
Benchmarking in Optimization:

Best Practice and Open Issues

Thomas Bartz-Beielstein1, Carola Doerr2, Jakob Bossek3, Sowmya Chandrasekaran1,
Tome Eftimov4, Andreas Fischbach1, Pascal Kerschke5, Manuel López-Ibáñez6,
Katherine M. Malan7, Jason H. Moore8, Boris Naujoks1, Patryk Orzechowski8,9,

Vanessa Volz10, Markus Wagner3, and Thomas Weise11

1Institute for Data Science, Engineering, and Analytics, TH Köln, Germany
2Sorbonne Université, CNRS, LIP6, Paris, France

3Optimisation and Logistics, School of Computer Science, The University of Adelaide, Adelaide, Australia
4Computer Systems Department, Jožef Stefan Institute, Ljubljana, Slovenia

5Statistics and Optimization Group, University of Münster, Münster, Germany
6School of Computer Science and Engineering, University of Málaga, Málaga, Spain
7Department of Decision Sciences, University of South Africa, Pretoria, South Africa

8Institute for Biomedical Informatics, University of Pennsylvania, Philadelphia, PA, USA
9Department of Automatics, AGH University of Science and Technology, Krakow, Poland

10modl.ai, Copenhagen, Denmark
11Institute of Applied Optimization, School of Artificial Intelligence and Big Data, Hefei University, Hefei, China

benchmarkingbestpractice@gmail.com

July 7, 2020

Abstract

This survey compiles ideas and recommendations from more than a dozen researchers with different
backgrounds and from different institutes around the world. Promoting best practice in benchmarking
is its main goal. The article discusses eight essential topics in benchmarking: clearly stated goals, well-
specified problems, suitable algorithms, adequate performance measures, thoughtful analysis, effective
and efficient designs, comprehensible presentations, and guaranteed reproducibility. The final goal is to
provide well-accepted guidelines (rules) that might be useful for authors and reviewers. As benchmarking
in optimization is an active and evolving field of research this manuscript is meant to co-evolve over time
by means of periodic updates.

1

mailto:benchmarkingbestpractice@gmail.com

Contents

1 Introduction 4

2 Goals of Benchmarking Activities 8
2.1 Visualization and Basic Assessment of Algorithms and Problems 8
2.2 Sensitivity of Performance with Respect to Algorithm Design and Problem Characteristics . . 9
2.3 Benchmarking as Training: Performance Extrapolation . 11
2.4 Theory-Oriented Goals . 11
2.5 Benchmarking in Algorithm Development . 12
2.6 Open Issues and Challenges . 12

3 Problem Instances 12
3.1 Desirable Characteristics of a Problem Set . 13
3.2 Evaluating the Quality of a Problem Set . 13
3.3 Available Benchmark Sets . 14
3.4 Open Issues . 16

4 Algorithms 17
4.1 Algorithm Families . 17
4.2 Hyperparameter Handling in Benchmarks . 20
4.3 Algorithm Portfolio Selection Guideline . 21
4.4 Discussion and Open Issues . 21

5 How to Measure Performance? 22
5.1 General Concepts . 22
5.2 Quality Metrics . 23
5.3 Aggregating Metrics over Multiple Runs . 24
5.4 Open Issues . 25

6 How to Analyze Results? 25
6.1 Three-Level Approach . 25
6.2 Exploratory Data Analysis . 26

6.2.1 Motivation . 26
6.2.2 The Glorious Seven . 27
6.2.3 Graphical Tools . 27

6.3 Confirmatory Analysis . 28
6.3.1 Motivation . 28
6.3.2 Assumptions for the Safe Use of the Parametric Tests 29
6.3.3 A Pipeline for Selecting an Appropriate Statistical Test 29

6.4 Relevance Analysis . 32
6.4.1 Motivation . 32
6.4.2 Severity: Relevance of Parametric Test Results . 32
6.4.3 Multiple-Problem Analysis . 32

6.5 Open Issues . 33

7 Experimental Design 33
7.1 Design of Experiments (DoE) . 33
7.2 Design Decisions . 33
7.3 Designs for Benchmark Studies . 34
7.4 How to Select a Design for Benchmarking . 35
7.5 Tuning Before Benchmarking . 35
7.6 Open Issues . 35

2

8 How to Present Results? 36
8.1 General Recommendations . 36
8.2 Reporting Methodologies . 36
8.3 Open Issues . 37

9 How to Guarantee Reproducibility? 37

10 Summary and Outlook 38
10.1 Summary . 38
10.2 Outlook . 39

Glossary 41

References 43

3

1 Introduction

Introducing a new algorithm without testing it on a set of benchmark functions appears to be very strange to
every optimization practitioner, unless there is a strong theoretical motivation justifying the interest in the
algorithm. Taking theory-focused papers aside, from the very beginning in the 1960s nearly every publication
in Evolutionary Computation (EC) was accompanied by benchmarking studies. One of the key promoters
of the EC research domain, Hans-Paul Schwefel [1975], wrote in his PhD thesis:

The extremely large and constantly increasing number of optimization methods inevitably leads
to the question of the best strategy. There does not seem to be a clear answer. Because, if there
were an optimal optimization process, all other methods would be superfluous . . . 1

Famous studies, e.g., from Moré et al. [1981], were performed in this period and established well-known test
functions that are known to every algorithm developer. They can still be found in the portfolio of recent
benchmark studies, e.g., Rosenbrock’s function [Rosenbrock, 1960]. In the 1960s, experiments could be
rerun only a very limited number of times, using different starting points or random seeds. This situation has
changed drastically: nowadays, new algorithms can be run a hundred or even a thousand times. This enables
very complex and sophisticated benchmark suites such as those available in the Comparing Continuous
Optimizers (COCO) [Hansen et al., 2016b] and the Nevergrad [Rapin and Teytaud, 2018] platforms. However,
the questions to be answered by benchmarking remain basically the same, e.g.,

• how well does a certain algorithm perform on a given problem?

• why does an algorithm succeed/fail on a specific test problem?

Specifying the goal of a benchmark study is as important as the study itself, as it shapes the experimental
setup—i.e., the choice of the problem instances, algorithm instances, performance criteria, and statistics.
Typical goals that a user or a researcher wishes to answer through a benchmarking study are discussed in
Section 2.

But not only computational power has increased significantly in the last decades. Theory made important
progress as well. In the 1980s, some researchers claimed that there is an algorithm that is able to outperform
all other algorithms on average [Golden et al., 1986]. A set of no free lunch theorems (NFLTs), presented
by Wolpert and Macready [1997] radically changed this situation [Adam et al., 2019]. Brownlee [2007]
summarizes NFLT consequences as follows:

1) bound claims of algorithm or parameter suitability to the problem instances being tested,
2) research into devising problem classes and matching suitable algorithms to classes is a good
thing, 3) be cautious about generalizing performance to other problem instances, and 4) be very
cautious about generalizing performance to other problem classes or domains.

Whitley et al. [2002] examine the meaning and significance of benchmarks in light of theoretical results
such as NFLT. Problems caused by NFLT are still subject of current research, e.g., Liu et al. [2019] discuss
paradoxes in numerical comparison of optimization algorithms based on NFLT. Perhaps the most relevant
NFLT consequence reads as follows: statements about the performance of algorithms must be coupled with
the problem class or even the problem instances. Or, as stated by Haftka [2016]:

Improving an algorithm for one class of problem is likely to make it perform more poorly for
other problems.

As a NFLT consequence, benchmarking gains a central role, both for theory and practice. It has to take
care of the following aspects:

1. performance measure

1German original quote: “Die überaus große und ständig steigende Zahl von Optimierungsmethoden führt zwangsläufug
zu der Frage nach der besten Strategie. Eine eindeutige Antwort scheint es nicht zu geben. Denn, gäbe es ein optimales
Optimierungsverfahren, dann würden sich alle anderen Methoden erübrigen. . . ”

4

2. problem (instance)

3. algorithm (instance).

Excellent papers on how to set up a good benchmark test exist for many years. Hooker and Johnson
are only two authors that published papers still worth reading today [Hooker, 1994, 1995, Johnson et al.,
1989, 1991, Johnson, 2002b]. McGeoch [1986] can be considered as a milestone in the field of experimental
algorithmics, which builds the cornerstone for benchmark studies. Gent and Walsh [1994] stated that the
empirical study of algorithms is a relatively immature field—and we claim, that this situation has unfor-
tunately not significantly changed in the last 25 years. Reasons for this unsatisfactory situation in EC are
manifold. For example, EC has not agreed upon general methodology for performing benchmark studies like
the fields of statistical Design of Experiments (DOE) or data mining [Chapman et al., 2000, Montgomery,
2017]. These fields provide a general methodology to encourage the practitioner to consider important issues
before performing a study.

The question remains: why are minimum standards not considered in every paper submitted to EC con-
ferences and journals? One answer might be: setting up a sound benchmark study is very complicated. There
are many pitfalls, especially stemming from complex statistical considerations [Črepinšek et al., 2014]. So, to
do nothing wrong, computer scientists oftentimes report only average values decorated with corresponding
standard deviations, p-values, or boxplots.

Another answer might be: practical guidelines are missing. Researchers from computer science would
apply these techniques, if examples are available. This paper tries to fill this gap. It is a joint initiative from
several researchers in EC that was established during the Dagstuhl seminar 19431 on Theory of Randomized
Optimization Heuristics, which took place in October 2019. Since then, we have been compiling ideas
covering a broad range of disciplines, all connected to EC.

We are aware that every version of this paper represents a snapshot, because the field is evolving. New
theoretical results such as no-free lunch might come up from theory, new algorithms (quantum computing,
heuristics supported by deep learning techniques, etc.) appear on the horizon, and new measures, e.g., based
on extensive resampling (Monte Carlo) can be developed in statistics.

It is more than necessary to include as many researchers as possible into this process. We invite everybody
who would like to contribute to contact us. Therefore, we have set up an email account: benchmarkingbest-
practice@gmail.com.

We consider this paper as a starting point, as a first trial to support the EC community in improving the
quality of benchmark studies. Surely, this paper cannot cover every single aspect related to benchmarking.
Although this paper focuses on single-objective, unconstrained optimization problems, its findings can be
easily transferred to other domains, e.g, multi-objective or constrained optimization. The objectives in other
problem domains may differ slightly and may require different performance measures—but the content of
most sections should be applicable, too. Each of the following sections presents references to best-practice
examples and discusses open topics. The following aspects, which are considered relevant to every benchmark
study, are covered in the subsequent sections:

1. Goals: what are the reasons for performing benchmark studies?

2. Problems: how to select suitable problems?

3. Algorithms: how to select a portfolio of algorithms to be included in the benchmark study?

4. Performance: how to measure performance?

5. Analysis: how to evaluate results?

6. Design: how to set up a study, e.g., number of runs? It also discusses the imperative of tuning an
algorithm before benchmarking.

