � @ ( crossover type�
�-6 � '�� front ratio

Table 1: NSGA II parameters description

One of the best known multi-objective evolutionary algorithm
for Pareto optimization is the NSGA II [7]. This algorithms
has been incorporated together with other multi-objective al-
gorithms into a programming environment called KEA (Kit
for Evolutionary Algorithms) [4]. The NSGA II algorithm is an
elitist multi-objective algorithm. It utilizes a non-dominated
sorting step that ”peels” off Pareto front by Pareto front from
the set of the combined offspring and parent population

� (
and clusters these groups into ranks. In a second step, a
special crowding distance sorting method is used to order
the new set according to the distances between the indi-
viduals to increase the diversification of the solutions. A
special crowded tournament selection operator generates a
new offspring generation using mutation and crossover. The
operator selects mating partners according to their rank and
crowding distance. A new iteration of the algorithm is per-
formed using the new offspring population and the sorted
parent population. The relevant parameters (in the following
also called factors) of the NSGA II can be seen in Table 1.

factor symbol parameter�
� ��� � parent individuals� O ��� � offspring-parent ratio � ����� ���� ��� � �� initial standard deviation��� ��� � L� variation multiplier for � ���� ��� � maximum age��	 ��� E�� number of standard deviation��� ��� � mixing number��� ��� ��� crossover for objective variables��� ��� � � crossover for strategy variables�
�+6 � � 
 number of generations�
�5� � � "!#! $ random seed�
� O � � E dimension

Table 2: ES parameter description

A classic evolution strategy (ES [8]) has been used to-
gether with scalarizing selection. Additional operators, that
may help to find solutions using additional problem specific
knowledge, have been deactivated for the experiments. The
relevant factors of the ES can be seen in table 2. �%$'& ( �
denotes the number of offspring. The concrete parameter
settings used for the experiments can be seen in Tables 3
and 4.

5 COMPARING THE PERFORMANCE OF DIFFERENT
MOEA

Fonseca and Fleming introduced attainment surfaces that
mark all solutions that are sure to be dominated by the set
of already obtained non-dominated solutions [9]. Connect-
ing the points of the approximated Pareto front found by the
algorithm via horizontal and vertical line segments – as de-
picted in Figure 3 – divides the objective space into two re-
gions. Repeated runs of the MOEA result in a set of at-
tainment surfaces ) � �+*�, � .- for the / th run configuration
( / � �

� O � 4+4+4
� G10328� �

� O � 4+4 4
�547�

), if the / th run configuration
is repeated

4 �
times. Intersecting attainment surfaces with

cross-lines enable us to define a metric for a comparison of
several MOEA parameter design configurations. The set of
cross-lines 687 can be defined as

1. diagonal imaginary lines running in the direction of
the improvement in all objectives [9],

2. lines intersecting the origin [10], or

3. lines that are parallel to the first bisector of the an-
gle [11]. The following investigations are based on
this approach.

For every cross-line and every attainment surface , �  the
point of intersection 9 �  � 7 can be determined, see Figure 3.
Hence, for every cross-line a distribution of points of inter-
section can be obtained. A simple geometric argument is
used in the next step to determine the best run configura-
tion /;: for one crossing line (“the winner takes all” approach),
see Figure 4. Finally, the percentage of cross-lines, where
configuration / performs best, is determined. Thus, we can
conclude that configuration / performs best compared to
the other run configurations on < � % of the cross-lines. This
procedure is repeated

4
times. The implementation of the

comparison is straightforward and can be done efficiently.
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Figure 3: Attainment surface with cross-lines for one run of
one simulation run-configuration.
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Already a small number of cross-lines can give a good ap-
proximation of the quality of an parameter design configura-
tion.

