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Abstract In this paper we present a comparison of di↵erent data driven modeling
methods. The first instance of a data driven linear Bayesian model is
compared with several linear regression models, a Kriging model and a
genetic programming model. The models are build on industrial data
for the development of a robust gas sensor. The data contain limited

1



2

amount of samples and a high variance. The mean square error of the
models implemented in a test dataset is used as the comparison strategy.
The results indicate that standard linear regression approaches as well
as Kriging and GP show good results, whereas the Bayesian approach,
despite the fact that it requires additional resources, does not lead to
improved results.

Keywords: Bayesian modeling, BMA, Design of experiments, Genetic program-
ming, Linear regression, Lasso, Kriging.

1. Introduction

Theoretically, there are many advantages for the implementation of
Bayesian analysis [5]. The use of Bayesian models might represent a
good alternative for industrial applications as they produce more infor-
mative results. The generation of a data-driven model to optimize the
development of a carbon-monoxide sensor provides an opportunity to
test these assertions on limited and sparse data. As a first approach,
Bayesian robust linear regression is implemented and compared to stan-
dard regression methods and a genetic programming approach. Our goal
is to learn the di↵erence in performance from the tested methods when
applied to this kind of data and to set future considerations for working
with Bayesian models in a more demanding fashion.

In recent years the need to reduce air pollution levels has gained more
importance in the automotive industry. The e�ciency increase of the
motor combustion process plays an important role for the reduction of
pollution levels. This e�ciency can be indirectly measured by moni-
toring the concentrations of carbon monoxide and other harmful gases
released into the atmosphere. This paper focuses on the modeling and
optimization of a carbon monoxide in-situ sensor. The sensor should be
able to discern the carbon-monoxide concentration apart from the other
exhaust gases. This is a di�cult goal, because the sensor is exposed
to and influenced by the other gases. Thus, the sensor output is not
expected to be a direct result of the concentration of the gas of interest.
Instead it will be the result of an underneath process influenced by all
the other gases. At the end of the analysis we hope to obtain models
from di↵erent methods with an improved sensitivity to carbon-monoxide
concentrations. The models will be compared in order to check the per-
formances di↵erences and possible improvement opportunities.

This paper is structured as follows: Section 2 describes the research
configuration, i.e., data and experimental designs. Key features of the
algorithms are introduced in Sec. 3. Section 4 presents results from the
experiments. Finally, a discussion of the results in given in Sec. 5.
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Table 1: Overview of the standardized dataset used to generate the
models of the sensors. Here every input of the model is denoted by an
X and every sensor output is denoted by an Y .

X1 X2 X3 X4 X5 X6 X7 Y1 Y2

Minimum �1.13 �1.21 �1.16 �1.13 �1.15 �1.17 �1.00 �1.94 �2.06
1st Quartal �1.13 �1.21 �1.16 �1.13 �1.15 �1.17 �0.82 �0.63 �0.58
Median 0.09 0.03 0.12 0.08 0.08 0.05 �0.39 0.06 0.09
Mean 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
3rd Quartal 1.30 1.26 1.40 1.29 1.28 1.28 0.59 0.66 0.67
Maximum 1.30 1.26 1.40 1.29 1.31 1.28 3.79 2.32 2.28

2. Problem

2.1 Data Description

The data was collected following a response surface design of exper-
iments (RS-DoE). This design constraints itself to the maximum and
minimum expected concentration values of each gas under normal work-
ing conditions. Given the cost and time consumption required for the
experiments, only a limited amount of samples could be measured. The
minimum number of samples required to have a good system descrip-
tion and the real limit of possible realizable samples in the industrial
testing station was balanced. Finally, a sample size of 80 was chosen.
A summary of the data is shown in Table 1. This application example
is anonymized due to confidentiality reasons. The data were standard-
ized, meaning that every sample had its mean subtracted and was then
divided by the standard deviation. The di↵erent gases are denominated
as the variables X1 to X7. The values of interest correspond to the
columns denominated Y 1 and Y 2, which are the sensor measurements.
All the models will use this dataset as the training set.

A general idea of the system behavior can be obtained by examin-
ing the correlation between the system output and inputs as shown in
Table2. Some assumptions can be made about the influence each vari-
able has on the sensor output: not all parameters seem to have the
same influence on the sensor output. Also, the sensors do not behave
identically. Figure 1 shows the e↵ect the two most strongly correlated
parameters, X1 and X4, respectively, have on the sensors signal.

