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1 Introduction

The "Internet of Things" - the connection of everyday objects to the inter-

net - is claimed to be one of the most important future trends. More and

more domestic devices like refrigerators, stoves, smoke detectors, televi-

sion or even lamps are meanwhile available with integrated internet con-

nectivity. However the pure ability to connect to the internet is only one

part. Customers expect some extra value like smart functions from these

devices. Providing these smart functions often goes along with building

predictive models on the data recorded by these devices. Because of the

huge amount of accruing data and occurring problems like missing data

this can be quite a challenging task. Especially missing data is a quite

common phenomenon, because multiple possible reasons can lead to data

gaps.

In this paper we take up this issue and have a look on how different im-

putation methods to replace missing values influence the outcome of after-

wards applied predictive models. For our experiments we used recorded

and anonymized data from about 600 connected heating systems. We ap-

ply different imputation methods like EM, k-NN and regression based al-

gorithms in order to fill in missing values and afterwards apply a model

(e.g. SVM, Neural Net, Random Forest based models) that does a predic-

tion for the customers domestic hot water usage for the upcoming week.

In our experiments we want to show the interdependencies between impu-

tation algorithm and prediction model and we want to clarify the question,

if imputation in this case is a possible way to improve prediction accuracy.

The remainder of the paper is structured as follows. Section 2 provides an

insight into the specific problem we want to solve. The section is followed
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by a short summary of the research questions and goals in Section 3. Sec-

tion 4 gives an overview on previous research and methods. In Section 5

follows a description of the performed experiments, while in Section 6 the

results of the experiments are analyzed. A . The paper closes with short

summary and outlook in Section 7.

2 Problem Description

2.1 Motivation

As already mentioned in the introduction, the "Internet of Things" enables

several new applications from just giving simple status information up to

intelligent functions. The recorded data of the networked everyday ob-

jects are hereby often the enabler for new applications based on predictive

algorithms. But with the network character and the placement at normal

households problems with the data recording come along. In compari-

son to installations in labs or other managed surroundings there are plenty

of uncontrollable influences, which can lead to gaps in the data logging.

These logging gaps can become a problem later on, because the predictive

models used for intelligent functions work best with clean and complete

datasets. Missing data in the input of predictive algorithms very likely

leads to poorer results or can even lead to no results at all. Thats why

finding out how to handle missing data can be useful.

In our specific practical case we are looking at in this paper, we are using

anonymized data of about 600 connected heating systems. All the heating

installations of our dataset are placed at real customer households. In con-

trast, the data storage itself is not at the customers home, it is at a server

back-end. Which means in our case: the data gets recorded at the cus-

tomers heating system, is then sent wireless to a connected device, which

transfers the data via the customers router and the internet to the server

back-end. This is done this way, because of several practical reasons like

more computing power on the back-end and too small storage in the heat-

ing system itself. But this also leads to more vulnerabilities for the possible

data losses. Possible causes for missing data can occur on the whole chain

towards the server back-end. This can be issues with the sensors of the

heating system itself, problems with the wireless reception, disturbances

of the customer’s internet connection, the customer switching the router

off or even a failure with the server back-end. Partially these problems get

addressed with technical solutions. But all in all we can see from the data
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we got, that missing data is quite a common phenomenon. So also for this

specific real-life problem it is very interesting to address the problem of

how to handle missing values and data gaps.

2.2 Dataset

We used anonymized data from about 600 connected heating systems.The

timespan of the recorded data goes from December 2013 till end of July

2014. But not for every heating system installation the complete timespan

of data is available. Most of the systems start and end logging at different

times. So we do have different timespans of recorded data for different

heating systems.

The original data that arrives at the server back-end consists out of more

than fifty different attributes. These are technical variables which give

information about the internal status of the heating system. These are for

example informations about temperatures and flags about current working

modes of components of the heating system. Imagine the data looking like

in table 1 just with many more attributes.

Date Time Temp. 1 Temp. 2 DHW Req. further

02/02/2014 14:00:01 60.1 50.3 ...

02/02/2014 14:00:05 60.1 50.3 ...

02/02/2014 14:00:11 60.0 50.3 ...

02/02/2014 14:00:15 1 ...

02/02/2014 14:00:17 59.9 50.3 ...

02/02/2014 14:00:20 0 ...