6 STATISTICS AND DESIGN OF EXPERIMENTS

Statistics are a powerful means to objectively analyze the re-
sults of computer experiments [1]. Designs of experiments
(DoE) not only help to find optimal parameter settings very
efficiently. They also support the comparison of parameter
settings of algorithms when applied in different contexts. In
this context linear regression models � � ��� ���

are used,
where � $ & � . is the known response,

� $ � � E��	� 
 is
the design plan, i.e. a matrix of independent regression
variables,

�
is the vector of � ( E�
�� ) unknown regres-

sion coefficients, and
�

is the E -dimensional vector of er-
rors, which are independently standard normal distributed.
The least squares estimate of the regression coefficients is
given by � � � ��� � 
�� � �����

, where
���

denotes the trans-
posed matrix of

�
. Generally, a three-stage approach for

factor optimization is used: screening, modeling, and opti-
mization. Screening is a technique to detect the significant
main effects. From the coefficients of this model the ”path of
the steepest descent” towards locally better factor settings
can be calculated. Classical types of screening designs are
factorial and fractional factorial designs. Design generators
with corresponding aliases and resolutions for fractional de-
sign plans can be found in [1].
In the modeling stage interactions are taken into account.
In the final optimization stage, central composite designs
(CCD) with additional axial runs are used. The ability of
these designs to approximate second-order surfaces is re-
flected in a relatively high number of experiments.

7 EXPERIMENTAL SETUP

To get a first impression on the relationship between the
factors and the algorithms performance, screening designs
have been performed. For the elevator group control prob-
lem the first

�
factors shown in Table 4 have been consid-

ered. Since we wanted to focus on the analysis of the main
factors, a fractional factorial design of resolution ����� withO�� ��� � � O runs was sufficient. The MTCS problem was
simplified by varying only the first 5 factors given in Table 3
and 4. For this situation an appropriate choice of a screen-
ing design was a resolution � fractional factorial design withO�� � � � �

	
runs.

The parameters of the applications have been kept con-
stant for all experiments. They were chosen according to
experience and reasons of clearness. In the mold tempera-
ture control problem the following weights were used in the
penalty function '+*+,�. : 9 � �54 6 E+ O ,

= � �!4 6 E+
�
,
@ � �!4 6 E+

	
.

In the term ')( , the value ! � 6 4 O
�

and in the value $ � �!4 6 E-
	

in the effective fitness function ' have been chosen. The
number of

	
bores yields a reasonably complex problem. In

each experiment a half-sphere (see fig. 1) had to be cooled.
The number of generations of the ES applied to both prob-
lems depends on the number of fitness evaluations, which
was kept constant. With ��� ��� � $ * �-6

� �.� � �
6
�
�
�
6 - and@�� E  � � �54 6 E+

�
evaluations, the generation numbers are
 � @�� E  � � � $'* �-6!656

� O � � � O � 6
� �
6 - , respectively. The num-

ber of generations used for the NSGA II was �+6!6 and O 6!6 for

�+6!6 and
�
6 individuals, respectively.

It should be mentioned that an ES with only one step size� � and � � � has been used. Experiments using more step

sizes and changing values of � have been tested only for the
elevator group control problem.
Each complete design plan has been repeated �+6!6 times per
experiment using the ES. This makes �

	 � �+6!6 runs for one
complete plan. The best values and the arithmetic mean of
the fitness values found by the population during each gen-
erations have been recorded. The same initial random seed
was used for each factor setting. The random seed was in-
creased linearly for each of the �+6!6 repetitions.

symbol range design
� & ( � �

� � $�* � 6 0 �-656 -F <  6 4 6
�
�54 6  

� O � $�* 6 4
� 0 6 4

� -F L  6 4 6
�
�54 6  

��� � $�* 6 4
� 0 6 4

� -$ < & ( � ��� � $�* O 6 0
�
6 -$ L & ( � ��� � $�* O 6 0
�
6 -
 & ( � ��	 � � � � � � const.E & ( � ��� � � const. ( * roulette, tournament - ��� � � tournament@ ( * point, uniform, SBX - ��� � � SBX'�� & � � �

�-6 � � �
Table 3: Parameter settings for the NSGA II

symbol range design
� & ( � �

� � � $�*
� 0 O 6 -� & � � � O � � $�* O 4 6 0

�
4 6 -� �� & � � ��� � � $�* 6 4 � 0 6 4
� -� L� & � � ��� � � $�* 6 4

� 0 O 4 6 -� & ( � ��� � � $�* �54 6 0�! -E � * � 0�E -
��	 � � � �� * � 0 � -
��� � � � �

��� * intermediate, discrete - ��� � � = discrete� � * intermediate, discrete - ��� � � = intermediate
 & ( � �
�-6 ��� � � � const."!�! $ & ( � �
�!� ��� = const.E & ( � �
� O ��� = const.