7. Presentation: how to describe results?

5

https://www.dagstuhl.de/en/program/calendar/semhp/?semnr=19431
mailto:benchmarkingbestpractice@gmail.com
mailto:benchmarkingbestpractice@gmail.com

Figure 1: Algorithms. Illustration of the terminology used in this paper. General terms are shown on the left,
whereas on the right one specific example is shown. In a benchmark study, the implementation of algorithm
instances belonging to the same or to different algorithm families are considered.

8. Reproducibility: how to guarantee scientifically sound results and how to guarantee a lasting impact,
e.g., in terms of comparability?

Notational Conventions. We typically benchmark a portfolio (or set) of different algorithm instances.
Each algorithm instance a is the specification of an algorithm A from which it is obtained by fixing the pa-
rameters and possibly other decisions. Algorithm instances are also referred to as “algorithm configurations”
in the literature. That is, we never benchmark an algorithm, but only one or several of its instances. We
may even say that we only benchmark a certain implementation of an algorithm instance, which is subject
to a concrete choice of implementation language, compiler and operating system optimizations, and concrete
versions of software libraries.

The algorithms represented in a benchmark study may belong to the same or to different algorithm
classes A, which, in turn, are specifications of an algorithm family. Figure 1 illustrates this notation (left
half) and provides an example (right half). Concretely, we could consider the family of stochastic search
algorithms, and within this family the class of evolution strategies. The Covariance Matrix Adaptation
Evolution Strategy (CMA-ES) [Hansen, 2000] is an algorithm belonging to this class. In order to benchmark
“the” CMA-ES, a concrete instance has to be chosen.

Algorithm instances may be (and in the context of this survey often are) randomized, so that the per-
formance of the algorithm instance on a given problem instance is a series of (typically highly correlated)
random variables, one for each step of the algorithm. A concrete performance profile [Dean and Boddy,
1988, Zilberstein, 1996] can be reproduced by using the same sequence of numbers that were generated by
the random number generator. In practice, such replicability is often achieved by fixing the random num-
ber generator and storing the random seed, which plays an important role to guarantee reproducibility as
discussed in Sec. 9.

The same terminology introduced above for the space of algorithms can also be applied to the space of
possible benchmark problems: we execute the algorithm instances a1, a2, . . . on concrete problem instances
π1, π2, . . ., which are specifications of a problem Π. Most benchmark studies consider performance of algo-

6

Figure 2: Problems. Illustration of the terminology used in this paper. General terms are shown on the
left, whereas on the right one specific example is shown. It is of great importance that we distinguish
between problems and problem instances, because these terms are mixed in many benchmark studies. As
a consequence of this imprecise use of terminology, it remains unclear whether the authors refer to one
specific problem instance or to the whole class. Furthermore, we will use the terms set, suite, and portfolio
to describe a collection of problem instances, that do not necessarily share a common property. As discussed
in the text, the example also shows that different classifications are possible, so that great care has to be
taken with respect to which problems have been used in the benchmark study.

rithm instances on several problems, which may or may not belong to the same problem class, sometimes also
referred to as problem suite. The problem classes are specifications of the problem family P they belong to.
Thus, finally, the problem instances considered in the benchmark study may stem from a portfolio (set) of
different problem families. As is the case for the algorithms, also the problem instances can be randomized,
in which case we speak of stochastic or noisy problem instances.

The notation is illustrated in Figure 2, together with an example on the right: the 5-dimensional sphere
function f : R5 → R, x 7→

∑5
i=1 x

2
i centered in the origin is a concrete problem instance that can be subject

to optimization. The sphere function is a quadratic function, which belongs to the class of polynomial
functions, which, in turn, are a class within the family of continuous functions. However, this example
also illustrates that the taxonomy is not used very consistently in the literature: One could also argue that
the function f defined above is an instance of the sphere problem (which, for example, may comprise all
translated, shifted, and/or scaled versions of f , i.e., functions of the type g(x) = Cf(x+y) + c with C, c ∈ R
and y ∈ R5). One could then argue that the quadratic functions are the class of problems to which the
sphere problem belongs, etc. A third interpretation could consider f as the problem instance, the set of all
functions fd : Rd → R, x 7→

∑d
i=1 x

2
i as the sphere problem, the set of translated, shifted, and/or scaled

versions of fd, d ∈ N, as the problem class and the quadratic functions as a problem family. This discussion
also demonstrates that we need to be careful to report and read very precisely which problem instances have
been used in the benchmark study.

7

● G3.1
Performance
Regression

● G3.2 Automated
Algorithm
Design,
Selection, and
Configuration

● G2.1 Testing
Invariances

● G2.2 Algorithm
Tuning

● G2.3
Understanding
the Influence of
Parameters and
Algorithmic
Components

● G2.4
Characterizing
Algorithms’
Performance by
Problem
Features

● G1.1 Basic
Assessment of
Performance
and Search
Behavior

● G1.2 Algorithm
Comparison

● G1.3
Competition

● G1.4
Assessment of
the Optimization
Problem

● G1.5 Illustrating
Algorithms’
Search
Behavior

Performance
Extrapolation

● G4.1 Cross-
Validation and
Complementation
of Theoretical
Results

● G4.2 Source of
Inspiration for
Theoretical
Studies

● G4.3
Benchmarking
as Intermediary
between Theory
and Practice

● G5.1 Code
Validation

● G5.2 Algorithm
Development

Common Goals of Benchmarking Studies

Sensitivity of
Performance

Visualization
and Basic

Assessment

Theory-
Oriented Goals

Benchmarking
in Algorithm
Development

Figure 3: Summary of common goals of benchmark studies.

2 Goals of Benchmarking Activities

The motivation to perform benchmark studies on optimization algorithms is as manifold as the algorithms
and the problems that are being used in these studies. In this section, we summarize the most common goals
in benchmarking. Figure 3 summarizes these goals. The relevance of these goals can differ within different
sub-streams of optimization. Also, the grouping is not necessarily unique, but should be understood as an
attempt to find something that represents the benchmarking objectives well within the broader scientific
community.

2.1 Visualization and Basic Assessment of Algorithms and Problems

(G1.1) Basic Assessment of Performance and Search Behavior.
The arguably most basic research question that one may want to answer with a benchmark study is
how well a certain algorithm performs on a given problem. In the absence of mathematical analyses,
and in the absence of existing data, the most basic approach to gain insight into the performance is
to run the algorithm (ideally several times, if the algorithm or the problem are stochastic) on one
or more problem instances, and to observe the behavior of the algorithm in decision and objective
space. With this data, one can analyze what a “typical” performance profile looks like, how the
solution quality evolves over time, how many evaluations are needed to find solutions of a certain

8

quality, how much time the execution of the algorithm takes, how robust the performance is, etc.
The evaluation criteria are manifold, as we shall discuss in Section 5. But what is inherent to all
studies falling into this goal G1.1, is that they are aimed to answer a rather basic question “How
well does this particular algorithm perform on this particular problem?”.

(G1.2) Algorithm Comparison.
The great majority of benchmark studies do not focus on a single algorithm, but rather compare the
performance and/or the search behavior of two or more algorithms. The comparison of algorithms
serves, most notably, the purpose of understanding strengths and weaknesses of different algorithmic
approaches for different types of problems or problem instances during the different stages of the opti-
mization process. These insights can be leveraged for algorithm design, selection, and configuration,
as we shall discuss below.

(G1.3) Competition.
One particular motivation to compare algorithms is to determine a “winner”, i.e., an algorithm that
performs better than any of its competitors, for a given performance measure and on a given set of
problems. Benchmarking is of great value in selecting the most adequate algorithm especially in real-
world optimization settings [Beiranvand et al., 2017]. The role of competitions for benchmarking is
discussed quite controversially [Hooker, 1995], as competitions may promote algorithms that overstate
the importance of the problems that they are tested upon, and thereby create over-fitting. At the
same time, however, one cannot neglect that competitions have been an important incentive for
contributions to the design and to the development of new algorithmic ideas.

(G1.4) Assessment of the Optimization Problem. In many real-world problems, especially those related to
bioinformatics, the ground truth is unknown, in other problems it is necessary to deal with limited
knowledge, or lack of explicit formulas. In those situations, computer simulations or even physical
experiments are required to evaluate the quality of a given solution candidate. In addition, even
if a problem is explicitly modelled by a mathematical formula, it can nevertheless be difficult to
grasp its structure or to derive a good intuition for how its “fitness landscape” looks like. Similarly,
when problems consist of several instances, it can be difficult (or even impossible) to understand
in what respect these different instances are alike and in which aspects they differ. Benchmarking
simple optimization heuristics can help to visualize the optimization problem and to derive some
basic features. Commonly applied solvers in this context are local solvers and non-adaptive random
search, but also space-filling sampling strategies like Latin Hypercube Designs (LHDs) [McKay et al.,
1979].

(G1.5) Illustrating Algorithms’ Search Behavior.
Understanding how an optimization heuristic operates on a problem can be difficult to grasp when
only looking at the algorithm and problem description. One of the most basic goals that bench-
marking has to offer are numerical and graphical illustrations of the optimization process, both in
performance space but also the decision space. With these numbers and visualizations, a first idea
about the optimization process can be derived. This also includes an assessment of the stochasticity
when considering several runs of a randomized algorithm or an algorithm operating upon a stochastic
problem. In the same vein, benchmarking offers a hands-on way of visualizing effects that are difficult
to grasp from mathematical descriptions. That is, where mathematical expressions are not easily
accessible to everyone, benchmarking can be used to illustrate the effects that the mathematical
expression describe.

2.2 Sensitivity of Performance with Respect to Algorithm Design and Problem
Characteristics

(G2.1) Testing Invariances.
Several researchers argue that, ideally, the performance of an optimization algorithm should be

9

invariant with respect to certain aspects of the problem embedding, such as the scaling of the function
values, translation of the function values, or a rotation of the search space (see Hansen [2000] and
references therein for a general discussion and Lehre and Witt [2012], Rowe and Vose [2011] for
examples formalizing the notion of unbiased algorithms).