Table 1: Example extract of the data from one heating installation

As you can see, there is data being recorded nearly every second. The

timestamps are not regularly spaced, which means, the time distances be-

tween the rows may differ. There are quite a lot of empty rows in the table,

but this mustn’t be misunderstood as missing values. Empty values in this

specific case also just can mean there is no difference to the last broad-

casted value. To reduce the amount of data we extract just the data we

need to train and built our predictive model out of the complete data. For

our experiments we will only need two of the more than fifty attributes -

the timestamp and a attribute called DHW Request. The attribute DHW

Request (domestic hot water request) indicates when a customer uses do-

mestic hot water. Every time there is a domestic hot water usage, this flags
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turns to 1 and afterwards again to 0. To get the dataset we need, we cal-

culate for every heating system the amount of daily DHW Requests and

save this together with the timestamp. What we get are about 600 datasets

(one for each gateway) looking like table 2. The table can be read like this:

’There where 21 usages of domestic hot water on the second of February

2014 for the shown installation.’

Date Time Sum DHW Requests

02/02/2014 21

02/03/2014 29

02/04/2014 22

02/05/2014 5

02/06/2014 1

02/07/2014 5

02/07/2014 10

... ...

Table 2: Data in the format used for our experiments

Because we want to compare similar timespans, we define 04/01/2014 and

07/30/2014 as start and end point of our datasets. This means we have to

spare all gateways with shorter logging timespans. We also have to spare

gateways with missing data in this period. We want to compare imputation

methods later on in our experiments and will therefore delete data in a

controlled way to measure the performance. In case of missing data being

already present, before we apply our missing data mechanism, this could

distort the process and results. After taking out the heating systems with

data that does not fit these criteria, there are 170 systems left, we can look

at.

Shown in a graphical way, our created timeseries looks like in figure 1.

Looking at figure 1, we can see there are, depending of the day, up to forty

hot water usages a day. But there are also days, where there has been no

hot water usage at all.

3 Questions and Goals

What is interesting at our datasets, is, that we have a interesting real-life

problem to look at. We have a real-life scenario, where missing data might

be a real issue and good ways to handle them are really useful.
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Figure 1: Timeseries of daily sums of DHW Requests for one heating system

What we want to achieve in this paper is, to look on the impact of miss-

ing data on predictive functions built on our specific data. To do this we

use the preprocessed dataset as described in the ’Dataset’ section of our

paper. As an example for a predictive function we try to make a 14 day

forecast of the amount of DHW requests. This predictive function is real-

ized with different models like decision tree, multiple regression, support

vector machines, exponential smoothing and a naive model.

Our first step then is to compare the results of the different models on com-

plete datasets. Our second step will be to take out data from the datasets in

a controlled way to look how this influences the performance of the mod-

els. In the third step we will also take out data, but afterwards impute them

and again look how this influences the results.

The research questions we want to answer are:

1. What is the correlation between the amount of missing data and the

performance of the predictive models
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2. What general problems occur with missing data

3. Can imputation help to increase the performance of the predictive

models

4. Are there best fits for prediction algorithm and imputation algorithm

combinations

As performance metric for the comparison of our results we will use the

standard metrics RMSE and MAE.

MAE The mean absolute error (MAE) between the predicted time series

ŷ and the respective true DHW Request time series y., i.e.,

MAE(ŷ, y) :=

∑n
t=1|ŷt − yt|

n

RMSE The root mean square error (RMSE) between the predicted time

series ŷ and the respective true DHW Request (test) time series y, i.e.,

RMSE(ŷ, y) :=

√∑n
t=1(ŷt − yt)2

n

4 Previous Research and Methods

4.1 Imputation Methods

When missing data occurs, it may hinder the training of suitable predic-

tion models. In some cases, it may be feasible to simply stop predicting

new data once data-samples are missing. But often, especially in technical

processes, a more continuously working system is needed.

Friese et al. [1] give an overview of several imputation methods. One im-

portant distinction, is whether multi-variate or uni-variate data is predicted.

In the multi-variate case, missing data from one signal may be repaired

by employing data from other, correlated signals. In the uni-variate case,

methods can only rely on information and structure contained in the ob-

served signal.

For uni-variate cases, the most simple method to replace missing data is

Last Observation Carried Forward (LOCF). Here, a missing value is re-

placed by the last observed value. While being conceptually simple, this
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has the advantage of being easy to calculate. As such, it will be used in this

study. The herein described work will also use methods from the mice
R-package1 [2] that collects several methods for multivariate (as well as

uni-variate) imputation.

We use:

mean Imputation of unconditional mean values.

norm.predict Imputation with linear regression models.

rf Random Forest is a tool for regression and classification that is based on

ensembles of decision trees. It has been developed by Breiman [3]

Besides, any conceivable regression method can basically be employed for

imputation. Research has also been applied to whether the imputation of

several values for a single missing data-point may be a feasible [4].

4.2 Forecasting Methods

Various data driven methods can be used for prediction of time series data.

