
* Corresponding author. Tel.: +49 (0) 231 755 5820; Fax: +49 (0) 231 755 5141; E-mail: mehnen@isf.de 1 
 

Multi-Objective Evolutionary Design of 

Mold Temperature Control using DACE for 

Parameter Optimization 
 
Jörn Mehnen a *, Thomas Michelitsch a, Christian Lasarczyk b, 
Thomas Bartz-Beielstein b 
 

 
a ISF, Department of Machining Technology, Faculty of Mechanical Engineering,  
  University of Dortmund, 44227, Dortmund, Germany 
b Chair of Systems Analysis, Department of Computer Science,  
  University of Dortmund, 44227, Dortmund, Germany 
 

 
Abstract. The design of mold temperature control strategies (MTCS) is a challenging multi-

objective optimization task which demands for advanced optimization methods. Evolutionary 

algorithms (EA) are powerful stochastically driven search techniques. In this paper an EA is 

applied to a multi-objective problem using aggregation. The performance of the evolutionary 

search can be improved using systematic parameter adaptation. The DACE technique (design 

and analysis of computer experiments) is used to find good MOEA (multi-objective 

evolutionary algorithm) parameter settings to get improved solutions of the MTCS problem. 

SPO (sequential parameter optimization), i.e., an automatic and integrated approach, which 

extends DACE, is applied to find the statistically significant and most promising EA 

parameters.  
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1. Introduction 

 

An optimal temperature control of die and injection casting tools is an important factor for the 

increasing of production efficiency. Injection casting and die casting is used in mass 

production. A critical point is the cycle time of the tool, which is mainly dominated by the 

cooling time. The geometric structure of the cooling bore cycles is decisive for the quality and 

efficiency of the cooling. Finding a proper cooling is a multi-objective problem of global and 

local cooling and manufacturing cost and can be controlled by the proper positioning of the 

bores. In the following a new automatic software tool for finding tradeoff solutions is 

described. This evolutionary optimization tool for mold temperature control design has been 

developed at the ISF. 

The efficiency of evolutionary algorithms generally strongly depends on the quality of the 

algorithm’s parameters itself. Sequential parameter optimization (SPO) is an efficient mean to 

find adequate parameter settings with very few experiments and a low amount of process 

knowledge. Therefore, SPO combines classical and modern statistical techniques to a 

heuristic acting in sequential steps. The software package called SPOT (sequential parameter 

optimization toolbox), which has been developed at the Chair of Systems Analysis in 

Dortmund, is an automatic tool that supports experimental design and visualization of 

response surfaces using DACE.  

The publication is divided into a part about the encoding, evaluation and evolutionary 

optimization of mold temperature control systems (MTCS), a description of the SPO 

technique and a part about the practical application of this technique to the MTCS. 
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2. Mold temperature control: encoding, evaluation and evolutionary optimization 

 

Today CAD designs of injection and die casting molds are constructed manually by experts. 

The verification of the design with FEM is seldom. Often only application tells the designer 

about the quality of the layout. An improved cooling of injection tools can reduce the cycle 

time up to 50 percent [1]. A wrong cooling strategy can lead to insufficient workpiece quality 

and even to tool breakage. The cost of modern die casting tools can be several hundred 

thousand Euros. Therefore, an exact, comprehensive and intuitive measure of the effect of 

cooling bores is decisive for a profitable tool. An automatic optimization depends on a fast 

and correct estimation of the cooling effects and costs of the layout.  

The analysis tool introduced here consists of a geometry kernel, a quality evaluation kernel 

and an evolutionary optimizer. The internal CAD kernel utilizes a triangulation of the tool 

surfaces. Triangulation is the most common and flexible standard CAD format. Cooling 

circuits are represented by polylines which can be characterized by the position of the 3D-

vertices. Additionally the directions of the real bores are considered in the encoding. One 

complete cooling circuit consisting of m bores (m is fix) is described by a vector with 

n=3(m+1)+(m-2) elements. A model with four bores and a half-spherical die surface is shown 

in Fig. 1. 

Often the cooling effect of a bore layout is estimated via finite element analysis. FEM is a 

precise but also quite time consuming technique. Therefore, a fast estimation method has been 

developed at the ISF. The so called radiation approach interprets each line of a polyline as a 

long and thin source of light. So we see each bore hole as a “neon lamp”. The “illumination 

intensity” of the die surface correlates with the real cooling intensity of a bore [2, 3]. The 

evaluation time of the half sphere example using FEM takes about 10 minutes while the 
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radiation approach needs less than 1ms. For many cases the quality of the radiation model is 

very similar to the FEM solutions.  