A second dataset, denominated test set, which follow the characteristic
of the previously described training set was made available to validate
the results of the obtained models.
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Table 2: Correlation between the system output and inputs for the train-
ing dataset

X1 X2 X3 X4 X5 X6 X7

Y1 0.34 �0.19 �0.27 0.73 0.01 �0.00 �0.21
Y2 0.31 �0.16 �0.18 0.78 0.00 �0.03 �0.22
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Figure 1: Scatter plots showing the general behavior of Y1 with respect
to: a) the influence of X1 and b) the influence of X4
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2.2 Experimental Design Considerations

The data described in Sec. 2.1 was retrieved during tests based on an
experimental design suitable for fitting models using the response surface
methodology (RSM) [13]. First experimental results taken from screening
design experiments indicated that a first order polynomial model is not
su�cient, due to cross-sensitivity of the sensors. Therefore it was decided
to use a RSM with two-factor interactions quadratic e↵ects. In this case
central composite designs would have been a logical choice. They are
a combination of a box design, typically a full factorial or fractional
factorial design and additional star or center points.

A full factorial design (FFD) with three levels for each of the six
factors to estimate main e↵ects and all quadratic terms would lead to
37 = 2187 experiment runs at minimum. Choosing to divide factors
in two levels, a two level FFD would still need at least 27 = 128 runs,
without any repetitions or center points. A valid system description
would need even more runs.

To reduce the number of runs and be capable of fitting second order
polynomial models a Box-Behnken design comes into consideration. But
as a linear constraint on the input variables is limiting the sum of their
values, almost all standard designs methods does not meet the require-
ments. Therefore, a more flexible design is needed. Using the statistical
software JMP the RS-DoE was generated following the given constraints
and applying the I-optimality criterion [12, 11]. The design was run and
optimized a total of 80 times with 80 data points in order to obtain the
best possible inference accuracy.

3. Algorithms

3.1 OLS

A linear model estimated by ordinary least squares is the natural first
modeling attempt for data generated by an experimental design. Our
baseline model for the comparison of the di↵erent modeling methods is
the linear main e↵ects model

f
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In this work we used a RSM design, so beside the main e↵ects the
parameters of all two-way interactions and quadratic terms of the input
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variables can be estimated. This results in the full linear model
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Based on the full linear model f7 we applied variable selection based on
an analysis of variance to get a more sparse model, which can be better
interpreted. With a F-Test p-value of ↵ = 0.01 as the decision boundary
for the inclusion into the final model, we obtained the model

f
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+ �14x1x4 + �34x3x4.

The mean squared error (MSE) as defined in Eq. 4 on page 10, was
used for our comparisons. While the full linear model f7 has a lower
training error, i.e., MSE of 0.11 for sensor Y 1 and 0.10 for sensor Y 2,
compared to the baseline model (MSE of 0.24 for sensor Y 1 and 0.23 for
sensor Y 2), the prediction performance on the test dataset is very weak
(MSE of 7.76 and 9.08). This is a strong indicator of overfitting.

The model f2 has a MSE of 0.79 for sensor Y 1 and 0.80 for sensor
Y 2, which is comparable (for sensor Y 1) and little higher (for sensor Y 2)
than the baseline model. The residual standard error for the training
set is lower (0.43 compared to 0.52 for sensor Y 1 and 0.41 compared
to 0.51 for sensor Y 2) resulting in narrower confidence intervals for the
parameters. The adjusted coe�cient of determination (adjusted R

2) is
0.81 compared to 0.73 for sensor Y 1 and 0.83 compared to 0.74 for sensor
Y 2. This means the inclusion of the two two-way interactions X1:X4 and
X3:X4 has a large contribution for the explanation of the variance in the
dataset, while the input variables X5, X6 and X7 have very little or no
contribution and can be left out of the model.

3.2 Lasso

The Least Absolute Shrinkage and Selection Operator (Lasso) imple-
ments a selection method for linear models [9]. It selects solutions
with fewer parameter values, e↵ectively reducing the number of vari-
ables upon which the given solution is dependent. The Lasso trains a
linear model with a L1 prior as regularizer.