Most of the prediction methods used in this paper are taken from the

rminer R-package. Only the ETS predictor is used from the forecast
R-package. In the following, a short description of the employed methods

is presented.

naive The naive prediction is simply the average of the observations. It is

a simple and easy to implement predictor.

dt Decision Trees (DT) determine the outcome of the prediction (leaves

of the tree) by several decisions made based on the presented data.

The root of the tree (or first node) is the first decision to make, e.g.,

whether a value is larger or smaller than a certain threshold. Based

on the given data, a branch leads to the next node (a new decision) or

to a leave (predicted value). Their very simple structure makes de-

cision trees easy to train. Furthermore, users may easily understand

rules presented as decision trees.

1R is a programming language for statistical computing, see http://www.r-project.org/ for

further information and downloadable software.
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svm Support Vector Machines (SVM) have originally been developed for

classification by Cortes and Vapnik [5]. By mapping to a higher-

dimensional feature space, SVMs can predict nonlinear data with lin-

ear hyperplanes. They have been extended to regression [6], which

enables their application in this study.

mr In Multiple Regression (MR), linear effects of vector-valued predictor

variables are learned.

ets While the above methods are all intended for regression problems

in general, Exponential Smoothing State Space Models are more

specifically developed towards predicting time-series data. The herein

used methods are based on Work by Hyndman et al. [7].

5 Experiments

After we cleaned and preprocessed the initial data, as described in the sec-

tion ’Dataset’, we have 170 files with data to perform our experiments on.

Each one of these files contains the daily domestic hot water requests from

04/01/2014 to 07/30/2014 for one specific heating system installation. In

our experiments we want to compare different algorithms performing a 14

day forecast on this data. Further on we want to evaluate how missing

values in the training data affect our forecast. Afterwards we check, if

imputation is able to improve the results.

The complete procedure of our experiments looks like described in Al-

gorithm 1. For the implementation we used the R programming language.
For building forecasting models we relied on rminer and forecast R-packages.

The used imputation algorithms were mainly taken out of the mice R-

package.

Cluster Size

Cluster 1 68

Cluster 2 27

Cluster 3 16

Cluster 4 1

Cluster 5 45

Cluster Size

Cluster 6 3

Cluster 7 5

Cluster 8 3

Cluster 9 1

Cluster 10 1

Table 3: Size of clusters
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The first step is a clustering of the 170 input files. The reason for this is, in

our experiments we realized quite early, that there is a quite huge difference

in behavior and results between the different heating system installations.

Single installations had a MAE about ten times higher than others. In an

overall evaluation with an averaged MAE these heating systems had a too

huge impact compared to others. To fix this issue we are building clusters

with similar heating systems. To do this we create a distance matrix, which

is based on the euclidean distance between the data from the individual

heating systems. From the distance matrix we create 10 clusters using the

hclust() R-function. Afterwards heating systems with similar variations in

daily domestic hot water usage are grouped together. The resulting clusters

can be seen in table 3. As can be seen there are four clusters with more than

ten heating installations and six clusters with just one to five installations.

Our experiments we performed due to time issues just on cluster number

5.

Our experiment process mainly consists out of five loops, processing all

the different combinations of results we want to get. The first loop iterates

over the different gateway files, in our tested case this are the 45 files of

cluster five. Loop two iterates over the different imputation methods we

are testing. The third loop is for variation of the missing data rate. Fur-

thermore we have a loop for choosing different random seeds. This one is

to avoid random effects coming from the exponential distribution we use

to create the missing data . The last loop iterates over the different models

we use to make our predictions. In between the loops the necessary meth-

ods for our experiments get called. These are the functions for creating the

train/test set, the function for creating the missing values, the function to

do the imputation and the functions to train the models and to to the predic-

tions. In the following subsection ’Predictions based on complete datasets’

we will take a closer look how in general we make the predictions. In the

subsection ’Predictions based on incomplete datasets without imputation’

we explain our missing data mechanism. And in the final subsection ’Pre-

dictions based on incomplete datasets with imputation’ we illustrate what

it looks like when we do predictions on imputed datasets.