Table 4: Parameter settings for the ES

The experiments of each complete design plan for the anal-
yses of the NSGA II have been repeated only three times.
This is due to the fact that the Pareto fronts generated by the
NSGA II are more difficult and more time consuming to an-
alyze than the single-criterion results generated by the ES.
The cooling efficiency ' ( and the total length of the bores ' /
were recorded during each run yielding a two dimensional
Pareto front.
All KEA and ES runs for the MTCS have been performed on
a PC (Athlon XP+ 2600) with Windows 2000 and the ESGC
optimization runs were performed on a heterogenous work-
station cluster of 30 Linux PCs.

8 RESULTS

8.1 ES results for the MTCS

The best solutions found by the ES were disturbed by out-
liers with very high values. These outliers are due to the re-
strictions evaluated by the penalty functions. ES using small
populations tend to get stuck in the restrictions, i.e. bores
penetrate the surface of the tool and cannot be removed.
Although, the number of generations performed by the ES
was high enough to guarantee that the algorithm can stabi-
lize in an equilibrium state, the bandwidth of the variations
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of the ES-results was large. The multi-objective problem of
the MTCS seems to have a lot of local optima. This problem
increases with the number of bores. Therefore, it is likely for
the ES to get stuck in one of the suboptima.
Due to the problems described above, the response value
considered for the statistical analysis was chosen to be the
global best value out of the �-656 runs for each factor setting.
In the following these values will be called GBF values. Us-
ing the global best values is also practically reasonable, be-
cause the best of the hundred runs would also be selected
for manufacturing.
The chosen fractional factorial design of resolution V al-
lows to estimate all main effects and two-factor interactions
uniquely. In order to avoid the problem of over-fitting, non-
significant factors are deleted. Since the design is a satu-
rated one, e.g. 16 parameters (including the intercept) are
estimated based on 16 runs, no degrees of freedom are left
to estimate the error variance. To assess the significance
of the individual factors we generated a half-normal plot.
Under the assumption that most of the investigated factors
possess no significant influence, most of the estimated ef-
fects are normally distributed with mean zero and only some
have a nonzero expectation value. This graphical tool plots
the ordered absolute values of the standardized estimated
effects against the corresponding quantiles of the standard
normal distribution. The largest estimated effects that de-
viate clearly from the line formed by the other factors are
declared to be significant. Figure 5 shows the half-normal
plot for the ES problem.
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Figure 5: Half-normal plot.

Apparently, � L� , the multiplier of the learning rate, the popu-
lation size � and the selective pressure � have a significant
influence on the algorithm’s performance. Additionally, the
interactions between � and � L� , and � and � play a signif-
icant role. A forward stepwise selection procedure verifies
the results obtained by this graphical tool. The interaction
between, for example, � and � L� can be interpreted as fol-
lows. If the multiplier of the learning rate � L� is small, the
population size plays no role on the performance of the al-
gorithm. For large values of � L� a larger population size �
results in a better performance of the algorithm. A value of
the adjusted R-Square of 6 4