Give a set of input measurements X = {x
i

}n
i=1 and an outcome mea-

surement y, the lasso fits a linear model

ŷ = �0 +
pX
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Let ↵ � 0 be a constant. The Lasso uses the following optimization
criterion:

min
�

1

2n
||X� � y||22 under the constraint ||�||1  ↵, (1)

where ||·||1 and ||·||2 denote the L1- and L2-norm, respectively. The pos-
itive constant ↵ is a tuning parameter. For large ↵ values, the constraint
||�||1  ↵ in Eq. 1 has no e↵ect and the usual linear least squares regres-
sion is performed. For smaller values of ↵, the solutions are shrunken
versions of the least squares estimates. Decreasing the values of ↵ forces
the coe�cients �

i

’s to become zero, i.e., choosing ↵ results in select-
ing the number of predictors to use in a regression model. The Lasso
can recover the exact set of non-zero weights (under certain conditions).
Coordinate descent is used to fit the coe�cients.

3.3 Kriging

Kriging or Gaussian process regression is a method of interpolation [10].
The n observations in an arbitrary data set, Y = {y

i

}n
i=1 can be associ-

ated as a single point sampled from some multivariate (n-variate) Gaus-
sian distribution. The observations and the Gaussian process are related
to each other by the covariance or kernel function k(x

i

, x

j

). Kernel func-
tions compute the distance between two samples in an arbitrary metric
and apply a radial function to this distance. The squared exponential
kernel, also known as the Gaussian radial basis function (RBF) kernel,
is used in our study. This kernel is given by

k1(xi, xj) = �

2 exp(�✓kx
i

� x

j

k22) with ✓ =
1

2l2
. (2)

The RBF kernel can be interpreted as a similarity measure, because
values of this kernel decrease with distance. They range between zero
(in the limit) and one. The length parameter l in Eq. 2 determines the
e↵ect of other observations during interpolation at new x values. The
RBF kernel was selected in our study, because Gaussian processes with
this kernel generate smooth functions. Since noisy data were analyzed in
our study, the white noise kernel k2(xi, xj) = �

2
�(x

i

, x

j

), where �(x
i

, x

j

)
denotes the Kronecker delta function, was added to the RBF kernel.
Hence, we used the kernel function k = k1 + k2.

3.4 Robust Bayesian Modeling

Bayesian modeling is the mathematical relocation of credibility of pa-
rameters values for a model according to what can be inferred from the
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data. From previous knowledge of the combustion process it is expected
that not only the main predictors but also the interactions between pre-
dictors have an e↵ect on the sensor reading. As a general rule, if the
data contains K variables then the expected number of possible models
will be 2K . The total number of variables in the dataset with all the
interactions included accounted to 22, that is 4.19⇥ 103 possible model
combinations to describe the sensor reading. To reduce the dimension-
ality of the problem Bayesian model averaging (BMA) is implemented.
This provides a way to account for the uncertainty in model selection and
provide in average a better predictive ability [3]. BMA is implemented
in the statistical programing language R using the Bayesian Model Sam-
pling (BMS) package [8]. The results show that the predictors X1, X3,
X4, X1:X4, X3:X4 and X2 seem to be the most important for a good
model.

As the first taken approach the reduced model containing only 6 out
of the 22 variables is defined using a linear relationship. The model was
implemented using Just Another Gibbs Sampler (JAGS), which is a pro-
gram for Bayesian modeling using Markov Chain Monte Carlo (MCMC)
[6] and rjags [7] as a link between R and JAGS.

The sensor responses Y 1 and Y 2 are modeled following a non standardi-
zed Student’s t-distribution. This distribution was selected assuming
that the variance present in the sensor output, illustrated in Figure 1,
served as an indicator of variance in the model response. The mean
of the distribution is defined by the canonical linear formula of the lin-
ear regression. The spread of the data was set to have a wide range
of probable values defined by an uniform distribution. The normality
factor, expressed as an exponential distribution, have preference for val-
ues close to one. Given the limited prior information available for the
experiment, weakly informative priors are assigned to the parameters.
The coe�cients priors, �

i

, are defined to have a normal distribution cen-
tered around zero and a large variance. The t-distribution normality
factor � favors values smaller than 30 and � allows for a wide enough
distribution. The prior distributions were chosen as follows (Eq. 3):

↵ ⇠ N(0, 4), �

i

⇠ N(0, 4), � ⇠ Exp(30), � ⇠ U(�1�4
, 10) (3)

The MCMC simulation are executed on the defined model to sample
the posterior distribution of the parameters of interest, ↵,�

i

,�, and �.
The chains were specified to run 500 adaptive iterations, followed by
1,500 burn-in iterations. Afterwards, 15,000 samples were taken from
the posterior distribution with a thinning factor of 20 steps. Investi-
gating their trace plots and diagnostic statistics of the resulting MCMC
object reveals that the chains have converged. A value for the Gelman-
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Rubin diagnostic statistic [2] of under 1.1 suggest a good convergence.
The e↵ective sampling size (ESS) backups this assumption. The visual
and numeric diagnostics allows us to think that the resulting MCMC
sampling is representative and accurate of the posterior distribution of
the di↵erent parameters. The posterior distributions obtained from the
MCMC sampling for each parameter coe�cient can be seen in Table 3
together with the high density intervals (HDI) of 95%. The MSE for the
fitted models is 0.16 and 0.15 for the sensor Y 1 and Y 2, respectively.