5.1 Predictions based on complete datasets

To be able to evaluate our predictions later on, we split our data in a training

and a testing set. Because we are dealing with time-series, we do not create

the test sets by random holdouts. Therefore what we do is, we cut the last

14 days of the time-series and define this as the test data. The rest of the
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Algorithm 1: Program Structure

input : List of InputFiles input
input : List of Imputation Algorithms sel.algoImp
input : List of lamda values for exponential distribution sel.rate
input : List of random seeds sel.seed
input : List of Prediction Models sel.model
output: Result Vector results

1 files← cluster(input)
2 for i.file in files do
3 for i.algoImp in sel.algoImp do
4 for i.rate in sel.rate do
5 for i.seed in sel.seed do
6 trainData← createTrainData(i.file)
7 testData← createTestData(i.file)
8 trainData← missval(trainData, i.rate, i.seed)
9 trainData← impute(trainData, i.algoImp)

10 for i.models in sel.model do
11 model ← fitModel(trainData, i.model)
12 prediction← predict(model, testData)
13 results← evaluate(prediction)
14 end
15 end
16 end
17 end
18 end

data becomes the training data. During our experiments we were trying

about 9 different algorithms:

1. naive

2. naivebayes - naive bayes

3. lr - logistic regression (multinom R-package)

4. lda - linear discriminant analysis (MASS R-package)

5. dt - decision tree (rpart R-package)

6. mr - multiple regression (nnet R-package)

7. bruto - additive spline mode (mda R-package)
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8. mars - multivariate adaptive regression splines (mda R-package)

9. knn – k-nearest neighbor (kknn R-package)

10. svm – support vector machine (ksvm R-package)

11. ets - exponential smoothing state space model (forecast R-package)

Most of this algorithms we called using the rminer R-package, which as

meta package simplifies the usage of different algorithms. Actually later on

in our ’Analysis’ section we only used results of five different algorithms.

This is because at some point we focused on naive, dt, svm, ets and mr,

because these had the best results. The naive algorithm is a good indicator,

if a algorithm is a fail for the task. Naive just outputs the mean value as a

result and is very good in terms of computing time.

For evaluation of our results, we calculate for every heating installation the

MAE and the RMSE for the 14 day predictions.

5.2 Predictions based on incomplete datasets without imputation

To do predictions on incomplete datasets, we have to take out a certain

amount of data. We do achieve this by applying a missing data function

on the training data. The test dataset of course remains the same. The

important part here is the implementation of the missing data function.

To simulate the days to the next failure of logging and therefore loss of

data, we use the exponential distribution. Using the exponential distribu-

tion we can also vary the failure rate given as λ. If there is a failure, we

do not replace the values with NA, we completely delete this data. Replac-

ing with NA would lead to errors in many of the prediction algorithms. To

avoid outliers because of a lucky outcome of the exponential distribution

for one run, we perform the same run with different random seeds. In our

experiments we use the following failure rates: 0 (means we do not apply

the missing data function at all), 0.4, 0.8, 1.2, 1.6. The rates we use are

quite high, as can been seen in table 4. For example a rate of 1.6 means

there are only 16 rows of the former 107 rows of the training set left.

After we minimized the test dataset we go on as we did with the normal

data. We train our models and do the predictions. The only difference is

the reduced training set, with which we train the models.
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Rate 0 0.4 0.8 1.2 1.6

Rows 107 70 48 29 16

Table 4: Connection between rate and remaining rows

5.3 Predictions based on incomplete datasets with imputation

When doing imputation, we are using the function for creating missing

data described in the section above and afterwards perform imputations on

the reduced dataset. To be able to do this we don’t completely remove

the missing values, instead we replace them with NA. We are using the

following algorithms for imputation.

1. norm.predict - Linear regression

2. rf - Random forest imputations

3. mean - Unconditional mean imputation

4. locf - Last observation carried forward

The further steps stay the same as always, we take the reduced and after-

wards by imputation filled up training data set to learn our models. Then

we predict the following 14 days and calculate the MAE and RMSE.

6 Analysis

We ran our experiments as mentioned in the ’Experiments’ section for 45

different heating system installations. Five different prediction algorithms

and five different imputation methods were used. We also chose to run with

three different random seeds and to take five different missing data rates.

This means there were 16875 (45*5*5*3*5) models built and predictions

made. Luckily the amount of the training data isn’t too high, so that it was

possible to perform this with a standard computer within one day.

The first surprise comes along as we look on the data for predictions with-

out missing data in figure 2. None of the algorithms was able to perform

significantly better than the ’naive’ method. Also the performance of ’ets’

who we thought to be especially good for time-series is not better. What

also surprises is, that decision tree performs also quite ok compared to the
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Figure 2: MAE and RMSE for different models without missing data

other algorithms. We didn’t expect decision tree to gain good results on a

univariate time-series. What can‘t be seen here, we already had taken out

some algorithms before our final run, to speed up processing. These were

lda, knn, mars, bruto and bayes. Lda, bruto and bayes we took mostly out,

because of their bad results that were significantly poorer than the naive

algorithm. The rest of these algorithms performed approximately on the

same level as the naive and the other algorithms here and were taken out

just because of performance reasons. What also can be seen in this graphic,

the variations in results for one algorithm are quite huge. There are huge

MAE and RMSE outliers in the boxplots. Origin of these variations are

not the different random seeds, as could be expected. The reason are the

differences between the single gateways.