Multi-objective problems can be solved by a priori or a posteriori techniques [5, 6]. Due to the 

fact that the Pareto-front is known to be convex and the preferences of each objective can be 

given in advance, an aggregation technique was applied [2]. The radiation approach 

determines the cooling efficiency ft via the strength of the illumination of a triangle of the die 

surface. The cost f of the manufacturing of a circuit is mainly dominated by the number and 

the length of the bores fl. Geometric and technical restrictions fpen as well as limitations of the 

drilling machine or special machining preferences are also considered. The parameter 

dl��[0,1] in formula (1) is a weighting factor. 

f = ft ·(1.0+ fpen) · (1.0+dl· fl)        (1) 

The aggregation method has several advantages. An important benefit is that standard and 

well tested single-objective optimizers can be used. Analysis using more complex multi-

objective techniques such as the application of the NSGA-II and m-to-1 mappings such as the 

MMBBH or the S-metric are described in [2,3,4]. The MO-evolutionary algorithm with 

aggregation used here is a variation of an evolution strategy. The specific change is to limit 

the step size by an exponential decreasing lower limit. This limiting is important to avoid 

stagnation in pre-Pareto-fronts. The factor for the exponential function depends on the 

maximum number of generations and has been chosen in a way that all experiments can be 

compared with each other. 
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3. DACE and SPO 

 

An appropriate design is a key element of any experiment. Sequential parameter optimization 

is an approach that uses advanced statistical methods such as DACE for analyzing and 

optimization of the design of a non deterministic computer experiment.  

An algorithm design DA is a specification of the ranges of the values of d so called design 

variables used for the experiments. A design point x�DA is a vector with specific settings for 

the design variables to be optimized. Here, a subset of the MOEA’s parameters is considered 

as design variables. The problem design DP provides data related to the optimization problem, 

such as the fixed parameters or termination criteria. In this contribution the problem is to 

optimize the layout of bores cooling a half-spherical die surface using not more than 40.000 

evaluations to suggest a solution. The experimental design D consists of the problem design 

DP and the algorithm design DA.  

Experiments with EA cause stochastic results. Hence, the outcome of each experiment is a 

realization of a stochastic variable Y(x) with x�DA. Although the original concept of DACE 

[8] is deterministic, SPO encapsulates the stochastic nature of the search heuristic under 

optimization to improve the performance of non-deterministic algorithms. Therefore it 

includes methods to handle stochastic variables and each design point is evaluated several 

times. As described in [8,9], to predict the results of further, non initial design points, the 

response is modeled as a realization of a regression model and a random process. A Gaussian 

correlation function and a regression model with polynomial order 2 is typically used.  
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where Z(·)  is a random process with mean zero and covariance V(u,v) = V� R (T,w,x) with�� 

process variance V� and the correlation model R (T,w,x). The value of q in formula (2) 
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depends on the type of the regression model and the number of design variables d. The 

Gaussian correlation function is 

R (T,w,x) = �
 

d

j 1

exp (-Tj (wj-xj)2).       (3) 

As in [8,10] we restrict attention to the Gauss correlation function. The initial design points 

are determined by Latin Hypercube Sampling (LHS). Latin hypercube sampling is a strategy 

that ensures that all portions of the vector space are represented. Due to the space filling 

characteristic of the LHS, a special strategy is used that tries to maximize the minimal 

distance between each design point. LHS usually generates real values by definition. 

Therefore parameters are rounded to integers where necessary. The ranges of the LHS are not 

normalized. To build a quadratic model (2) from the initial design points the minimum 

number k of required points equals d (d-1)/2 + 3d +1, where d is the number of factors to 

analyze. 

After performing one complete design, i.e. r experiments for each design point are made, the r 

outcomes are summarized to a single value representing the performance of the design point. 

The model is build, additional new design points are created and selected by computing the 

generalized expected improvement criterion following [7,11]. This criterion estimates the 

probability of a candidate point to be better than the known best so far by taking the modeling 

error into account. The best estimates are chosen for new design points. The cycle of 

evaluating, regression and choosing new design points is repeated until a termination criterion 

holds, e.g. a maximum time is exceeded. 

 

4. Experimental Setup 
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In earlier analyses [2] using a similar evolutionary algorithm, but without exponential step 

size limitation, classical factorial design analyses showed, that there are d=4 parameters, so 

called factors, that have a statistical relevant influence on the EAs performance. Therefore, we 

need to evaluate k=19 initial design points. Parameters under optimization are: number of 

parents P���ύ, P���>�����@, offspring-parent ratio Q��ϳ, Q��>����@��(also called selection 

pressure), initial standard deviation 0
0V ��ϳ,� 0

0V ��>��������@ (also called initial step size; the 

zero indices indicate initial conditions) and the variation multiplier m
0W  ��ϳ, m

0W  ��>��������@�� 

which is used as an additional scalar for the classical step size adaptation as described in [12]. 