Whereas certain invariances, such as comparison-baseness, are typically easily inferred from a pseu-
docode description of the algorithm, other invariances (e.g., invariance with respect to translation or
rotation) might be harder to grasp. In such cases, benchmarking can be used to test, empirically,
whether the algorithm possesses the desired invariances.

(G2.2) Algorithm Tuning.
Most optimization heuristics are configurable, i.e, we are able to adjust their search behavior (and,
hence, performance) by modifying their parameters. Typical parameters of algorithms are the number
of points kept in the memory, the number of solution candidates that are evaluated in each iteration,
parameters determining the distribution from which new samples are generated (e.g., the mean,
variance, and direction of the search), the choice of points to keep in memory, and the stopping
criterion. Optimization heuristics applied in practice often comprise tens of parameters that need to
be tuned.

Finding the optimal configuration of an algorithm for a given problem instance is referred to as offline
parameter tuning [Eiben and Jelasity, 2002, Eiben and Smith, 2015]. Tuning can be done manually
or with the help of automated configuration tools [Akiba et al., 2019, Bergstra et al., 2013, Olson and
Moore, 2016], Benchmarking is a core ingredient of the parameter tuning process. A proper design of
experiment is an essential requirement for tuning studies [Bartz-Beielstein, 2006, Orzechowski et al.,
2018, 2020]. Parameter tuning a necessary step before comparing a viable configuration of a method
with others, as we’re disregarding those combinations of parameters, which do not yield promising
results.

It can help to shed light on suitable choices of parameters and algorithmic modules. Selecting a
proper parameterization for a given optimization problem is a tedious task [Fialho et al., 2010].
Besides the selection of the algorithm and the problem instance, tuning requires the specification of
a performance measure, e.g., best solution found after a pre-specified number of function evaluations
(to be discussed in Sec. 5) and a statistic, i.e., number of repeats, which will be discussed in Sec. 7.

Another important concern with respect to algorithm tuning is the robustness of the performance
with respect to these parameters, i.e., how much does the performance deteriorate if the parameters
are mildly changed? In this respect, parameter recommendations with a better robustness might be
preferable over less robust ones, even if compromising on performance [Paenke et al., 2006]. Such
as robustness study that later gave rise to a rigorous theoretical assessment of parameter robustness
in [Doerr et al., 2019] can be found in [Doerr and Wagner, 2018].

(G2.3) Understanding the Influence of Parameters and Algorithmic Components.
While algorithm tuning focuses on finding the best configuration for a given problem, understanding
refers to the question: why does one algorithm perform better than a competing one? Understanding
requires additional statistical tools, e.g., analysis of variance or regression techniques. Questions
such as “Does recombination have a significant effect on the performance?” are considered in this
approach. Several tools that combine methods from statistics and visualization are integrated in
the software package Sequential Parameter Optimization Toolbox (SPOT), which was designed for
understanding the behavior of optimization algorithms. SPOT provides a set of tools for model
based optimization and tuning of algorithms. It includes surrogate models, optimizers and DOE
approaches [Bartz-Beielstein et al., 2017].

(G2.4) Characterizing Algorithms’ Performance by Problem Features and Vice Versa.
Whereas understanding as discussed in the previous paragraph tries to get a deep insight into the
elements and working principles of algorithms, characterization refers to the relationship between

10

algorithms and problems. That is, the goal is to link features of the problem with the performance
of the algorithm(s).

Problem features can be high-level features such as its dimension, the structure of the search space,
and other basic properties of the problem. Low-level features of the problem, such as its multi-
modality, its separability, or its ruggedness can either be derived from the problem formulation or
via an exploratory sampling approach [Kerschke and Trautmann, 2019a,b, Malan and Engelbrecht,
2013, Mersmann et al., 2010, 2011, Muñoz Acosta et al., 2015a,b].

A classical example for a question answered by the characterization approach is how the performance
of an algorithm scales with the number of decision variables.

2.3 Benchmarking as Training: Performance Extrapolation

(G3.1) Performance Regression.
The probably most classical hope associated with benchmarking is that the generated data can be
used to extrapolate the performance of an algorithm for other, not yet tested problem instances.
This extrapolation is highly relevant for selecting which algorithm to choose and how to configure it,
as we shall discuss in the next section. Performance extrapolation requires a good understanding of
how the performance depends on problem characteristics, the goal described in G2.4.

In the context of machine learning, performance extrapolation is also referred to as transfer learn-
ing [Pan and Yang, 2010]. It can be done manually or via sophisticated regression techniques.
Regardless of the methodology used to extrapolate performance data, an important aspect in this
regression task is a proper selection of the instances on which the algorithms/configurations are
tested. For performance extrapolation based on supervised learning approaches, a suitable selection
of feature extraction methods is another crucial requirement for a good fit between extrapolated and
true performance.

(G3.2) Automated Algorithm Design, Selection, and Configuration.
When the dependency of algorithms’ performance with respect to relevant problem characteristics is
known and performance can be reasonably well extrapolated to previously unseen problem instances,
the benchmarking results can be used for designing, selecting, or configuring an algorithm for the
problem at hand. That is, the goal of the benchmark study is to provide training data from which
rules can be derived that help the user choose the best algorithm for her optimization task. These
guidelines can be human-interpretable such as proposed in Bartz-Beielstein [2006], Liu et al. [2020] or
they can be implicitly derived by AutoML techniques [Hutter et al., 2019, Kerschke and Trautmann,
2019a, Kerschke et al., 2019a, Olson and Moore, 2016].

2.4 Theory-Oriented Goals

(G4.1) Cross-Validation and Complementation of Theoretical Results.
Theoretical results in the context of optimization are often expressed in terms of asymptotic running
time bounds [Auger and Doerr, 2011, Doerr and Neumann, 2020], so that it is typically not possible
to derive concrete performance values from them, e.g., for a concrete dimension, target values, etc.
To analyze the behavior in small dimensions and/or to extend the regime for which the theoretical
bounds are valid, a benchmarking study can be used to complement existing theoretical results.

(G4.2) Source of Inspiration for Theoretical Studies.
Notably, empirical results derived from benchmarking studies are an important source of inspiration
for theoretical works. In particular when empirical performance does not match our intuition, or
when we observe effects that are not well understood by mathematical means, benchmarking studies
can be used to pinpoint these effects, and to make them accessible to theoretical studies, see [Doerr
et al., 2019] for an example.

11

(G4.3) Benchmarking as Intermediary between Theory and Practice.
The last two goals, G4.1 and G4.2, together with G1.1 and G1.2 highlight the role of benchmark-
ing as an important intermediary between empirically-oriented and mathematically-oriented sub-
communities within the domain of heuristic optimization [Müller-Hannemann and Schirra, 2010].
In this sense, benchmarking plays a similar role for optimization heuristics as Algorithm Engineer-
ing [Kliemann and Sanders, 2016] does for classical algorithmics.

2.5 Benchmarking in Algorithm Development

(G5.1) Code Validation.
Another important aspect of benchmarking is that it can be used to verify that a given code performs
as it is expected to. To this end, algorithms can be assessed on problems with known, simple
structures. If the algorithm does not behave as expected, some debugging is required.

(G5.2) Algorithm Development.
In addition to understanding performances, benchmarking is also used to identify weak spots with
the goal to develop better performing algorithms. This also includes first empirical comparisons of
new ideas to gain first insights into whether or not it is worth investigating further. This can result
in a loop of empirical and theoretical analysis. A good example for this is parameter control: it
has been observed early on that a dynamic choice of algorithms’ parameters can be beneficial over
static ones [Karafotias et al., 2015]. This led to the above mentioned loop of evaluating parameters
empirically and stimulated theoretical investigations.

2.6 Open Issues and Challenges

Several of the goals listed above require fine-grained records about the traces of an algorithm in performance
and/or in the decision space, raising the issue of storing, sharing, and re-using the data from the bench-
mark studies. Several benchmark environments offer a data repository to allow users to re-use previous
experimental results. However, compatibility between the data formats of different platforms is rather weak,
and a commonly agreed-upon standard would be highly desirable, both for a better comparability and for
a resource-aware benchmarking culture. As long as such standards do not exist, tools that can flexibly
interpret different data formats can be used. For example, the performance assessment module IOHanalyzer
of the IOHprofiler benchmarking environment [Doerr et al., 2018] can deal with various different formats,
including those from the two most widely adopted benchmarking environments in EC, Nevergrad [Rapin
and Teytaud, 2018] and COCO [Hansen et al., 2016b].

Coming back to a resource-aware benchmarking culture, we repeat a statement already made in the
introduction: two of the most important steps of a benchmarking study are the formulation of a clear
research question that shall be answered, and the design of an experimental setup that best answers this
question through a well-defined set of experiments. It is often surprising to see how many scientific reports
do not clearly explain the main research question that the study aims to answer, (n)or how the reported
benchmarking data supports the main claims.

Finally, we note that also the goals themselves undergo certain “trends”, which are not necessarily stable
over time. The above collection of goals should therefore be seen as a snapshot of what we observe today,
some of the goals mentioned above may gain or loose in relevance.

3 Problem Instances

A critical element of algorithm benchmarking is the choice of problem instances, because it can heavily
influence the results of the benchmarking. Assuming that we (ultimately) aim at solving real-world problems,
ideally, the problem set should be representative of the real-world scenario under investigation, otherwise it is
not possible to derive general conclusions from the results of the benchmarking. In addition, it is important

12

that problem sets are continually updated to prevent the over-tuning of algorithms to particular problem
sets.

This section discusses various aspects related to problem sets used in benchmarking. The four questions
we address are:

1. What are the desirable features of a good problem set?

2. How do you evaluate the quality of a problem set?

3. What benchmark problem sets are publicly available?

4. What are the open problems in research related to problem sets for benchmarking?

3.1 Desirable Characteristics of a Problem Set

This section describes some of the general features that affect the usefulness of suites of problems for bench-
marking, see Whitley et al. [1996] and Shir et al. [2018] for position statements.

(B1.1) Comprehensive.
A good benchmark suite should contain problems with a range of difficulties [Olson et al., 2017].
However, what is difficult for one algorithm could be easy for another algorithm and for that reason,
it is desirable for the suite to contain a wide variety of problems with different characteristics. In
this way, a good problem suite can be used to highlight the strengths and weaknesses of different
algorithms. Competition benchmark problems are frequently distinguished based on a few simple
characteristics such as modality and separability, but there are many other features that can affect
the difficulty of problems for search [Kerschke and Trautmann, 2019b, Malan and Engelbrecht, 2013,
Muñoz Acosta et al., 2015b] and the instances in a problem suite should collectively capture a wide
range of characteristics.