Interesting now, how the MAE values change if we increase the missing

data rate in the training data. This can be seen in figure 3. To avoid con-

fusion, the starting values of the algorithms, that are shown here are not

shown in the boxplots of figure 2. In figure 3 the MAE values are the av-

erage MAE values for the specific prediction algorithm. The thick line in

figure 2 is compared to this the median and not the average. First thing

we see here in terms of average MAE, is that svm is the best overall al-

gorithm. The next thing, that is really surprising is, except for ets none of

the algorithms perform really bad for high missing data rates. The naive

method is very constant over all missing data rates. This is actually not

very that surprising, because it takes the average over all data as predic-

tion. The other algorithms results alternate depending on the rate, getting

even slightly better sometimes. This effect probably has to do with outliers
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Figure 3: Algorithm performance for different missing data rates

being removed by the missing data function. Considering that a rate of 1.6

means, that just around 16 of 207 values of the training data remain, this

the results are anyway quite unexpected.

Knowing, that even a huge missing data rate didn’t have much impact on

the results, it is already clear, that imputation won’t bring a big gain. The

question that remains for imputation is now rather: ’Will imputation lead

to poorer results?’. This question is still interesting, because sometimes

it is the case, that algorithms require a certain maximum of values to run

without throwing an error. This was also the reason, we did not take rates

higher than 1.6, because this then led to errors. So sometimes it can be

useful to impute, just to have enough data. Furthermore it is interesting,

weather imputation can bring ets on the level of the other algorithms. Fig-

ure 4 and figure 5 show results for different prediction/imputation combi-

nations. The rate thereby stays constant - in figure 4 it is 0.4 and in figure

5 it is 1.2.

The results of the imputations are quite interesting. We have to differentiate

between imputation at rate 0.4 and rate 1.2. For rate 0.4 as seen in figure

4 no imputation algorithm leads to significant poorer results than doing

no imputation. The interesting thing is now, mean, rf and norm.predict
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Figure 4: Prediction results for different imputation methods with rate 0.4

seems to be the worst imputation option. So overall there might be no

big improvement, but mean, rf and norm.predict are solid options to use

instead of no imputation.

Looking at the imputation with the higher missing rate of 1.2 in figure 5 it

looks quite similar. Here it’s is even clearer that locf is the worst option.

Mean and norm.predict create solid results, being at least as good as the

results with no imputation. Even ets has good results for these algorithms.

But actually that is quite logical. We know from the naive prediction algo-

rithm that forecasting the mean gives good results. We also do know, that

at rate 1.2 already over 50 percent of data is missing and gets imputed. If

now all this data gets imputed by mean, also ets will predict something very

close to mean. So to sum up the imputation results: imputation does not

lead to a new overall best result, but taking the right imputation method, it

also does not worsen the results. On the contrary it helps improving results

for algorithms that performed poorly before.
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Figure 5: Prediction results for different imputation methods with rate 1.2

7 Summary and Outlook

One major insight we got out of our experiments is, that for this problem it

is really hard to surpass the mean calculation of the naive algorithm. An-

other finding was, that all tested algorithms were extremely robust dealing

with high rates of missing data. But we do not credit this to the capabili-

ties of the algorithms - it has rather to do with the specific problem we are

working on. With svm being slightly better than the naive algorithm, we

figured out a favorite algorithm for this problem. But because of the prox-

imity of the results the naive algorithm would also be a good solution. Our

experiments with imputation showed, that most of the imputation methods

led to similar results as doing no imputation. This can in some cases be

of advantage, because sometimes there is a need of a certain amount of

data to be present. Imputation also helped the prediction algorithms that

performed poor before to improve their results.
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reality. A possible way to check this would be to take data with real miss-

ing values and look if imputation on this data improves prediction results.

Of course it wouldn’t be possible to see what the results without missing

data would be, but it could be seen weather the results are better with or

without imputation. The clustering in front of the processing is also still an

open point. In our Analysis we have seen, that there is still a huge variation

in the results for different heating systems. Throwing the results of very

different heating systems together and building an averaged MAE is not

optimal. It would be good to find a method for clustering that better sticks

similar heating systems together.
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As an outlook it would be interesting, if these results remain stable, even if

we change something in our experimental settings. For example we plan to

enhance the data set by adding additional attributes like ’day of week’. An-

other point we would like to check, is if our missing data function reflects
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