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ABSTRACT
Real-world optimization problems may require time consum-
ing and expensive measurements or simulations. Recently,
the application of surrogate model-based approaches was ex-
tended from continuous to combinatorial spaces. This ex-
tension is based on the utilization of suitable distance mea-
sures like Hamming or Swap Distance. In this work, such
an extension is implemented for Kriging (Gaussian Process)
models. Kriging provides a measure of uncertainty when
determining predictions. This can be harnessed to calculate
the Expected Improvement (EI) of a candidate solution. In
continuous optimization, EI is used in the Efficient Global
Optimization (EGO) approach to balance exploitation and
exploration for expensive optimization problems. Employ-
ing the extended Kriging model, we show for the first time
that EGO can successfully be applied to combinatorial opti-
mization problems. We describe necessary adaptations and
arising issues as well as experimental results on several test
problems. All surrogate models are optimized with a Ge-
netic Algorithm (GA). To yield a comprehensive compar-
ison, EGO and Kriging based approaches are compared to
an earlier suggested Radial Basis Function Network, a linear
modeling approach, as well as model-free optimization with
random search and GA. EGO clearly outperforms the com-
peting approaches on most of the tested problem instances.

Categories and Subject Descriptors
G.1.6 [Mathematics of Computing]: Optimization—Global
Optimization; G.2.1 [Discrete Mathematics]: Combina-
torics—Combinatorial Algorithms
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1. INTRODUCTION
Surrogate models are well established tools for cost reduc-

tion of time consuming or expensive simulation and opti-
mization runs in the continuous domain. Surrogate models,
as employed in methods like Efficient Global Optimization
(EGO) [14] or Sequential Parameter Optimization (SPO) [3]
offer several advantages. They reduce the number of func-
tion evaluations, give information on the shape of the opti-
mized landscape, estimate effects and interactions between
parameters and allow the calculation of the corresponding
standard deviations.

Combinatorial optimization problems arise in many real-
world settings. Examples for expensive combinatorial prob-
lems are scheduling or sequencing problems that depend on
time consuming simulations (e.g., [29]). The application of
surrogate-models to combinatorial problems is scarce. It is
desirable to extend successful approaches from continuous
optimization to combinatorial spaces.

The generalization of distance based models to combina-
torial spaces was earlier proposed by Moraglio and Kat-
tan [19]. Their approach is similar to concepts described
by Li et al. [18] and Fonseca et al. [9]. The core idea is to
replace Euclidean distance measures with distance (or sim-
ilarity) measures native to a combinatorial problems rep-
resentation, e.g., Hamming Distance (HD) or various edit
distances. Relevant previous studies and similar work are
reviewed in Sec. 2.

Moraglio and Kattan [19] use Radial Basis Function Net-
works (RBFN) in their studies, but also suggest to employ
more complex models like Kriging. Kriging may provide an
error estimate for each prediction, which can be exploited
to calculate the Expected Improvement (EI) of a candidate
solution. Thus, EGO can be applied to combinatorial opti-
mization problems.

The following topics will be addressed in this paper:
1. extension of Kriging to combinatorial problems,
2. determination of the optimization performance of a

Kriging-supported Genetic Algorithm (GA), and



3. investigation of the applicability of EGO to combina-
torial optimization problems.

Methods to tackle these topics are introduced in Sec. 3.
Numerical tests, which are performed on standard test prob-
lems, are described in Sec. 4. Experimental results are pre-
sented in Sec. 5 and discussed in Sec. 6. Finally, Sec. 7 gives
a summary and an outlook.

2. PREVIOUS RESEARCH

2.1 Surrogate Models in Optimization
Generally speaking, a surrogate model M̂ is a (coarse

grained or cheap) model that replaces a (fine grained or ex-
pensive) modelM with higher complexity. The reader may
consider a Computational Fluid Dynamics (CFD) model
that replaces a real-world problem. This CFD model itself
can be replaced by a simplified analytical model. In the for-
mer case, CFD models are considered as surrogates, whereas
in the latter, they are considered as fine grained models that
are replaced by a surrogate.