(B1.2) Representative.
At the end of a benchmarking exercise, claims are usually made regarding algorithm performance.
The more representative the benchmarking suite is of the class of problems under investigation, the
stronger the claim about algorithm performance will hold. The problem instances should therefore
include the difficulties that are typical of real world instances of the problem class under investigation.

(B1.3) Scalable and Tunable.
Ideally a benchmark set/framework includes the ability to tune the features of the problem instances.
For example, it could be useful to be able to set the dimension of the problem, the level of dependence
between variables, the number of objectives, and so on.

(B1.4) Known solutions.
If the optimal solution(s) of a benchmark problem are known, then it makes it easier to measure
exact performance of algorithms in relation to the known optimal performance.

While these properties are desirable, we cannot and should not insist on them under all circumstances,
e.g., the Low Auto-correlation Binary Sequence (LABS) problem is a quite simple optimization problem for
which optimal solutions are not known even for relatively small dimensions, see [Packebusch and Mertens,
2016] for a discussion.

3.2 Evaluating the Quality of a Problem Set

Although it is trivial to assess whether a problem suite provides information on the optimal solution or is
tunable, it is not as obvious to assess whether a problem set is comprehensive or representative. In this
section, we provide a brief overview of two ways of evaluating the quality of problem sets.

13

(B2.1) Feature space.
Smith-Miles and colleagues introduced the notion of an instance space for the mapping of problems
to a two-dimensional visualization, e.g., via t-SNE [Maaten and Hinton, 2008] of the instance feature
space. Such an approach can be useful for visualising the spread of a set of problem instances across
the space of features. Among the first here have been the characterizations of algorithm footprints for
the Traveling Salesperson Problem (TSP) [Smith-Miles and Tan, 2012] and for continuous problems
[Muñoz and Smith-Miles, 2017].

Škvorc et al. [2020] propose a methodology for visualising numerical search spaces in two dimensions
based on Exploratory Landscape Analysis (ELA) features [Mersmann et al., 2011] combined with
clustering and a t-distributed stochastic neighbour embedding visualization algorithm.

(B2.2) Performance space.
Simple aggregating statistics such as mean and total performance aggregate much information without
always enabling the discrimination of two or more algorithms. For example, two algorithms can
be very similar (and thus perform comparably) or they might be structurally very different but
the aggregated scores might still be comparable. From the area of algorithm portfolios, we can
employ ranking-based concepts such as the marginal contribution of individual algorithm to the total
portfolio, as well as the Shapley values, which consider all possible portfolio configurations [Fréchette
et al., 2016]. Still, for the purpose of benchmarking and better understanding of the effect of design
decisions on an algorithm’s performance, it might be desirable to focus more on instances that enable
the user to tell the algorithms apart in the performance space.

This is where the targeted creation of instances comes into play. Among the first articles that
evolved small TSP instances that are difficult or easy for a single algorithm is that by Mersmann
et al. [2013], which was then followed by a number of articles also in the continuous domain as well
as for constrained problems. Recently. this was extended to the explicit discrimination of pairs of
algorithms for larger TSP instances [Bossek et al., 2019], which required more disruptive mutation
operators. In combination with the already mentioned algorithm footprints in the feature space, this
can be a powerful tool for investigations.

3.3 Available Benchmark Sets

Over the years, competitions and special sessions at international conferences have provided a wealth of
resources for benchmarking of optimization algorithms. Some studies on metaheuristics have also made
problems available to be used as benchmarks. This section briefly outlines some of these resources, mostly
in alphabetical order of their key characteristic. We have concentrated on benchmark problems that are
fundamentally different in nature, and that have documentation and code available online. It is also due to
our focus on fundamental differences that we typically do not go into the details of configurable instances
and parameterized instance generators.

(B2.1) Artificial discrete optimization problems.
Subjectively, this area is among those with the largest amount of benchmark sets. Here, many are
inspired by problems encountered in the real world, which then have given rise to many fundamen-
tal problems in computer science. Noteworthy subareas of discrete optimization are combinatorial
optimization, integer programming and constraint programming – and for many of them large sets
of historically grown sets of benchmarks exist. For example, the satisfiability and maximum satisfia-
bility communities hold regular competitions2 and invite the submission of new instances, and large
instances sets for the travelling salesman problem3 and for mixed integer programming4, as do for
many, many more.

2http://www.satcompetition.org/, https://maxsat-evaluations.github.io/
3http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/ and http://www.math.uwaterloo.ca/tsp/index.html
4https://miplib.zib.de/

14

http://www.satcompetition.org/
https://maxsat-evaluations.github.io/
http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/
http://www.math.uwaterloo.ca/tsp/index.html
https://miplib.zib.de/

In contrast to these instance-driven sets are the more abstract models that define variable interac-
tions at the lowest level (i.e., independent of a particular problem) and then construct an instance
based on fundamental characteristics. Noteworthy examples here are (for binary representations)
the NK landscapes [Kauffman, 1993] (which has the idea of tunable ruggedness at its core), the
W-Model [Weise and Wu, 2018] (with configurable features like length, neutrality, epistasis, multi-
objectivity, objective values, and ruggedness), and the Pseudo-Boolean Optimization (PBO) suite of
23 binary benchmark functions by Doerr et al. [2020], which covers a wide range of landscape features
and which extends the W-model in various ways (in particular, superposing its transformations to
other base problems).

(B2.2) Artificial real-parameter single-objective problems.
Benchmark suites have been defined for special sessions, workshops and competitions at both the
Association for Computing Machinery (ACM), Genetic and Evolutionary Computation Conference
(GECCO) and the Institute of Electrical and Electronics Engineers (IEEE) Congress on Evolution-
ary Computation (CEC). Documentation and code are available online – for GECCO Black-Box-
Optimization-Benchmarking (BBOB)5, and for CEC6.

(B2.3) Artificial constrained real-parameter problems.
A set of 29 scalable artificial constrained real-parameter problems were defined for a CEC 2017
competition7.

(B2.4) Artificial mixed representation problems.
Benchmark suites combining discrete and continuous variables include mixed-integer NK landscapes
[Li et al., 2006], mixed binary and real encoded multi-objective problems [McClymont and Keedwell,
2011], mixed integer problems based on the CEC functions [Liao et al., 2013], and a mixed integer suite
based on the BBOB functions (bbob-mixint) with a bi-objective formulation (bbob-biobj-mixint)
[Tušar et al., 2019].

(B2.5) Artificial multi-objective problems.
Huband et al. [2006] provide a useful review of early multi-objective problem suites and propose the
WFG function suite. More recent test suites include the BBOB bi-objective test suite [Brockhoff
et al., 2016], the suite defined for the CEC 2020 Special Session on Multimodal Multi-Objective
Optimization8, and the real-world inspired set by Tanabe and Ishibuchi [2020]. In addition, Meneghini
et al. [2020] propose the Generalized Position-Distance (GPD) problem generator with parameters
for controlling features such as the number of variables and objectives, bias and deceptiveness.

(B2.6) Black-box optimization problems.
For all benchmarks listed here, the problem formulation and the instances typically are publicly
available, which inevitably leads to a specialization of algorithms to these. The Black-Box Optimiza-
tion Competition9 has attempted to address this shortcoming with its single- and multi-objective,
continuous optimization problems. Having said this, in 2019, the evaluation code has been made
available.

(B2.7) Dynamic single-objective optimization problems.
Branke [2001] covers the analysis of Evolutionary Algorithms (EAs) in dynamic environments.

(B2.8) Dynamic multi-objective optimization problems.
The 2018 CEC competition10 introduced dynamic problems that have been based on popular static,
multi-objective optimization problems, such as the DTLZ and the ZDT families. Complementary

5https://coco.gforge.inria.fr
6https://github.com/P-N-Suganthan/2020-Bound-Constrained-Opt-Benchmark
7https://github.com/P-N-Suganthan/CEC2017-BoundContrained
8https://github.com/P-N-Suganthan/2020-Multimodal-Multi-Objective-Benchmark
9https://www.ini.rub.de/PEOPLE/glasmtbl/projects/bbcomp/

10http://homepages.cs.ncl.ac.uk/shouyong.jiang/cec2018/cec2018.html

15

https://coco.gforge.inria.fr
https://github.com/P-N-Suganthan/2020-Bound-Constrained-Opt-Benchmark
https://github.com/P-N-Suganthan/CEC2017-BoundContrained
https://github.com/P-N-Suganthan/2020-Multimodal-Multi-Objective-Benchmark
https://www.ini.rub.de/PEOPLE/glasmtbl/projects/bbcomp/
http://homepages.cs.ncl.ac.uk/shouyong.jiang/cec2018/cec2018.html

to this is the slightly older survey [Raquel and Yao, 2013] that covers test problems, performance
measures and optimization approaches.

(B2.9) Expensive optimization problems.
The GECCO 2020 Industrial Challenge provides a suite of discrete-valued electrostatic precipitator
problems with expensive simulation-based evaluation11.

(B2.10) Multimodal optimization (niching).
Benchmark problem sets for niching include the GECCO and CEC competitions on niching methods
for multimodal optimization problems12 and the single-objective multi-niche competition problems13.

(B2.11) Noisy optimization.
A benchmark collection covering various of the here-mentioned categories is the Nevergrad plat-
form [Rapin and Teytaud, 2018],14. The original version had a strong focus on noisy problems, but
the platform covers today discrete, continuous, mixed-integer problems with and without constraints,
with and without noise, explicitly modelled problems and true black-box problems, etc.

(B2.12) Problems with interdependent components.
While much research tackles combinatorial optimization problems in isolation, many real-world prob-
lems are combinations of several [Bonyadi et al., 2019]. For example, the pit to port optimization in
the mining industry consists of multiple interdependent components from scheduling, packing and
routing. The Travelling Thief Problem [Bonyadi et al., 2013] has been created as an academic plat-
form to systematically study the effect of the interdependence, and the 9 720 instances [Polyakovskiy
et al., 2014]15 vary in four dimensions. A number of single- and multi-objective as well as static and
dynamic extensions of the Travelling Thief Problem have been proposed since then [Sachdeva et al.,
2020].

(B2.13) Real-world discrete optimization.
The GECCO competition on the optimal camera placement problem (OCP) and the unicost set
covering problem (USCP) include a set of discrete real-world problem instances16. The Mazda
Benchmark Problem is a scalable, multi-objective, discrete-valued, constrained benchmark problem
based on real-world car structure design17.