Table 3: Posterior mean for the coe�cients �

i

for i = 1, ..7 and the
parameters � and � for the models of Y1 and Y2. The lower HDI (L-
HDI) and upper HDI (U-HDI) limits are indicated for each entry.

Y1

B0 B1 B2 B3 B4 B5 B6 � �

Mean �0.01 0.32 �0.14 �0.28 0.72 �0.23 �0.14 0.41 37.67
L-HDI �0.09 0.23 �0.24 �0.38 0.63 �0.33 �0.42 0.34 5.13
U-HDI 0.09 0.42 �0.04 �0.18 0.82 �0.14 �0.05 0.49 117.66

Y2

B0 B1 B2 B3 B4 B5 B6 � �

Mean �0.00 0.29 �0.10 �0.20 0.78 �0.26 �0.13 0.39 34.20
L-HDI �0.09 0.20 �0.19 �0.29 0.69 �0.35 �0.22 0.31 4.44
U-HDI 0.09 0.39 �0.10 �0.11 0.88 �0.17 �0.04 0.47 113.50

3.5 Genetic Programming

Genetic programming is an evolutionary algorithm that searches the
set of symbolic expressions defined by a set of basis expressions (building
blocks) for expressions that minimize one or multiple loss (fitness) func-
tions. Symbolic regression is the application of genetic programming to
regression. In this work, the Generational Multi-Objective Genetic Pro-
gramming (GMOGP) symbolic regression algorithm is used. See [1] for
a detailed description of this algorithm.

In this specific case, the set of building blocks B := R [ V [ F con-
sists of the set of real-valued constants R, the set of independent vari-
ables V := {x1, x2, . . . , x7} and the set of real-valued functions F :=
{+,�,⇥,÷,

p
, log, exp, sin, cos}.

The GMOGP algorithm performs the following four steps: 1) The al-
gorithm proceeds by initializing a population of µ := 100 random sym-
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bolic expressions with maximum node count of 128 based on the building
blocks in B. 2) Next, � := 50 expressions are created by random recom-
bination and mutation of randomly selected population expressions, to-
gether with ⌫ := 2 randomly initialized expressions. 3) The complexity
(expression visitation length) and goodness-of-fit (scaled-mean-squared
error on training data) for each expression is calculated. The expressions
are then sorted into successive Pareto fronts according to both criteria.
Solutions on the same front are sorted by crowding distance. 4) If a
predefined termination criterion is met (in this case an iteration limit
of 300, 000) the algorithm terminates and returns the first Pareto front.
Otherwise, the the best µ := 100 expressions are kept and the algorithms
enters the next iteration (generation) at step 2).

As symbolic regression is a randomized algorithm, the implementation
uses multiple parallel runs to reduce result variance. The first Pareto
front based on all parallel runs is returned as the final result. In this
case, five parallel runs of 300, 000 generations each were used, each re-
quiring two minutes of single-core compute time on a 1.8 GHz Intel Core
i7 processor, or ten minutes compute time in total. The used GP imple-
mentation selects model constants by sampling from a uniform random
distribution and optimizes existing constants via mutation by adding
samples from a normal random distribution. Crossover operations may
lead to the duplication of constants, as seen in GP model 2 in Table 4. To
facilitate model comparisons, only the model with best goodness-of-fit
on training data is selected from the result Pareto front and reported as
the final result. Note, these results numbers are based on the commercial
parallel GMOGP-FCA implementation sourcewerk RSR.

4. Results

The comparison is based on the MSE. We consider six di↵erent models
(j = 1, . . . , 6) and two di↵erent data sets (k = 1, 2) from Table 4.