In this paper, however, the term surrogate is restricted
to data-driven models. They replace the simulation models
M, which are given by a function f , see Algorithm 1. Here,
it is assumed that function evaluations clearly dominate the
time consumption (or cost), e.g., most time is spent in line
two and six of Algorithm 1. Stopping criteria can be a given
budget of function evaluations, a specified time limit or a fit-
ness value to be reached. The set Ap contains all underlying
parameters of Algorithm 1, e.g., number of initial solutions,
type and parameterization of the search strategy (line 5) or
the type of surrogate model.

Algorithm 1: Surrogate model-based optimization

Input: Function f , stopping criteria, parameter set Ap
Output: Best solution found y∗, final model M̂∗

1 Create initial solutions (randomly or with design of
experiment);

2 Evaluate solutions with f ;
3 while Stopping criteria not reached do

4 Build/update M̂;

5 Find best solution(s) predicted by M̂;
6 Evaluate solution(s) with f ;

7 end

Surrogate models can be Artificial Neural Networks, Lin-
ear Models, Kriging, Multivariate Adaptive Regression Splines,
Random Forests and many more. Jones et al. [14] introduced
EGO, which uses the predicted mean and variance provided
by a Kriging surrogate to compute the Expected Improve-
ment (EI) of a candidate solution. Without loss of general-
ization, we will consider the case of minimization. Following
the notation in [10], we consider an expensive function f and

a related surrogate of f , denoted f̂ . Gaussian process mod-
els allow the determination of the mean squared error ŝ2(x)
as described in [25]. Let y∗ denote the best found func-
tion evaluation so far, Φ(·) and φ(·) denote the cumulative
distribution function and probability density function, re-
spectively. If ŝ(x) > 0, then the expected improvement can
be determined as

EI(x) = (y∗ − ŷ(x))Φ

(
y∗ − ŷ(x)

ŝ(x)

)
+ ŝφ

(
y∗ − ŷ(x)

ŝ(x)

)
,

otherwise EI(x) = 0. EI determines how much improvement
can be expected from the candidate solution to be predicted.
Thus, EI instead of the mean prediction can be used to deter-
mine a promising candidate solution in line 5 of Algorithm 1.
Besides saving evaluations of the expensive function f , this
approach also provides an infill criterion (i.e., EI) that bal-
ances exploitation versus exploration. For a more detailed
summary on surrogate model based numerical optimization
we refer to the overview by Jin et al. [12]. A statistical
framework for model-based optimization is provided by the
Sequential Parameter Optimization [3].

2.2 Surrogate Models in Combinatorial Opti-
mization

Combinatorial surrogate models are a relatively new re-
search topic [13]. Data-driven surrogate models were used in
combination with GA or Ant Colony Optimization (ACO),
however, mostly for optimization of continuous vectors, where
classical models are applicable. Methods like Estimation of
Distribution Algorithms or ACO can also be understood to
use models [31], e.g., the Bayesian network model in the
Bayesian Optimization Algorithm [22] or the pheromone
model in ACO.

Another branch of combinatorial surrogate-model appli-
cations comprehends solvers for specific problem represen-
tations and specific applications. Voutchkov et al. [29] op-
timize a welding sequence. To represent the combinatorial
problem, a signed permutation is used. The surrogate model
replaces an expensive Finite Element (FE) model by esti-
mating the influence of each individual element in the se-
quence based on the observations made in previously tested
sequences. Their surrogate model uses not only the resulting
fitness values. It also exploits intermediate results that show
impact of individual elements, based on their position in the
sequence. Exploiting such intermediate results will give this
model a clear advantage over the more simple, fitness-value
driven approaches. On the other hand, the applicability of
this model is restricted to this specific setup and cannot be
transferred to other application areas.

Fonseca et al. [9] defined Similarity-Based Models (SBM)
as models that keep a memory of solutions and estimate
the performance of new samples by comparing them to that
memory. Fonseca et al. list Fitness Inheritance [28], Fitness
Imitation [17, 12] and k-Nearest Neighbor (k-NN) [2] as ex-
amples. They test a GA supported by a k-NN model on a
set of numerical, continuous test functions. Bernardino et
al. [5] perform similar tests with Artificial Immune Systems.
In both cases Hamming and Euclidean Distance are used as
measures of similarity, showing that this approach does not
depend on a specific problem representation. In this study,
we do not employ the SBM variants suggested by Fonseca
et al. [9], because the proposed models are not suited to pre-
dict a new optimum. For example, the k-NN model would
never predict that a candidate solution has better perfor-
mance than the best known solution. The k-NN model may
be useful in a model management algorithm [9, 5]. However,
it is of little use in a framework as outlined in Algorithm 1.