(B2.14) Real-world numerical optimization.
A set of 57 single-objective real-world constrained problems were defined for competitions at a number
of conferences18. The Smart Grid Problems Competitions provide testbeds for real-world problems
in the energy domain19, whereas the Game Benchmark for EAs [Volz et al., 2019] provide a suite of
test functions inspired by game-related problems20.

3.4 Open Issues

What gaps do we see in terms of research on problem sets for benchmarking?

• Real-world: Besides the CEC real-world numerical optimization and the Mazda Benchmark Problem
there seems to be a lack of real-world relevant benchmark problems, especially for continuous opti-
mization. When there are some proper real-world problems available (e.g., data sets for combinatorial

11https://www.th-koeln.de/informatik-und-ingenieurwissenschaften/gecco-challenge-2020_72989.php
12http://epitropakis.co.uk/gecco2020/
13https://github.com/P-N-Suganthan/CEC2015-Niching
14https://github.com/facebookresearch/nevergrad
15https://cs.adelaide.edu.au/~optlog/research/combinatorial.php
16http://www.mage.fst.uha.fr/brevilliers/gecco-2020-ocp-uscp-competition/
17http://ladse.eng.isas.jaxa.jp/benchmark/
18https://github.com/P-N-Suganthan/2020-RW-Constrained-Optimisation
19http://www.gecad.isep.ipp.pt/ERM-competitions/home/
20http://www.gm.fh-koeln.de/~naujoks/gbea/gamesbench.html

16

https://www.th-koeln.de/informatik-und-ingenieurwissenschaften/gecco-challenge-2020_72989.php
http://epitropakis.co.uk/gecco2020/
https://github.com/P-N-Suganthan/CEC2015-Niching
https://github.com/facebookresearch/nevergrad
https://cs.adelaide.edu.au/~optlog/research/combinatorial.php
http://www.mage.fst.uha.fr/brevilliers/gecco-2020-ocp-uscp-competition/
http://ladse.eng.isas.jaxa.jp/benchmark/
https://github.com/P-N-Suganthan/2020-RW-Constrained-Optimisation
http://www.gecad.isep.ipp.pt/ERM-competitions/home/
http://www.gm.fh-koeln.de/~naujoks/gbea/gamesbench.html

problems, or the CEC problems mentioned), they often are single-shot optimizations, i.e., only a sin-
gle run can be conducted, which then makes it difficult to retrieve generalizable results. A recent
push towards a collection and characterization has been made with a survey21 by the Many Criteria
Optimization and Decision Analysis (MACODA) working group.

• Availability: the availability of diverse instances, source code (of fitness functions, problem generators,
but also of algorithms) leaves much to be desired. Ideal are large collections of instances, their features,
algorithms, and their performance—the Algorithm Selection Library (ASlib)22 [Bischl et al., 2016] has
such data, although for a different purpose. As a side-effect, these (ideally growing) repositories offer a
means against the reinvention of the wheel and the benchmarking against so-called “well-established”
algorithms that are cited many times – but maybe just cited many times because they can be beaten
easily.

• Watching our claims: how can one feed the intended outcome “my approach beats your approach”
back to the instances? Or to paraphrase this: what conclusions can one actually attempt to draw,
given the performance is always “modulo the given test suite”?

• It is an advantage of test problem suites that they can provide an objective means of comparing systems.
However, there are also problems related to test poblem suites: Whitley et al. [2002] discuss the
potential disadvantage that systems can become overfitted to work well on benchmarks and therefore
that good performance on benchmarks does not generalize to real-world problems. Fischbach and
Bartz-Beielstein [2020] list and discuss several drawbacks of these test suites, namely: (i) problem
instances are somehow artificial and have no direct link to real-world settings; (ii) since there is a fixed
number of test instances, algorithms can be fitted or tuned to this specific and very limited set of test
functions; (iii) statistical tools for comparisons of several algorithms on several test problem instances
are relatively complex and not easily to analyze.

• Handling noise: Branke et al. [2001] discuss strategies how to cope with noise. Jin and Branke [2005]
present a good survey.

4 Algorithms

As discussed in Section 2, most benchmarking studies aim at analyzing or understanding algorithms’ behavior
on different types of problem instances. The selection of the portfolio of algorithms to be tested is therefore
an important step in benchmarking. We present in this section a classification of common query-based
optimization heuristics. We illustrate this classification by listing examples from the family of optimizers for
continuous problems.

As we shall see in the description of the algorithm classes, a characteristic that is common to all of them
is a high level of parametrization of the algorithms, giving rise to the question which algorithm instances to
compare through the benchmark study. We will argue in Section 4.2 that (hyper-)parameter optimization is
an important ingredient of most benchmark studies – the use of automated configuration tools is therefore
highly recommended.

Section 4.3 summarizes recommendations for the selection of the portfolio of algorithms. A discussion of
open issues can be found in Section 4.4.

4.1 Algorithm Families

Extending the work of Stork et al. [2018], we discuss five different families of algorithms:

(a) One-Shot Optimization algorithms

21https://sites.google.com/view/macoda-rwp/home
22https://github.com/coseal/aslib_data

17

https://sites.google.com/view/macoda-rwp/home
https://github.com/coseal/aslib_data

Table 1: Properties of algorithms determining their family

One-
shot

Hill-
climbers

Trajec-
tory

Popu-
lation

Surro-
gates

Adaptive sampling 3 3 3 3

Single solution 3

Greedy selection 3

Single- or multiple
solutions

3

Exploration 3 3 3

Self-adaptive
acceptance functions

3

Search-space
partitioning

3

Multiple solutions
concurrently

3

Cooperative or
competitive selection

3

Surrogates for objective (3) 3

Surrogates for
candidate distributions

3

(b) Hill-climbing algorithms

(c) Trajectory algorithms

(d) Population-based algorithms

(e) Surrogate-based algorithms

Arguably these families are given in an order with increasing complexity. A summarized representation of
the algorithm concepts that leads to the association to an algorithm family can be found in Table 1.

One-Shot Optimization Algorithms When dealing with problems that are very costly to evaluate, or
when simply working under high time pressure, the possibility for a sequential optimization may not be given.
In such cases, the decision maker has to resort to one-shot optimization algorithms, which typically sample
the decision space in a space-filling manner. Several different criteria to measure the “space-fillingness” exist,
and each one of them implies different one-shot designs. The debate about which variant to favor under
which circumstances is very closely related to similar discussion around the DOE (see Section 7 for a short
discussion).

It may be important to note that quasi-random designs such as LHD and low-discrepancy point sets [Dick
and Pillichshammer, 2010, Matoušek, 2009] are often (but not always!) found to be superior over uniform
sampling, see [Bergstra and Bengio, 2012, Bousquet et al., 2017, Cauwet et al., 2019] for related theoretical
works. It is worth noting also that even when the prior distribution of the optimum is exactly known, the
best best one-shot distribution may be a different one [Meunier et al., 2020b] - a phenomenon related to the
“Stein phenomenon” [James and Stein, 1961, Stein, 1956].

We also classify as one-shot optimization algorithms those strategies in which the final decision may differ
from the evaluated points. That is, in this setting, the user evaluates n alternatives, but is then free to use

18

the information provided by these n points to decide for an alternative that is not included in this set. The
final decision can be derived by optimizing a surrogate built on top of the n points [Bossek et al., 2020a], or
by simply averaging some of the best points [Meunier et al., 2020a].

Thus, summarizing this paragraph, the distinguishing property of one-shot optimization algorithms is
the fact that no adaptive sampling is permitted, i.e., all points to be evaluated by the algorithm have to be
decided on independently of the quality of other search points.

Hill-Climbing Algorithms Besides deterministic or stochastic hill-climbing algorithms, this family covers
gradient-based algorithms. The concept of exploration is most often not part of these algorithms, which
means that escaping local optima is most likely not possible. Consequently, hill-climbers are often embedded
in more sophisticated global search strategies to enable fast convergence in a local optimum. Examples for
hill-climbing algorithms include the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm [Shanno, 1970],
conjugate gradients [Fletcher, 1976], and Nelder-Mead [Nelder and Mead, 1965]. Hill-climbers typically start
with a single solution and employ a greedy search strategy. The performance of these algorithms relies
heavily on the starting point, which is, due to the absence of individual operators, selected at random or
by utilizing domain knowledge. Therefore, restarts with different (random or quasi-random) starting points
are a common approach to use hill-climbers effectively. In comparison to the range of the search space,
new candidate solutions are searched within the vicinity of the current solution. Gradient-based methods
compute or approximate the gradients of the objective function to find the potentially best direction and
step size for the improvement of the solution. The step size is the most critical control parameter, as it
controls the speed of convergence. Using an adaptive strategy to change the step size online is considered as
state of the art nowadays, e.g., with the famous 1/5-th success rule, see [Devroye, 1972, Rechenberg, 1994,
Schumer and Steiglitz, 1968].

Main characteristics of algorithms of this family:

• comparison of candidates in a greedy manner

• single-solution based

Trajectory Algorithms Algorithms of this family extend the idea of hill-climbing algorithms, such that
they are aware that multiple places of interest exist. Exploration is added as a concept of this family and
the search-space is systematically evaluated by one or more candidate solutions. Algorithms of this family
consider operators to guide the search globally in specific directions. This guidance can be divided into
two different sub-strategies, i.e., the exploring trajectory, which utilizes parameterized acceptance functions,
and the systematic trajectory, which separates the search space into different areas. An example for the
exploring trajectory subfamily is the well-known Simulated Annealing (SANN) introduced by Kirkpatrick
et al. [1983]. SANN implements an acceptance function that allows the escape of local optima with a
certain probability, i.e., the acceptance of a worse solution, which enables the balancing of exploration
and exploitation. Modern SANN variants implement self-adaptive acceptance functions, which allows, e.g.,
alternating phases of exploitation and exploration. The subfamily of systematic trajectory algorithms use
the information of former iterations of the search to divide the search space into partitions. Partitions can
be marked for either interesting areas or avoidable areas. One outstanding example algorithm of this family
is Tabu Search, introduced by Glover [1989], which maintains a list of visited points of the search space to
avoid revisiting these areas in future iterations.