The number of offspring O���ύ can be calculated from the offspring-parent-ration, i.e. 

¬ ¼PQO  . To simplify the analysis, the EA uses only one step size in the experiments. The 

maximum number of generations was chosen according to the design point’s number of 

offspring, to ensure that all design points consume a comparable amount of computational 

power, measured by the number of evaluations (40.000). Following the results in [2], we 

choose a (P�O)-strategy. The EAs task is to optimize m=4 bores to cool a half-spherical die 

surface, i.e. the dimension n of the problem is 17 (n = 5 × 3D-vertices + bore directions for 

the 2 internal bores). All experiments were performed on standard PCs. The analyses were 

done using Matlab (SPO) and the open source statistics toolbox R [13]. 

 

5. Analysis 

 

In the initial step of the SPO each design point has been evaluated 25 times. In sequential 

steps the number of evaluations was doubled. As DACE expects deterministic experiments, 

we have to merge the set of results for each design point into a single value. This value has to 

reflect our intention to discover an EA parameter setting, able to produce good results with a 

low number of optimization runs. As EA are non-deterministic algorithms, bad settings can 
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lead to good results and good settings to bad ones. So the design point’s value has to reflect 

the distribution of the experimental results, it should be able to tell the user, what to expect if 

the algorithm was run repeatedly. An approach similar to the bootstrap was chosen in order to 

estimate the best result we could expect from a particular setting performing three runs. To do 

so, three results of a design point were drawn and put back 1000 times and each time the best 

result out of these three values was recorded. The mean value of the 1000 records estimates 

the expectation about a design point.   

The experiments of the first SPO step show that large P and Q values lead to better results. 

This means that large initial populations should be preferred to small ones. One has to keep in 

mind that the maximum number of fitness evaluations and therefore the computational afford 

is fixed for all settings. This result is problem specific. Standard parameter settings would 

give suboptimal results. The first experiments also show that small m
0W  values and medium 0

0V  

values should be preferred. The influence of the 0
0V  values is nearly neutral.  

Figure 2 shows parameter effects and interactions, extracted from the Kriging model on the 

average experiment response. The effect plots (diagonal) show the changes of the average 

model response, so called main response. Here the considered parameters are fixed to a 

specific value. To get the main response, a large space filling design M containing 2000 

design points was used and the average model response at these points were calculated. 

To get the effect of fixing a parameter p �{P, Q, 0
0V , m

0W } to a certain x in the design space we 

change the setting of p in all design points in M to x and compute the difference between the 

new design's average and the main response. Negative values show that an improvement can 

be expected, positive values indicate a deterioration of performance on the average. For 

example, the effect plots of P and Q in Figure 2 confirm that high values are a good choice for 

most settings and not just for the specific setting found during optimization. One can also see 

that any further improvement by setting sigma below 0.2 cannot be expected. 
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The interaction plots (upper right triangle) show the effect of fixing two parameters. To get 

these effects, two parameters in every design point in M are fixed to specific values and the 

new average model response is computed. Instead of just subtracting the main response, we 

also subtract the effects of setting just one of our two parameters to a new value. The 

remainder is the effect resulting from the interaction of the two parameters. For example, the 

interaction between 0
0V  and Q might explain that a small sigma can be chosen without 

showing an improvement on its own. High Q and small 0
0V  are a good choice on the average. 

The global structure of the response surface is roughly quadratic in the area under 

consideration. A third SPO step increased estimation of the best fitness values from 0.2038 

(first step) over 0.18581 (second step) to 0.17601 (third step), i.e. a relevant improvement of 

13 percent. The best parameters found are P ����Q ������ 0
0V  �������� m

0W  �����.  

 

5. Summary and Conclusions 

 

Proper parameter settings of an aggregating MOEA solving the complex mold temperature 

control problem have been found using the SPO technique. This helps to further improve the 

quality and productivity of the cost intensive injection tools. The responses of the experiments 

show that unexpected high initial population sizes seem to be beneficial for the problem 

solution. DACE and an efficient bore design evaluation model keep the computational effort 

in acceptable limits. The Kriging approach is superior to the conventional quadratic 

approximation because the real shape of the response surface can be modeled. The SPO 

approach proved to be very efficient, easy to use, flexible and statistically as well as 

intuitively expressive for the analyses of stochastic computer experiments. The experimental 

results have been improved significantly. 
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Figure captions 

 

Fig. 1 Model of a triangulated die surface and two mold temperature control circuits. 

Fig. 2 Parameter effects and interactions. 
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Figures 

Figure 1 

 

 
 

Figure 2 

 