More suited towards our goal are the approaches of Li
et al. [18] and Moraglio and Kattan [19]. They use similar-
ity/distance based models, which are able to predict promis-
ing, new solutions. Section 2.3 will review related results.
Also, we introduce a model similar to k-NN but more suited
to the given purpose in Sec. 3.2.



2.3 Applying Continuous Surrogates in Combi-
natorial Search Spaces

Li et al. [18] proposed Radial Basis Function Network
(RBFN) models for optimization in non-Euclidean spaces
by replacing the employed distance measure. Their RBFN
models were applied to mixed-integer problems, using a mixed
integer evolution strategy. Another approach to a mixed
problem is taken by Hutter [11], who describes a Kriging
model based on a weighted Hamming distance to model cat-
egorical variables for algorithm tuning. In a very similar
way, Moraglio and Kattan [19] suggested a generalization
of distance-based models from continuous to combinatorial
spaces.

The core idea is to employ distance measures, which are
inherent to the combinatorial problem representation (e.g.,
Edit Distance). Such problem representations can be binary
strings (e.g., binary knapsack problem, NK-Landscapes) per-
mutations (e.g., Assignment and Scheduling Problems) trees
(e.g., symbolic regression) or any non-standard combinato-
rial problem representation.

Moraglio and Kattan [19] demonstrated this with a RBFN
adapted to arbitrary distance measures to solve instances
of NK-Landscapes (NKL). This RBFN-based approach has
also been applied to the Quadratic Assignment Problem
(QAP) [21], package-deal negotiation [8] and tree-based prob-
lems from Genetic Programming (GP) [20]. GP has also
been coupled with the RBFN based approach to evolve bet-
ter discrete surrogate models [15]. All those works employ
some form of RBFN based on arbitrary distance measures,
thus adapted to combinatorial spaces. As Moraglio and Kat-
tan [19] indicate, this can also be done with other models,
e.g., with Kriging.

The key issue is to replace the Euclidean (RBFN) or per-
variable (Kriging) distances by distance measures, which di-
rectly work for the inherent problem representation. De-
pending on the model type under consideration, other changes
may become necessary. For instance, in the context of arbi-
trary distance measures, there is no guarantee that a given
distance matrix will be invertible, as required by RBFN.
Therefore, Moraglio and Kattan [19] suggested to replace
the matrix inversion with the pseudo inverse. This issue is
revisited in the following description of the Kriging model
employed in the herein described work. For more details on
the RBFN model, which is utilized as a basis of comparison
in this work, we refer to Moraglio and Kattan [19].

3. METHODS

3.1 Kriging for Combinatorial Problems
Kriging is a method for interpolation and regression based

on Gaussian process modeling. The following notation is
adopted from Forrester et al. [10]. Given a set of n solutions

X = {x(i)}i=1...n in a k-dimensional continuous search space

with observations y = {y(i)}i=1...n, Kriging is a method
to find an expression for a predicted value at an unknown
point by interpreting the observed responses y as if they
are realizations of a stochastic process. The following set of
random vectors Y = {Y (x(i))}i=1...n is used to define this
stochastic process. The random variables Y (·) are correlated
as follows [10]:

cor
[
Y (x(i)), Y (x(l))

]
= exp

(
−

k∑
j=1

θj |x(i)
j − x

(l)
j |

pj

)
. (1)

Equation (1) defines a non-Euclidean distance measure, which
uses a weighted per-element distance. The matrix that col-
lects correlations of all pairs {(i, l)} is called the correlation
matrix Ψ. It is used in the Kriging predictor

ŷ(x) = µ̂+ψTΨ−1(y − 1µ̂), (2)

where ŷ(x) is the predicted function value of a new sample
x, µ̂ is the maximum likelihood estimate of the mean and
ψ is the vector of correlations between training samples X
and the new sample x. The error of the prediction can be
estimated with

ŝ2(x) = σ̂2(1−ψTΨ−1ψT ), (3)

where σ̂2 is a model parameter derived from MLE. The (usu-
ally small) contribution of error due to estimation of µ̂ is
omitted.