Main characteristics of algorithms of this family:

• exploration

• acceptance-functions or search-space partitioning

• single- or multiple candidate solutions

19

Population-based Algorithms Population-based algorithms utilize several candidate solutions concur-
rently. The generation and selection strategies differ from those of the Hill-climbers and Trajectory al-
gorithms, as a whole population of candidates is employed. Examples are Particle Swarm Optimization
(PSO) [Kennedy and Eberhart, 1995, Shi and Eberhart, 1998], ant colony optimization for continuous do-
mains (ACOR) [Dorigo et al., 2006, Socha and Dorigo, 2008], and several EAs. EAs can arguably be
considered as the state of the art of the population-based algorithm family, as their search concepts are
fundamental for this field of algorithms. EAs mimic the natural idea of evolution, reproduction, and the
selection concept of survival of the fittest. Candidate solutions can take the role of parent individuals, which
can be mate and recombined to create offspring individuals. To improve the solutions, the population is
evolved over several generations, which iteratively repeats variation by recombination and mutation, evalu-
ation, and selection. EAs generally have several tunable parameters, e.g., the selection pressure, variation
step size, or mutation, and recombination rate. For an overview of the field of EAs, we refer to Bäck et al.
[1997], Eiben and Smith [2015], for an overview of existing methods to tune EAs, we refer to Eiben and Smit
[2011], Hutter et al. [2019].

Within the family of population-based algorithms, Estimation of Distribution Algorithms (EDAlgos)
come into focus. They employ mathematical or statistical models of the underlying candidate distributions.
One famous example is the CMA-ES [Hansen et al., 2003]. EDAlgos introduce several additional control
parameters as well. The CMA-ES for example adapts parameters over time, evaluating prior iterations.

Main characteristics of algorithms of this family:

• multiple candidate solutions regarded concurrently

• cooperative or competitive generation and selection mechanisms

Surrogate-based Algorithms This family distinguishes two subfamilies of algorithms using surrogates.
Surrogate-based algorithms, which utilize a surrogate model of the objective function for variation and
selection, and the Surrogate-assisted algorithms, which employ surrogate models to improve the selection
of candidate solutions in population-based algorithms. For each group, the quality of the surrogate model
is crucial for the efficiency of the algorithm. Assuming that different modeling techniques have different
advantages and disadvantages, it is difficult to choose the best fitting model. Famous examples of surrogate
model techniques are regression models (linear, quadratic, polynomial), Gaussian processes, regression trees,
artificial neural networks, and symbolic regression models. Recent research focuses on ensembles of surrogate
models, to exploit advantages of different models at the same time, to compute predictors superior to a
(or any) single predictor. A well-known example of surrogate-based optimization is the Efficient Global
Optimization (EGO) algorithm, see [Jones et al., 1998]. Several control parameters are introduced, e.g., the
size and sampling strategy used to generate the initial solutions, the employed model technique, the infill-
criterion for the candidate selection, the optimizer that searches the surrogate for these candidate solutions,
and the adaptation technique to converge from an exploratory infill criterion to an exploitative one.

Main characteristic of algorithms of this family:

• one ore more surrogate models to approximate the objective function or sample candidate solutions
more efficiently

4.2 Hyperparameter Handling in Benchmarks

All previously discussed families of algorithms have in common to have one or more important control
parameters. To fairly compare the performance of algorithms and judge their efficiency, it is crucial to
avoid bad parameter configurations by tuning the algorithms properly [Beiranvand et al., 2017, Eiben and
Smit, 2011]. Even a well-working parameter configuration for a certain setup, i.e., a fixed budget, may
work comparably worse on a significantly different budget. Several tools developed for automatic parameter
configuration are available, e.g., iterated racing (irace) [López-Ibáñez et al., 2016], Iterated Local Search
in Parameter Configuration Space (ParamILS) [Hutter et al., 2009], SPOT [Bartz-Beielstein et al., 2005],
Sequential Model-based Algorithm Configuration (SMAC) [Hutter et al., 2011], GGA [Ansótegui et al., 2015],

20

and hyperband [Li et al., 2017] to name a few. As manual tuning can be biased, especially for algorithms
unknown to the experimenter, automated tuning is state of the art and highly recommended. Giving rise
to the large amount of research in the field of automated algorithm configuration and hyperparameter
optimization, there exist several related benchmarking platforms, like the algorithm configuration library
(ACLib) [Hutter et al., 2014] or the hyperparameter optimization library (HPOlib) [Eggensperger et al.,
2013], which deal particularly with this topic.

As mentioned in Section 2 under goal (G2.2), the robustness of algorithms with respect to their hyperpa-
rameters can be an important characteristic for users, in which case this question should be integrated into
(or even be the subject of) the benchmarking study.

4.3 Algorithm Portfolio Selection Guideline

Dependent on the goal of the benchmark study to perform, several of the following recommendations should
be taken into consideration:

• Add a simple (e.g., random) search as a baseline comparison.

• Add a state of the art algorithm which is known to perform well on the chosen problem instances.

• Compare your algorithm to the most recent variants or versions of the competing algorithms.

• Do not add to many algorithms, as interpretation and visualization of results can easily become very
unhandy.

4.4 Discussion and Open Issues

• Each new family (or each new algorithm) introduce new concepts or methods to overcome difficulties
regarding the search behaviour or the selection of candidates and consequently introduces new control
parameters. The algorithms efficiency rely heavily on the parameter choices, which may depend on the
test instances to solve. Consequently, automated algorithm tuning is highly recommended for nearly
all benchmarking scenarios.

• If a benchmark study has the goal to compare different algorithms (G1.2), e.g., a new version or
implementation of an algorithm with the preceding version or simply compare different algorithms, it
is important to take the most recent versions of the algorithms to gain unbiased results. Additionally,
a baseline comparison, e.g., a random search, help to quickly analyse the performance of all algorithms.

• Sometimes, e.g., when historical data is available, it might be beneficial or even necessary to initialize
(i.e., to seed) the algorithms with one or more candidate solutions. As discussed above, algorithms
starting points, e.g., for local search algorithms, have an impact on the performance of the algorithms.
Some implementations of certain algorithms may not provide a suitable interface to properly initialize
the algorithms with previously available or computed starting points. When comparing different algo-
rithms (e.g., G1.2 and G1.3) or analyze the algorithms search behavior (G1.1), it is important to let
all candidate algorithms use the same starting points.

• To retrieve unbiased results, it is useful to let not the algorithms itself chose their starting points,
except when the goal is to analyze the algorithms seeding itself, e.g., when the selected seeding method
is probably beneficial for the problem to solve. In this situation, the results and their interpretation
have to be taken with care.

• Not all algorithms support the configuration of the same stopping criteria, which may influence the
search as well [Beiranvand et al., 2017]. The experimenter has to consider that when it comes to the
interpretation of the results.

• For (random) seed handling and further reproducibility handling we refer to Section 9 Reproducibility.

21

• Programming paradigms change and the complexity of algorithms grows. For example, ensemble
methods and deep learning gain more and more importance [Bartz-Beielstein and Zaefferer, 2017,
Goodfellow et al., 2018]. Compare a classical, gradient-based optimization method from the 1960s
(or a simple (1+1)-Evolution Strategy (ES)) with a modern complex ensemble-based optimization
algorithm that implements a surrogate model based on deep learning. This not only pushes the need
for computational resources to conduct benchmark studies but also has important implications on the
replicability and the reusability of the results (see also Section 9 for a discussion).

5 How to Measure Performance?

5.1 General Concepts

The performance of algorithms depends on several factors, with solution quality and consumed budget being
the most obvious. In fact, benchmarking usually examines algorithms by asking one of two questions: “How
fast can the algorithms achieve a given solution quality?” or “What solution quality can the algorithms
achieve with a given budget?” Since budget and solution quality mutually influence each other, good
algorithms ideally optimize a Multi-Objective Optimization (MOO) problem, where the consumed runtime
and attained solution quality are two of the objectives [Bossek et al., 2020b, Weise et al., 2014]. Robustness
is a third goal, i.e., to achieve good quality fast and with a low variance of both time and quality. Depending
on the application, time is measured in different ways. The most intuitive way is to measure it by means
of clock or CPU time. As such, it is the default in several combinatorial optimization problems like solving
TSP [Kerschke et al., 2018b] or Boolean Satisfiability (SAT) problems [Xu et al., 2008]. However, as CPU
time is highly sensitive to a variety of external factors – such as hardware, programming language, work
load of the processors – results from experiments that relied on CPU time are much less replicable and thus
hardly comparable. In an attempt of mitigating this issue, Johnson and McGeoch [2002], as well as Weise
et al. [2014] proposed a normalized time, which is computed by dividing the runtime of an algorithm by
the time a standardized implementation of a standardized algorithm requires for the same (or at least a
comparable) problem instance.

The alternative way of measuring time are Function Evaluations (FEs), i.e., the number of generated and
fully evaluated candidate solutions. In fact, in case of query-based optimization, e.g., in classical continuous
optimization, this machine-independent metric is the way of measuring algorithmic performances [Hansen
et al., 2016a] – although from the perspective of actual clock time, FEs are less comparable as different
FEs might be of different time complexity [Weise et al., 2014]. In such cases, counting algorithm steps in a
domain-specific method with a higher resolution may be useful. For instance, Weise et al. [2014] proposed
to count the number of distance evaluations on the TSP, and in Hains et al. [2013] bit flips are counted on
the Maximum Satisfiability (MAX-SAT) problem. However, within the EC community, FEs are clearly the
gold standard for measuring performance of algorithms.

Thus, from a practical point of view, both options have a reason for existence. If the budget is given by
means of clock time – e.g., models have to be trained until the morning of the next working day, or they
need to be adjusted within seconds in case of predictions at the stock market – then results that rely on
clock or CPU time are more meaningful. On the other hand, in case single FEs are expensive – for instance,
in case every single FE corresponds to a physical experiment or a cost-intensive numerical simulation – the
amount of required FEs is of much higher importance than the corresponding clock time .

Noticeably, many papers in the EC community also use generations as machine-independent time mea-
sures. However, this might not be a good idea, because the exact relationship between FEs and generations
is not always clear, which makes results hard to compare with, e.g., local search algorithms.

As mentioned at the beginning of this section, once a quality metric for candidate solutions is defined, one
usually faces the decision to either measure the quality that can be achieved with a certain computational
budget or the budget required to achieve a certain quality. These scenarios correspond to vertical and
horizontal cuts in a performance diagram as discussed by Hansen et al. [2012] and Finck et al. [2015],
respectively (see Figure 4). The fixed-budget scenario has the advantage that the results are always well-

22

Budget

P
er

fo
rm

an
ce

Fixed budget

Fixed target

Figure 4: Visualization of a fixed-budget perspective (green line) and a fixed-target perspective (orange line)
inspired by Figure 4 in [Hansen et al., 2012]. Dashed lines show three exemplary performance trajectories.

defined and any real computation always has a limited budget. Budgets based on consumed clock time are
harder to compare or reproduce [Johnson, 2002a]. Horizontal cuts, i.e., fixing the desired solution quality,
allows drawing conclusions that are easier to interpret; statements such as “algorithm instance b is ten times
faster than algorithm instance a in solving this problem” are likely much more tangible compared to “the
solution quality achieved by algorithm instance b is 0.2% better than the one of algorithm instance a” [Finck
et al., 2015, Hansen et al., 2012].

