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ABSTRACT

More and more complex optimisation techniques play an increasing role in todays industry.
Different techniques like gradient based methods or evolutionary search techniques are cou-
pled (hybridisation, memetic algorithms [1]), enhanced by methods to fasten objective func-
tion evaluations (fitness approximation, metamodel assisted optimisation[2, 3]), or applied
to more complex tasks with more than one objective function (multi-objective optimisation
[4, 5]). Each of these enhanced techniques is able to improve optimisation results. Utilising
not only one of them promises to further meliorate results, what is pushed by industrial needs.

The drawback of such highly sophisticated methods and techniques is the growing number
of parameters. Due to possible complex interactions, these parameters must by handled with
care. A wrong parameter setting may lead to unwanted and bad optimisation results while
the right parameter setting for the same algorithm-application combination may lead to ex-
tremely good results. This means, that the setting of parameters plays a major role in design
optimisation.

This article describes the sequential parameter optimization (SPO) framework [6, 7]. SPO has
been succesfully applied to optimisation problems in the following domains: Machine engi-
neering, Aerospace industry, Elevator group control, Algorithm engineering, Graph drawing,
Algorithmic chemistry, Technical Thermodynamics, Agri-environmental policy-switchings,
vehicle routing, and bioinformatics.

Experimental setup

The new technique to optimise parameter settings it applied to evolutionary (multi-objective)
optimisation algorithms on airfoil design optimisation tasks. First, an older two-dimensional
NACA-redesign testcase from some European research project is considered. It is described
in more detail by Naujoks et.al. [8]. The hypervolume or S-metric is computed to measure
the quality of the received Pareto-fronts. This quality indicator measures the covered space of
the Pareto-front related to a reference point that is dominated by all solutions of the computed
optimisation runs.

The S-metric was incorporated for selection in recently presented EMO algorithms, e.g., the
S-Metric Selection EMOA (SMA-EMOA)[9]. This algorithm features a (u + 1)-selection
scheme, where variation operators generate one new individual and the individual providing
the least contribution to the hypervolume of the worst ranked front of the population is dis-
carded in each generation. Obviously, the population size p the variation operator are crucial
parameters of the methods that are analysed here. The variation operators incorporated in the
analysis are:



e SBX crossover and polynomial mutation proposed by Deb [4] for multi-objective op-
timisation tasks (abbreviated “Deb’” as well) and

e Discrete and intermediate recombination on object parameters and step sizes, respec-
tively as well as mutation featuring n (number of object parameters) step sizes like
commonly used in evolution strategies [10] (abbreviated “ES” accordingly).

For the accomplished analysis, we consider an optimisation run as an experiment. Tools
from statistical design and analysis of experiments can be applied to perform and anal-
yse optimisation runs. SPO combines methods from classical Design of Experiments
(DOE) and modern approaches such as Classification and Regression Trees (CART) and
Design and Analysis of Computer Experiments (DACE). Bartz-Beielstein [7] provides a
comprehensive introduction. An SPO-toolbox is freely available (http://ls11-www.cs.uni-
dortmund.de/people/tom/ExperimentalResearch.html).

Sequential parameter optimisation tries to discover interesting features in the data. A closer
look at the data is already sufficient in many situations, no high-level statistics are necessary
if the data are "well-prepared.” We discuss some “’datascopes” from EDA (explorative data
analysis) first. EDA tools are useful to screen out worse configurations. High-level tools,
which rely on complex regression models, can be used in the second phase. Here we can
mention DACE stochastic process models.

Results

Our example is based on a low-dimensional data set: only 27 data points are available (be-
cause the optimisation problem is computationally very demanding). The experimental data
for our analysis are a mixture of qualitative and quantitative factors: “ES” and “Deb” are
qualitative, whereas the “population size” is qualitative. The algorithm design from table 1
has been used for the first experiments.

In addition to (non)parametric statistical tests that have been used to analyze the effect of
various parameter settings, we have chosen trellis plots. Trellis plots depict the relationship
between different factors through conditioning. They show how plots of two factors change
with variations in a third, the so called conditioning factor. Trellis plots consist of a series of
panels where each panel represents a subset of the complete data divided into subintervals of
the conditioning variable. The data points have been divided into four intervals I1—I4 due to
their “population size” values (Fig. 1): I; = [7.5,12.5] with 11 data points, Iy = [7.5,17.5]
with 16 data points, Is = [12.5, 22.5] with 16 data points, and I, = [17.5,22.5] with 11 data
points.

Fig. 1 indicates that ES performs significantly better than Deb. The trellis plots show that
this effect occurs independently from the settings of the “population size”, i.e., there is no
interaction between these factors.

The second step of our analysis considers the ES operator only. We are interested in the
influence of the population size on the performance, i.e., “Are larger population sizes better?”
A stochastic process model was used to generate data shown in Fig. 2.

Summarizing, the experiments indicate that ES variation and relatively small population sizes
are beneficial for this problem instance. However, further analyses are necessary, e.g., to
verify that these results occur independently from the chosen performance measure.
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Figure 1: Trellis plots. Algorithm’s perfor-
mance measured as hypervolume Y. These fig-
ures support the assumption that ES outper-
forms Deb variation significantly. Note, larger
hypervolume values (Y )are better in this graph

This small example demonstrates the high potential of the SPO aproach. Classical and mod-
ern tools from statistic are to be combined. DOE and EDA methods are useful to screen out
wrong factor settings. They can handle qualitative and quantitative factors. The DACE ap-
proach is useful for relatively few quantitative factors and should be used in a second step.
SPO includes tools to predict promising design points for further experiments, so that the
algorithms can be tuned sequentially (to keep the number of algorithms runs low).

From our experience it is beneficial to tune algorithms before the experiments are performed.
We observed a reduction in the number of function evaluations with SPO by a factor of ten
or more in many situations. That is, the same result could be obtained with, e.g. 1000 instead
of 10,000 function evaluations.
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Figure 2: Effects in the DACE stochastic pro-

cess model. This graph depicts the effect of the

population size on the performance of the algo-

rithm (hypervolume) with confidence intervals.
Only results from the ES variant are shown,
because the screening procedure showed that
it outperforms the Deb operator significantly.
The results indicate that smaller population
sizes are advantageous



Outlook

The full paper will provide the aforementioned analysis with high-level DACE tools next to
more studies in airfoil design applications. Here, a different application will be presented
that is solved using two modelling techniques. A rather coarse technique using xfoil will be
compared with a more precise one using a Navier-Stokes solver. This will lead to prelimi-
nary results indicating whether optimisation parameters have to be changed, if the modelling
technique on a design optimisation task is changed or a more precise modelling technique is
worth the more expense with respect to calculation power.

Moreover, all techniques that are only described roughly here, are explained in more detail.
This implies evolutionary optimisation techniques as well as the sequential parameter opti-
misation methods.
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