The width parameter θ determines how far the influence
of each sample point x spreads. If the correlation struc-
ture differs in different directions of the search space, fitting
different θj values for each direction of the search space is
desirable. This is the so-called anisotropic case. Isotropic
models are better suited for combinatorial search spaces,
because direction is a vague concept for combinatorial op-
timization problems. Therefore, Eq. (1) is transformed to
become isotropic, i.e., with scalar θ and p, i.e.:

cor
[
Y (x(i)), Y (x(l))

]
= exp(−θd(x(i),x(l))p), (4)

where d(·) can be any distance measure for the given prob-
lem representation. The samples x are not restricted to con-
tinuous values and may consist of various types, e.g., binary
strings, permutations, or trees.

Maximum Likelihood Estimation (MLE), which compre-
hends an optimization procedure, is used to determine the
model parameters, e.g., θ. MLE requires a matrix inversion
(also later in the prediction step, see (2)), which can usu-
ally be performed directly or via Cholesky decomposition. A
non degenerated or positive-semidefinite matrix is required
for this inversion. Moraglio and Kattan [19] state that it can
not be guaranteed that such matrices will still be invertible
if they are based on an arbitrary distance measure. There-
fore, they replace the matrix inversion in their RBFN model
with the pseudo inverse.

In case of Kriging, this can introduce a new global opti-
mum into the MLE landscape. Selecting θ based on such
an optimum can lead to a model that may still reproduce
the sampled data, but which is not able to predict function
values at new sample points. This situation is exemplified
in Fig. 1. Here, a Kriging model is built, based on 200 ran-
dom samples from a NK-Landscape (N = 10, K = 2), see
Sec. 4.1. The Hamming distance (HD) metric is employed
as a distance measure. The likelihood is calculated once
with standard matrix inversion, once with the pseudo in-
verse. The figure shows the dependency of the estimated
likelihood value on the θ parameter. Clearly, when θ be-
comes too small, the correlation matrix will become close to
singular. Hence, no values are plotted for this region (Fig. 1,
left). In practice, a penalty function is used to handle this
problem. The pseudo inverse generates extremely good like-
lihood values in this region. While both plots have an op-
timum at approx. 0.24, it is a local one when using pseudo
inverse. Thus, it is disregarded during MLE with pseudo
inverse. Instead, very small θ values would be chosen. As
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Figure 1: Negative concentrated log-likelihood plot-
ted versus log θ. Likelihood landscape for a Kriging
model based on 200 randomly sampled solutions of
a N = 10, K = 2 NKL-Landscape. Standard matrix
inversion is compared to pseudo Inverse. Values not
plotted in the left plot represent (close to) singu-
lar correlation matrices. Both plots show a (local)
optimum at ≈ 0.24.

mentioned earlier, θ will control how far the influence of each
observation will spread in the search space. Small θ values
lead to a situation where each observation only affects its
most immediate vicinity. In the remainder of the search
space, the model will collapse to µ̂. Therefore, the model
will nearly always return µ̂, except for the set of training
samples X.

On the other hand, the local optimum (θ ≈ 0.24) results

in a surrogate model M̂ that is highly correlated with the
expensive modelM at unseen sample points. This example
shows that standard matrix inversion works well with HD.
This is not surprising, as HD is very similar to the Euclidean
Distance. The HD metric was successfully applied in other
contexts (e.g., [23, 24]).

Of course, there may be distance measures where the sit-
uation is more complicated. If a distance measure does not
yield valid (i.e., non-degenerate or even positive-semidefinite)
correlation matrices, two solutions are possible. First, MLE
may be replaced with an approach based on cross-validation.
This may increase the computational burden. Second, the
correlation function (4) or the distance measure itself may
be adapted to guarantee that the correlation matrix is valid.
As a first step, this paper only relies on the assumption that
all employed distance measures are valid.