Most optimization methods, ranging from metaheuristics over problem-specific local search to branch and
bound algorithms are so-called anytime algorithms [Boddy and Dean, 1989]. An anytime algorithm starts
with one solution and then tries to iteratively generate better solutions. This means that its performance
does not correspond to a singular point, but instead to an entire curve in the time-quality diagrams. For
different time budgets or targeted objective values, different algorithms may yield better results or shorter
runtimes, respectively.

5.2 Quality Metrics

Single-objective optimization In single-objective optimization scenarios, the quality metrics are quite
natural: the height/fitness in continuous single-objective optimization, the tour length in TSP, the accuracy
of a classification algorithm in a machine learning task, or the number of ones in a binary bit string in case
of OneMax. However, interpreting these objective values on their own is usually quite difficult and also very
specific to the respective problem instance. Instead, one could ideally try to use more intuitive and less
problem-dependent alternatives [Johnson, 2002a, Talbi, 2009].

If the optimal solution to a problem instance is known, the (relative) excess over the optimal solution
quality could be used. Doing so may focus research on instances that can be solved exactly, i.e., the opposite
type of problems for which metaheuristics have initially been designed for [Johnson, 2002a]. Alternatively,
the lower bound for the optimal objective value could be used for normalizing the results. For instance, in
case of the TSP, results are often compared to the Held-Karp lower bound [Johnson, 2002a]. As absolute
differences are very specific to the scaling of the problem’s objective values, it is highly recommended to
rather look at the relative excess over the optimal solution – something that has been common practice in
solving TSPs for decades [Christofides, 1976].

Another alternative is to use results of a clearly specified and ideally simple heuristic for normaliza-
tion [Johnson, 2002a]. The relative excess over the best-known solution is also often reported. This is

23

typical in the Job Shop Scheduling domain, as shown by a large number of references listed in [Weise, 2019].
However, this requires an exact knowledge of the related work and may be harder to interpret later in the
future [Johnson, 2002a]. For some problems, reference solutions may be available and the excess over their
quality can be reported.

Multi-objective optimization In MOO, one is facing the additional challenge of ranking solutions based
on their Pareto dominance. To determine the performance on a set of multi-objective solutions, it must first
be decided whether the metric should be computed only on the (mostly non-dominated) solutions of the final
population or on all solutions that were archived during the complete run. Here, performance indicators must
cover not only the quality of the solutions themselves (usually expressed via some form of proximity metric
to the true Pareto front), but also their distribution along the Pareto front [Bosman and Thierens, 2003,
Liu et al., 2017]. In recent years the diversity of solutions, both in search and objective space, have become
another important aspect when dealing with MOO problems [Kerschke et al., 2019b, Liefooghe et al., 2018,
Paquete et al., 2004]. Another goal is to achieve consistency, i.e., to avoid situations where the obtained
Pareto front contains outliers far away from the true front [Hadka and Reed, 2012]. As a result, several
different metrics have emerged [Riquelme et al., 2015, Talbi, 2009].

A large hypervolume or S-metric [Knowles and Corne, 2002, Zitzler, 1999] indicates closeness to the
true Pareto Front and somewhat a good spread [Santos and Xavier, 2018], however, the result-
ing values themselves are not human-interpretable. The Inverted Generational Distance (IGD) [Bez-
erra et al., 2017, Coello Coello and Reyes Sierra, 2004] measures both diversity and convergence,
as a good approximated front should have points near each element of the reference set. IGD+
is an improved version of IGD which is weakly Pareto compliant [Bezerra et al., 2017, Ishibuchi
et al., 2015]. In addition, IGDX [Zhou et al., 2009] allows to measure proximity of solutions
in the search space. The additive epsilon indicator (ε+-indicator) [Hadka and Reed, 2012] can dis-
cover the lack of consistency and it provides human-interpretable values. Popular is also the
R2-indicator [Hansen and Jaszkiewicz, 1998, Knowles and Corne, 2002]. Recent surveys discussing many-
objective optimization are presented by Chand and Wagner [2015] and Li et al. [2015].

Constraint optimization Under constraint optimization, a solution is either feasible or not, which is
decided based on a set of constraints. Here, the absolute violations of each constraint can be summed up as
a performance metric [Hellwig and Beyer, 2019, Kumar et al., 2020].

5.3 Aggregating Metrics over Multiple Runs

Many optimization algorithms are nowadays randomized search heuristics and as such their performances
will vary if the experiment is repeated, i.e., if the algorithm is executed again with the same setup. Therefore,
it is common to use performance metrics that aggregate the results of several (ideally independent) runs to
provide reliable estimates of the algorithm performance.

Location: Measures of Central Behaviors In case of a fixed budget (i.e., the vertical cut approach)
it is common practice to aggregate the solution qualities using the arithmetic mean. Alternatively, if one
is interested in a more robust metric, the median is typically used [Weise et al., 2014]. Fleming and Wal-
lace [1986] recommend using the geometric mean to summarize normalized benchmark results, because the
arithmetic mean then leads to mistaken conclusions. In scenarios where the primary goal is to achieve a
desired target quality (in line with the horizontal cut approach), it is potentially necessary to aggregate runs
of which not all have succeeded in achieving the desired target value within a fairly generous budget T as
alternative termination criterion.

In the latter scenario, two to three metrics are mostly used for aggregating performances across algorithm
runs, and we will list them below.

The gold standard in (single-objective) continuous optimization is the Expected Running Time
(ERT) [Auger and Hansen, 2005, Price, 1997], which computes the ratio between the sum of consumed

24

budget across all runs and the number of successful runs [Hansen et al., 2012]. Thereby, it estimates the av-
erage running time an algorithm needs to find a solution of the desired target quality (under the assumption
of independent restarts every T time units until success).

Inc other optimization domains, like TSP, SAT, etc., the Penalized Average Runtime (PAR) [Bischl
et al., 2016, Kerschke et al., 2018a] is more common. It penalizes unsuccessful runs with a multiple of the
maximum allowed budget – penalty factors ten (PAR10) and two (PAR2) are the most common versions
– and afterwards computes the arithmetic mean of the consumed budget across all runs. The Penalized
Quantile Runtime (PQR) [Bossek et al., 2020b, Kerschke et al., 2018a] works similarly, but instead of using
the arithmetic mean for aggregating across the runs, it utilizes quantiles – usually the median – of the
(potentially penalized) running times. In consequence, PQR provides a robust alternative to the respective
PAR scores.

Spread and Reliability A common measure of reliability is the estimated success probability, i.e., the
fraction of runs that achieved a defined goal. Bossek et al. [2020b] propose a multi-objective view on
performance measures, combining the probability of success and the average runtime. The quotient SP of
the mean time consumed in successful runs and the success ratio can also be computed [Hellwig and Beyer,
2019].

As measures of dispersion of a given single performance metric, statistics like standard deviations as well
as quantiles are used, whereas the latter are more robust.

For constraint optimization, a feasibility rate (FR) [Kumar et al., 2020, Wu et al., 2017] is defined as
the fraction of runs discovering at least one feasible solution. The number of constraint violated by the
median solution [Kumar et al., 2020] and the mean amount of constraint violation over the best results of
all runs [Hellwig and Beyer, 2019] can also be used.

5.4 Open Issues

Although each of the different optimization domains has established its preferable performance measure,
research in this field is still facing open issues. For instance, so far performance is usually measured either
using a fixed budget or a fixed target. However, as the results then depend on the magnitude of the chosen
budget or target quality, one should rather compare algorithms by means of their anytime behavior [Bossek
et al., 2020c, Jesus et al., 2020, Weise et al., 2014]. But even without considering the aforementioned anytime
aspect, the current performance metrics have to be extended in the future. Aside from facing challenges
like measuring quality and time simultaneously, we also have to integrate costs for violating constraints
(constraint optimization), quantify variation or uncertainty (robust/noisy optimization), measure the spread
across the local optima (multimodal optimization), or capture the population’s proximity to the problem’s
local and/or global optima in search and objective space (MOO).

6 How to Analyze Results?

6.1 Three-Level Approach

Once the performance measure for the algorithm’s performance is selected by the user and all data related
to it is collected in experiments, the next step is to analyse the data and draw conclusions from it. From the
detailed characterization of possible benchmark goals in Section 2, we will focus on goals (G1.2) and (G1.3),
i.e., algorithm comparison and competition of several algorithms. Therefore, we will consider:

• single-problem analysis and

• multiple-problem analysis.

In both scenarios, multiple algorithms will be considered, i.e., following the notation introduced in Section 2,
there are at least two different algorithm instances, say, aj and ak from algorithm A or at least two different

25

algorithm instances aj ∈ A and bk ∈ B, where A and B denote the corresponding algorithms. Single-problem
analysis is a scenario where the data consists of multiple runs of the algorithms on a single problem instance
πi ∈ Π. This is necessary because many optimization algorithms are stochastic in nature, so there is no
guarantee that the result will be the same for every run. Additionally, the path leading to the final solution
is often different. For this reason, it is not enough to perform just a single algorithm run per problem, but
many runs are needed to make a conclusion. In this scenario, the result from the analysis will give us a
conclusion which algorithm performs the best on that specific problem.

Otherwise in the case of multiple-problem analysis, focusing on (G1.2), we are interested in comparing
the algorithms on a set of benchmark problems. The best practices of how to select a representative value
for multiple-problem analysis will be described in Section 5.