���
indicates that the fit of this

reduced model is sufficient.
The influence of the population sizes on the problem quality
is typical for difficult problems. The higher the sampling rate,
the higher the possibility to find good alternatives among
several sub-optima. The selection pressure � influences the
diversity in the population. Therefore, it is not surprising that
the interaction of � and � has been detected. The dominant
significance of factor � L� is interesting. � L� is an additional
multiplier for the standard � � ��� O E � �

factor that is used in

the self adaptation process of the step size in the ES. The
smaller � L� the smaller the standard deviation of the step
sizes. Small values may be advantageous in complex prob-
lems where far “explorative” jumps in the fitness landscape
yield too often disadvantageous results. Too small � L� result
in stagnation. The interaction of � L� with the population size
of the parents � can be interpreted via formula of the con-
vergence velocity which depends on both parameters [8].
Since the contribution of the main effects and the two fac-
tor interactions is almost identical to the corrected total sum
of squares, it is not recommended to apply the method of
steepest descent based on the main factor model. Instead,
we determined the optimum predicted by the reduced re-
gression model including the main effects and the interac-
tions. Note that no extrapolation of the design space was
permitted. Running the ES algorithm with this optimal pa-
rameter setting increased the performance. The best GBF
value was 6 4 �5� O!O � . The optimal parameter setting is given
in Table 5.

symbol parameter setting
� 5� 7� �� 0.2� L� 0.5� plus strategy

Table 5: Optimal parameter setting

Compared to the mean of GBF values obtained from the
fractional factorial design, a reduction of �

�
per cent was

gained. A more sophisticated central composite design was
run around this design point to investigate the vicinity of this
local optimum. Although all of the observed responses were
small, none resulted in a better algorithm performance than
the optimal point given above.

8.2 ES results for the ESGC

In this section, we identify by means of regression trees
[12] the main factors, which significantly improve the per-
formance of the ES algorithm for the elevator group control
problem. Each of the

� O runs of the O � ���III design was re-
peated three times.
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Figure 6: Regression tree.

The resulting regression tree (Figure 6) indicates that E � ,
the number of step-sizes has the largest influence on the
algorithm’s performance. Similar to a stepwise model se-
lection from classical regression analysis, a cost complexity
parameter can be determined for the tree (Figure 7). Super-
fluous nodes are snipped off to generate trees that can be
interpreted intuitively.



The rightmost node has the lowest fitness value (
�
�!4 O ), the

corresponding factor settings read: ��� �
4
�
, � L� � �!4 O

�
, andE�� � 	

4
�
. Therefore, we can conclude that an increased

selective pressure, combined with an increased learning
rate and number of step-sizes, leads to an improved per-
formance.
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The regression tree analysis improved the algorithm’s per-
formance more than 15% and required only a few prelimi-
nary runs.

8.3 NSGA II results for the MTCS
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Figure 8: Barplot for the MTC problem. Levels as shown in
Table 3, run configurations as shown in Table 4.

The NSGA II parameterization from Table 1 was used for
these experiments. The ranking method presented in sec-
tion 5 reveals that the run configuration 14 apparently per-
forms best (see Figure 8). This configuration uses the
following parameters: �+6!6 parent individuals, a crossover
probability F < � 6 4

�
, a mutation probability F < � 6 4

�
, a distri-

bution index for crossover $ < � �
6 , and a distribution index

for mutations $ L � O 6 .
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Figure 9: Pareto fronts for the MTC problem. Solutions of
the improved setting are colored grey.

Combining these results with the results from a regression
analysis that was performed additionally leads to the con-
clusion that F < � 6 4

�
and F L � 6 4

�
improve the algorithm’s

performance. A comparison of the related Pareto fronts sup-
port this assumption, see Figure 9.

9 CONCLUSIONS

Two very different real-world problems have been solved by
evolutionary algorithms using an aggregation and a Pareto-
front approach. The multimodal character of both complex
problems resulted in high result variances. To circumvent
this problem, attention was restricted the best value of the
algorithms performance for repeated runs of one factor set-
ting. A ranking method, based on attainment surfaces and
cross-lines, provided an intuitively understandable and eas-
ily implementable way to compare the obtained solutions.
By means of statistical methods, like Design of Experiments
and regression trees, a better understanding of the influ-
ence of the parameters on the algorithm’s performance was
gained. As a result, for both complex problems a parameter
setting of the algorithms could be identified that improved
the performance of the algorithm significantly.
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