3.2 A Linear Model
As a simple base-line comparison, a Linear, distance-based

Model (LM) is introduced. To predict the quality of a new
solution, all existing samples are sorted according to their
distance to the new sample. The average of the observations
at the smallest and second smallest distance can be used
to estimate a linear trend, i.e., slope and intercept. The
intercept is the prediction for the utility value of the new
sample. This approach may be compared to a k-NN model
with k = 2, with the difference that the prediction is not
based on the mean of the two nearest neighbors, but rather
on a linear trend estimated from these. Thus, it may suggest
new optimal solutions, which k-NN can not.

4. EXPERIMENTAL SETUP

4.1 Test Problems
The experiments in this paper are based on those in two

previous studies [19, 21]. All experiments are performed
using the free software environment for statistical compu-
tation, R. Function evaluations are assumed to be expen-
sive, dominating the cost of the optimization process. The
assumption is made to justify the large overhead of surro-
gate model training and exploitation. Hence, strictly limited
budgets are imposed during the experiments.

NK-Landscapes (NKL), as proposed by Kauffman [16],
are fitness landscapes based on binary strings. The fitness
of a string is based on a sum of fitness contributions of N
string elements, each impacted by K other elements. The
fitness of a binary string is therefore given by (cf. [1])

f(x) =
1

N

N∑
i=1

gi(xi;xi1, ...xiK), (5)

where xi is the i-th bit of the string x, and xi1, ...xiK are
the bits that influence the contribution of xi. A cyclic or-
der is used, i.e., x1 follows xN . For each string element,
a function gi assigns a real-valued weight to each possible
combination of the element and its neighbors, typically sam-
pled uniformly from [0; 1]. This results into N lookup tables

of 2(K+1) values. In this paper, the K neighbors that im-
pact the contribution of the i-th element xi are given by the
sequence (xi+1, ..., xi+K).

The Quadratic Assignment Problem (QAP) [6] de-
scribes a permutation problem, where N facilities have to
be assigned to N locations. Assignment cost is minimized,
based on flow between facilities (a) and distance between lo-
cations (b). The optimization problem is to find an optimal
permutation π of length N from the set of all permutations
ΠN , that is

min
π∈ΠN

N∑
i=1

N∑
j=1

aijbπ(i),π(j). (6)

The QAP Library (QAPLIB) [7] collects several instances of
this problem. The instances nug30, tho30 and kra32 were
chosen in [21]. In addition, instance (nug12) was added to
incorporate smaller search spaces. For all tested QAP in-
stances, the optimum solution is given in the QAPLIB doc-
umentation. QAP instances do have real world relevance,
e.g., kra32 is based on real world data from planning of a
clinical center.

Unimodal (UNI) problems were suggested by Moraglio
et al. [21] as simple and transparent test cases. Here, the
fitness of a permutation is its distance to the fixed reference
permutation π = 1, 2, 3, ..., 30. Both HD and Swap Dis-
tance (SD) are used, each forming a different UNI instance
(unih30, unis30). Because the look-up tables are randomly
generated, our results differ from previous results presented
in [19, 21]. Also, the exact distribution of the K neighbors
may differ. The UNI problems depend on the chosen refer-
ence permutation. The QAP instances should be identical,
thus yielding the most comparable results.

4.2 Surrogate Models
Three surrogate models are employed in the experiments,

RBFN, Kriging, and LM. The RBFN model is implemented
in R, based on the description and configuration by Moraglio
and Kattan [19],

ŷ(x) = w0 +

K∑
i=1

wi exp
(
−βd(x, c(i))2

)
where K is the number of centers c (here: are all samples),
d(·) is an arbitrary distance measure, w0 is the mean of



all observations and w a vector of weights determined by
solving a system of K linear equations, using the pseudo
inverse. Furthermore, D denotes the maximum distance and
β = 1/2D2. No tuning of model parameters is performed.
RBFN will also be used in an EGO framework (hence called
EGOR). To that end, we can get a rough error estimate in
a similar way as done with Kriging, i.e., from Eq. (3), where
the main difference is that the model parameters are not
derived from MLE. For Kriging (as used in classical EGO),
the implementation shipped with the SPOT R package, based
on the original Matlab code by Forrester et al. [10], is used.
It is adapted to combinatorial spaces as described in Sec. 3.1.
A regularization constant (nugget) is not used and p fixed
at a value of one. The LM is implemented according to the
description in Sec. 3.2.