Let f

j

k

denote the function, which models the relationship between

y

train

and x

train

(j = 1, . . . , 4, k = 1, 2). Let ŷ = f

j

k

(xtest) denote a
vector of n predictions on the test data x

test

, and y

test

denote the vector
of observed (true) values, then the MSE can be estimated by

MSE =
1

n

nX

i=1

(ŷ(i) � y

(i)
test

)2 with i = 1, . . . , n. (4)

5. Conclusions

Interestingly, the lightweight and simplistic Lasso approach and the
heavy weighted, sophisticated genetic programming approach obtained
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Table 4: Models used in this study. Model formulas and the corre-
sponding MSE values are shown. The first model, f1, is included as a
baseline. It implements a first order linear model with all e↵ects, but no
interactions or higher order terms. Best values are shown in boldface.

j Name Model sensor Y1 MSE1

1 LM (base) f

1
1 = 0 + 0.35x1 � 0.17x2 � 0.26x3 + 0.74x4
+0.01x5 � 0.03x6 + 0.03x7 0.76

2 OLS f

2
1 = �0.01 + 0.33x1 � 0.14x2 � 0.29x3
+0.73x4 � 0.23x1x4 � 0.15x3x4 0.79

3 Lasso f

3
1 = 0.25x1 � 0.05x2 � 0.17x3 + 0.63x4 0.56

4 Kriging f

4
1 : ~✓ =
(0.57, 2.59, 6.08, 3.45, 1.53, 18.53, 18.46) 0.57

5 Bayes f

5
1 = dt(0.32x1 � 0.14x2 � 0.28x3 + 0.72x4
�0.23x1x4 � 0.14x3x4, 0.41, 37) 0.79

6 GP f

6
1 = �0.02 + 0.31x1 + (0.64� 0.12x1)x4 0.58

j Name Model sensor Y2 MSE2

1 LM (base) f

1
2 = 0 + 0.31x1 � 0.07x2 � 0.19x3 + 0.78x4
+0.01x5 � 0.04x6 + 0.04x7 0.67

2 OLS f

2
2 = �0.01 + 0.30x1 � 0.10x2 � 0.20x3
+0.78x4 � 0.26x1x4 � 0.14x3x4 0.80

3 Lasso f

3
2 = 0.22x1 � 0.08x3 + 0.68x4 � 0.02x7 0.49

4 Kriging f

4
2 : ~✓=
(0.43, 2.41, 17.53, 4.21, 1.30, 19.96, 19.15) 0.49

5 Bayes f

5
2 = dt(0.29x1 � 0.1x2 � 0.2x3 + 0.78x4
�0, 26x1x4 � 0.13x3x4, 0.39, 34.2) 0.79

6 GP f

6
2 = 0.52� 0.21x3 +

0.21(�1.43+x4)
1.43+x1

+ 0.42x4
�0.21 cos(x3 � x4) + 0.21 cos(x7) 0.27



12

the best results. Lasso performed best on Y 1, whereas genetic pro-
gramming was able to find the best MSE on Y 2. However, given the
complexity of the genetic programming model, it is hard to see the real
e↵ect each variable has on the sensor output. Lasso on the other side,
gives a clear and simple overview of the variables e↵ects while keeping
the prediction error low. The Kriging model demonstrated a relatively
good performance but, the interpretation of the results is less intuitive
compared to the Lasso results.

In this particular application the models need to be adaptable to allow
its use on other similar sensors. A model of high complexity together
with a di�cult interpretability constitutes an extra e↵ort. Bayesian and
linear regression approaches generated similar formulas. This was ex-
pected as the definition of the Bayesian model was done following the
canonical linear formula. Both basic linear models (LM and OLS) and
Bayesian model present easily interpretable results but with poor MSE
values. This implies that, although new information is available when
implemented the Bayesian modeling method, there is no significant dif-
ference when compared to the standard linear regression. We expect
however to obtain further improvements of the model prediction accu-
racy by means of more complex and specific model definition for the
Bayesian case.

In addition to the six algorithms discussed in this study, further al-
gorithms were tested. For example, a standard random forest algorithm
was able to obtain results that are comparable to the Kriging results
(MSE’s: 0.63 and 0.41 on Y 1 and Y 2, respectively). However, due to
space limitations, these extended results will be analyzed in a forthcom-
ing publication. Results, presented in this study, are limited to models
that are of great practical relevance, i.e., can be immediately interpreted
by and discussed with technicians and engineers.

At the end and for this specific application, the Lasso model was our
preferred method. A simple and clear formula provides valuable starting
points for the discussion with the engineers in charge of the project and
makes for a straightforward implementation.
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