4.3 Optimization Algorithms
Two model-free optimization algorithms are employed,

Random Search (RS) and GA. RS will only be employed to
optimize the functions, namely QAP, NKL, and UNI. This
provides a reference performance which should be beaten by
any more sophisticated algorithm. The GA will be used on
all problems and with all surrogate models.

In all cases, the crossover rate is 0.5, the mutation rate 1
N

.
Tournament selection is performed with a tournament size
of two and a probability 0.9. For NKL, bitwise mutation and
uniform crossover are used. In case of the permutation prob-
lems (UNI, QAP) interchange mutation (i.e., interchange of
arbitrary elements) and cycle crossover are chosen.

When the NKL instances are optimized directly, the popu-
lation size is N . When a NKL surrogate model is optimized,
population size is 10N . For QAP and UNI, the population
size is set to 10 (direct) and 20 (surrogate), respectively. The
number of function evaluations for NKL is N2 (direct) and
100N2 (surrogate), respectively, and the number of func-
tion evaluations for UNI and QAP is set to 100 (direct) and
10, 000 (surrogate), respectively.

The GA is combined with four different model-based ap-
proaches, using RBFN, LM, Kriging and EGO. For RBFN,
LM and Kriging, the exploration strategy used by Moraglio
and Kattan [19] is employed: a random solution is selected
for evaluation, if the model does not predict a value better
than the best known solution. EGO does not need this ex-
plicit exploitation mechanism, because it implements a nat-
ural way to balance between exploration and exploitation.

To enable a more coherent experimental setup, the use of
a memetic GA with a two-opt step to optimize the surrogate
model for QAP and UNI is omitted in our setup. Prelimi-
nary experiments indicated that additional local search does
not improve the results significantly. This may be due to the
accuracy of the surrogate models. Since their prediction is
not perfectly exact, exhaustive local search may be unprof-
itable. Also note that duplicates are not allowed and will be
removed, with respect to the restricted budgets.

Of course, the rather simple GA is a potentially weak com-
petitor, the RS even more so. Future work may replace the
model-free GA with a more potent, state-of-the-art competi-
tor. Still, a state-of-the-art approach may be hard to find
for the application under strictly limited budgets.

4.4 Distance Measures
Several distance measures are discussed in the literature.

Schiavinotto and Stützle [26] compared several distance met-

rics for search landscape analysis, concerning permutations.
A different set is reviewed by Sevaux et al. [27] for their use-
fulness in a diversification strategy of a memetic algorithm.
As shown for QAP, even phenotype information can be used
for calculating distances [4]. For the purpose of measuring
distance between binary strings or permutations, we con-
sider the following distance measures.

Hamming Distance (HD) The number of unequal ele-
ments between two strings x and y, i.e.,

HD(x,y) =

n∑
i=1

ai where ai =

{
0 if xi = yi,
1 otherwise

(7)

The Hamming distance fulfills the conditions of a metric on
the vector space of the words of length n. It can quickly
determined, especially for binary strings and is therefore
used in the experiments on NKL. It is expected that the HD
works well in the modeling context, as it very much resem-
bles the distance measure usually used in RBFN or Kriging
for numerical problems. In detail,

∑n
i=1 |xi − yi| yields val-

ues identical to Eq. (7) if the two binary strings x and y are
interpreted as numerical vectors containing zeros or ones.
Equation (7) can be used to measure the distance between
arbitrary strings of equal length. Hence, it can also be ap-
plied to permutations. There, two other distance measures
are employed in the experiments.

Swap Distance (SD) A swap operation is the inter-
change in position of two adjacent elements in a permuta-
tion. SD measures the minimal number of swaps necessary
to transform one permutation into another. For the calcu-
lation of this measure, we use the algorithm as described
by Schiavinotto and Stützle [26]. Moraglio et al. [21] re-
port that SD performed poorly. This may be due to the
fact, that SD only concerns adjacent elements, while inter-
changing two arbitrary elements may be a more reasonable
smallest step. This gave the inspiration to add an additional
distance measure to our portfolio.

Interchange Distance (ID) An interchange operation
is the interchange in position of two arbitrary elements in
a permutation. ID measures the minimal number of inter-
changes required to transform one permutation to another.
Schiavinotto and Stützle [26] provide an algorithm to cal-
culate this measure, which is employed in this work. They
also performed experiments to measure correlation between
different distance measures and report a high correlation be-
tween HD and ID, whereas the correlations between HD and
SD, as well as between SD and ID are low. Based on this
information, ID is an interesting candidate in our portfolio.
It has to be noted that HD has the lowest computational
complexity. In case of equal performance, HD should be
selected.

5. RESULTS
Experimental results are visualized by boxplots in Fig. 2, 4

and 5. The inner box indicates the 25 and 75 % quartiles
and the bold line is the median. Circles are outliers, and the
lines specify the range of values exluding these outliers. For
the two instances with K = 2, EGO finds the optimum in all
of the 20 runs. EGOR (with RBFN) performs similarly well,
but does not find the optimum in every K = 2, N = 25 in-
stance. In General, EGO outperforms EGOR. For N = 25,
K = 5, only EGO and EGOR ever solve the problem, but
not not in all runs (EGO: 7 of 20, EGOR: 1 of 20). EGO
is clearly best on all NKL instances but the instance with
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Figure 2: Boxplot of NKL results. All modeling ap-
proaches employ HD only. Larger values are better.

N = 10, K = 5. To analyze this behavior further, the runs
with N = 25, K = 5 are extended to 250 function evalu-
ations. The corresponding results are visualized in Fig. 3.
Here, no decision can be made for small budgets. EGO
performs better for budgets > 100. The model-free GA is
clearly outperformed on the NKL instances by RBFN and
EGO. LM fails to outperform the basic RS for the two larger
NKL instances. Optimization with Kriging mean predic-
tions often performs worse than RBFN or LM, with the ex-
ception of the N = 25, K = 2 NKL instance.

EGO is best on all QAP instances, but only with HD.
Other distance measures may or may not lead to perfor-
mance that is worse than the model-free GA, which often
ranks second best to EGO. On the QAP instances, SD is
sometimes better than ID, sometimes vice-versa.

For unis30 the GA outperforms only RS and LM, as
well as Kriging with HD. For unih30, GA is outperformed
by EGO, EGOR and RBFN with HD. HD seems to work
best on all tested permutation problems, with exception of
unis30. Optimization with Kriging mean predictions per-
forms better than RBFN for unis30. With EI, on the other
hand, Kriging (EGO) performs nearly always better than
RBFN (EGOR).

Overall, EGO clearly performs best, often (but not al-
ways) followed by RBFN or EGOR. Of the model-based ap-
proaches without EI, RBFN is best, but several times out-
performed by the model-free GA. None of the permutation
problems are ever solved with the given budgets, although
EGO comes very close for unis30 and nug12.
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Figure 3: Empirical runtime distribution plot for
the NKL instance with N = 10,K = 5. Y -axis shows
the percentage of the 20 runs which reached the op-
timum (≈ 0.7922).

6. DISCUSSION
The surrogate model-based approaches work very well for

NKL with K = 2. Results in general were much better than
for the permutation based experiments. Two reasons for this
excellent performance can be given. First, the search space
of the tested NKL instances is much smaller than that of the
permutation problems. E.g., the largest NKL (n = 25) has
2n ≈ 3.36×107 possible combinations, whereas the smallest
QAP problem (n=12) has n! ≈ 4.79 × 108. Second, the
choice of distance measure (HD) is not only natural to this
problem, but is a measure which is similar to the distance
measure used in continuous domains.

Relative to RS, performance of all algorithms decreased
with larger K. This has to be expected to some extent, since
such landscapes are clearly more rugged and difficult. That
is, the larger K is, the more fitness contributions change
when one single bit is flipped. Clearly, this does not only
make the optimization more difficult, but also the model-
ing, since the correlation between neighboring solutions de-
creases.

For N = 10 and K = 5, the results showed large variances
and the worst EGO performance. Additionally, the GA per-
formance was not significantly better than RS. This can be
attributed to the more rugged fitness landscape. The high
variance in the performance of all approaches also suggests
that more function values are required, which can be sup-
ported by earlier work on NKL. The dynamic programming
algorithm proposed by Weinberger [30] solves the NKL in
O(2KN) steps. That is, it needs 40 (N = 10,K = 2), 320
(N = 10,K = 5), 100 (N = 25,K = 2) or 800 (N =
25,K = 5) steps. As can be seen, all but the N = 10
and K = 5 instance received budgets rather close to these
numbers, which indicates why this leads to a bad overall
performance for N = 10 and K = 5. Longer runs with 250
evaluations revealed that after sufficient evaluations, EGO
would outperform the other approaches and reliably solve
the instance.

On the permutation problems, EGO is the best working
optimization approach, and HD the most suitable distance
measure. It is interesting to observe that SD sometimes
outperforms ID, although ID was reported to have larger
correlation with HD, which worked best. This result should
be investigated further. In contrast to results from Moraglio
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Figure 4: Boxplot of QAP results. Smaller values
are better.

et al. [21], the GA often outperforms the RBFN supported
GA on the permutation problems. The performance of the
RBFN model seems to be very similar to the performance
reported earlier. Thus, the difference may be in the choice of
settings for the basic, model-free GA, which performs better
than reported in the earlier study. E.g., the choice of using
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Figure 5: Boxplot of results for the artificial, uni-
modal test instances. Smaller values are better.

tournament over truncation selection may be the reason.
Or else, there may be differences in the mutation operator,
as we use interchange and not swap mutation. This result
stresses the need for a future study on tuning of the applied
approaches.

A further difference to earlier results [21] is the perfor-
mance observed for the unimodal functions. Here, the best
working distance measure is always that which is used in
the instance itself. That is, HD works best with unih30

and SD works best with unis30. The bad overall perfor-
mance on unih30 may be caused by the larger number of
non-unique fitness values. Our results indicate that HD is
clearly the best metric for the given problems. But the re-
sults on unis30 show that the choice of distance measure
can be affected by the problem type. This warrants further
research with problem instances of larger variety. For other
permutation problems SD and ID may be preferable.

7. SUMMARY AND OUTLOOK
We demonstrated that EGO can be successfully applied to

combinatorial optimization problems and that this Kriging-
based approach was able to outperform a model-free GA.
However, EGO does not make GA approaches superfluous,
because GAs are very useful for the proposed extension of
EGO to combinatorial spaces. Searching for the solution
with largest EI takes usually place in a multi-modal land-
scape. EI depends on the variance estimate which is zero
at existing samples. In between samples, this will often cre-
ate local optima. Finding the global optimum solution of
the EI search requires a surrogate-optimizer that is capable
to escape such local optima. Stochastic, population-based
methods like GA are most suitable for this.

Besides EGO and GA, model based searches with Krig-
ing (without EI), RBFN and LM were included in the com-
parison. All model-based approaches were outperformed by
EGO, in some cases even by the model-free GA. It was also
observed that RBFN does hold on very well to the basic
Kriging model, as long as they are not used in EGO. Kriging



outperformed the more simple RBFN when it was employed
in EGO. The exploration/exploitation balancing of EGO in
combination with the more powerful Kriging predictor and
a well chosen distance measure seem to make the difference.
Due to the importance of exploiting the error estimate, other
heuristics may be tested with models that have no error esti-
mate. E.g., variance guesses could be based on distances to
known samples, or by using some form of cross-validation.

Furthermore, the permutation distance measures were shown
to have a strong impact on the results. With one exception,
Hamming Distance worked best for all problem instances.
For other problems, the situation may be different. At the
same time, the number of possible distance measures is much
larger than the set used in this work. This issue will again
occur, when tree-based representations or more exotic rep-
resentations are concerned. Hence, the question of choosing
a distance measure will remain an important issue. Distance
measure were previously used for several tasks, e.g., diversity
preservation in GAs or fitness landscape analysis. On the
other hand, considering expensive problems yields different
limitations than those encountered in earlier studies. For
example, measures previously disregarded because of their
complexity [27] may be of use in contexts where overall time
consumption is dominated by the expensive target function.
The interaction of distance measure, the correlation func-
tions, and other parameters of the model are also of interest
for further investigation.

The following topics will also be subject of our future re-
search:
• performing a detailed study on parameter tuning of all

compared approaches, to guarantee a fair comparison
and understanding interactions of parameters
• implementing Co-Kriging for combinatorial spaces, to

include cheaply available data into the optimization
process.
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