No matter of what we are performing, i.e., single-problem or multiple-problem analysis, the best practices
to analyse the results of the experiments suggest that the analysis can be done as a three-level approach,
which consists of the following three steps:

1. Exploratory Data Analysis (EDA)

2. Confirmatory Analysis

3. Relevance Analysis

This section focuses on analyzing the empirical results of an experiment using descriptive, graphical, and
statistical tools, which can be used for the three-level approach for analysis. More information about various
techniques and best practices to analyze the results of experiments can be found in Crowder et al. [1979],
Golden et al. [1986], Barr et al. [1995], Bartz-Beielstein et al. [2004], Chiarandini et al. [2007], Garćıa et al.
[2009], Bartz-Beielstein et al. [2010], Derrac et al. [2011], Eftimov et al. [2017], Beiranvand et al. [2017].
Mersmann et al. [2010], and more recently Kerschke and Trautmann [2019a], present methods based on ELA
to answer two basic questions that arise when benchmarking optimization algorithms. The first one is: which
algorithm is the ‘best’ one? and the second one: which algorithm should I use for my real world problem? In
the following, we summarize the most accepted and standard practices to evaluate the considered algorithms
stringently. These methods, if adhered to, may lead to wide acceptance and applicability of empirically
tested algorithms and may be a useful guide in the jungle of statistical tools and methods.

6.2 Exploratory Data Analysis

6.2.1 Motivation

Exploratory Data Analysis (EDA) is an elementary tool that employs descriptive and graphical techniques to
better understand and explore empirical results. It must be performed to validate the underlying assumptions
about the distribution of the results, e.g., normality or independence, before implementing any statistical
technique that will be discussed in Section 6.3.

We recommend starting with EDA to understand basic patterns in the data. It is useful to prepare
(statistical) hypotheses, which are the basis of confirmatory analysis. In EDA, visual tools are preferred,
whereas confirmatory analysis is based on probabilistic models. EDA provides a flexible way to analyse data
without preconceptions. Its tools stem from descriptive statistics and use an inductive approach, because
in the beginning, there is no theory that has to be validated. One common saying is ”let the data speak”,
so data suggest interesting questions, e.g., unexpected outliers might indicate a severe bug in the algorithm.
EDA is a very flexible way to generate hypotheses, which can be analyzed in the second step (confirmatory
analysis). Although EDA might provide deeper understanding of the algorithms, it does not always provide
definitive answers. Then, the next step (confirmatory analysis) is necessary. And, there is also the danger
of overfitting: focussing on very specific experimental designs and results might cause a far too pessimistic
(or optimistic) bias. Finally, it is based on experience, judgement, and artistry. So there is no standard
cookbook available, but many different recipes.

26

The following are the key tools available in EDA. It can provide valid conclusions that are graphically
presented, without requiring further statistical analysis. For further reading about EDA, the reader is
referred to [Tukey, 1977].

6.2.2 The Glorious Seven

Descriptive statistics include the mean, median, best and worst (minimum and maximum, respectively),
first and third quartile, and standard deviation of the performance measures of the algorithms. These seven
statistics measure the central tendency and the variability of the results. Note, they might be sensitive
to outliers, missing, or biased data. Most importantly, they do not provide a complete analysis of the
performance, because they are based on a very specific data sample. For example, mean and standard
deviation are affected by outliers, which might exist because of an algorithms’ poor runs and variability.
Both can be caused by an inadequate experimental design, e.g., selection of improper starting points for the
algorithm or too few function evaluations. The median is more robust statistic than the mean if sufficiently
many data points are available. The best and the worst value of the performance measure provide insights
about the performance data, but they consider only one out of n data points, i.e., they are determined by
one single data and therefore not very robust compared to the mean or median that are considering all data
points. The quantiles are cut points which split a probability distribution into continuous intervals with
equal probabilities. Similar to the median, they require a certain amount of data points and are probably
meaningless for small data. Bartz-Beielstein [2006] presents a detailed discussion of these basic statistics.

6.2.3 Graphical Tools

Visualising final results. Graphical tools can provide more insight into the results and their distributions.
The first set of graphical tools can be used to analyse the final results of the optimization runs. Histograms
and boxplots are simple but effective tools and provide more information for further analysis of the results.
Box plots visualize the distribution of the results. They illustrate the statistics introduced in Section 6.2.2
in a very compact and comprehensive manner and provide means to detect outliers. Histograms provide
information about the shape of the distribution. Because the shape of histograms is highly affected by the
size of the boxes, we strongly recommend combining histograms with density plots.

Visualising run-time behaviour. The second set of tools can be used to analyse the algorithm perfor-
mance over time, i.e., information about the performance for every kth iteration is required. Suitable for the
analysis of the performances of the optimization algorithms are convergence plots in which the performance
of the algorithm can be evaluated against the number of function evaluations. This helps us to understand
the dynamics of multiple algorithms in a single plot.

Histograms and box plots are also used in the graphical multiple problem analysis. Besides these common
tools, specific tools for the multiple problem analysis were developed, e.g., performance profiles proposed
in Dolan and Moré [2002]. They have emerged as an important tool to compare the performances of
optimization algorithms based on the cumulative distribution function of a performance metric (CPU time,
achieved optimum). It is the ratio of a performance metric obtained by each algorithm versus the best
value the performance metric among all algorithms that is being compared. Such plots help to visualize
the advantages (or disadvantages) of each competing algorithm graphically. Performance profiles are not
applicable, if the (true or theoretical) optimum is unknown. However, there are solutions for this problem,
e.g., using the best known solution so far or a guessed (most likely) optimum based on the user’s experience.

As performance profiles are not evaluated against the number of function evaluations, they cannot be
used to infer the percentage of the test problems that can be solved with some specific number of function
evaluations. To attain this feature, the data profiles were designed for fixed-budget derivative free optimiza-
tion algorithms [Moré and Wild, 2009]. It is appropriate to compare the best possible solutions obtained
from various algorithms within a fixed budget.

27

10−8

10−6

10−4

10−2

100

NM SANN
Algorithm

O
bj

ec
tiv

e
va

lu
e

[lo
g1

0−
sc

al
ed

]

Algorithm NM SANN

Figure 5: Boxplots of the achieved objective values (log-scaled) obtained by each 100 runs of NM and SANN
on the Rosenbrock test function.

6.3 Confirmatory Analysis

6.3.1 Motivation

The second step in the three-level approach is referred to as confirmatory analysis, which is based in infer-
ential statistics, because it implements a deductive approach: a given assumption (statistical hypothesis) is
tested using the experimental data. Since the assumptions are formulated as statistical hypotheses, confir-
matory analysis heavily relies on probability models. Its final goal is to provide definite answers to specific
questions, i.e., questions for a specific experimental design. Because it uses probability models, its emphasis
is on complex numerical calculations. Its main ingredients are hypothesis tests and confidence intervals.
Confirmatory analysis usually generates more precise results for a specific context than EDA. But, if the
context is not suitable, e.g., statistical assumptions are not fulfilled, a misleading impression of precision
might might occur.

Often, EDA tools are not sufficient enough to clearly analyze the differences in the performances of
algorithms, mainly when the differences are of smaller magnitude.

Example 6.1 (Comparing two algorithms). For example, let us consider the well known continuous Rosen-
brock function [Rosenbrock, 1960]. We run the Nelder Mead (NM) algorithm [Nelder and Mead, 1965] and
the SANN algorithm [Aarts and Korst, 1988] for each 100 runs. The numerical statistics of the results
are shown in Table 2. Initial analysis of the summary statistics cannot reveal which algorithm is superior.
Considering the mean of the performances SANN tends to outperform NM, but considering the median per-
formances the vice versa can be observed. Also, from the boxplot in Figure 5 NM tends to outperform SANN.
But it is not sufficient to support the conclusion that NM outperforms SANN in all respects. The presence
of various outliers in NM can be seen in Figure 5. In such scenarios, a statistical analysis is recommended.

The need to perform statistical analysis and various procedures involved in making decisions about
selecting the best algorithm are widely discussed in [Amini and Barr, 1993, Barr et al., 1995, Carrano et al.,
2011, Chiarandini et al., 2007, Eftimov et al., 2017, Garćıa et al., 2009, Golden et al., 1986, McGeoch,
1996]. The basic idea of statistical analysis is based on hypothesis testing. Before analysing the performance
data, we should define two hypotheses i) the null hypothesis H0 and ii) the alternative hypothesis H1.
The null hypothesis states that there is no statistical significant difference between the two algorithms’

28

Table 2: Overview of various key numerical metrics for the NM and SANN algorithms on the Rosenbrock
test function.

Algorithm Mean Median Standard Dev. Best Worst

NM 0.0200 1.7×10−5 0.0960 2.3×10−8 0.700
SANN 0.0006 3.0×10−4 0.0015 6.7×10−7 0.014

performances, while the alternative hypothesis directly contradicts the null hypothesis by indicating the
statistical significance between the algorithms’ performances. Hypothesis testing can be two-sided or one-
sided. We will consider the one-sided case in the following, because it allows us to ask if algorithm instance
a is better than algorithm instance b. Let p(a) denote the performance of algorithm a. In the context of
minimization, smaller performance values will be better, because we will compare the best solutions or the
run times. The statement“a outperforms b” is equivalent to “p(a) < p(b)”, which can be formulated as
the statistical hypothesis H1 : p(b) − p(a) > 0. It is a common agreement in hypotheses testing that this
hypothesis H1 will be tested against the null hypothesis H0 : p(b) − p(a) ≤ 0, which states that a is not
better than b.

After the hypotheses are defined, we should select an appropriate statistical test, say T , for the analysis.
The test statistic T which is a function of a random sample that allows researchers to determine the likelihood
of obtaining the outcomes if the null hypothesis is true. The mean of the best found values from n repeated
runs of an algorithm is a typical example of a test statistic. Additionally, a significance level α should be
selected. Usually, a significance level of 95% is used. However, the selection of this value depends on the
experimental design and the scientific question to be answered.

6.3.2 Assumptions for the Safe Use of the Parametric Tests

There are parametric and non-parametric statistical tests. To select between them, there are assumptions
for the safe use of the parametric tests. Common assumptions include independence, normality, and ho-
moscedasticity of variances. The independence assumption is directly met as the results of independent
runs of the algorithm with randomly generated initial seeds are being compared. To check the normality
assumption several tests can be performed including Kolmogorov-Smirnov test [Sheskin, 2003], Shapiro-Wilk
test [Shapiro and Wilk, 1965], and Anderson Darling test [Anderson and Darling, 1952]. The normality
assumption can be also checked by using graphical representation of the data using histograms, empirical
distribution functions and quantile-quantile plots (Q-Q plots) [Devore, 2011]. The Levene’s test [Levene,
1961] and Bartlett’s test [Bartlett, 1937] can be performed to check if the assumption of equality of vari-
ances is violated. We should also mention that there are transformation approaches that may help to attain
the normality, but this should be done with a great care, since we are changing the decision space. If the
required assumptions are satisfied then we are selecting a parametric test since it has higher power than a
non-parametric one, otherwise we should select a non-parametric one.

Additionally to the assumptions for the safe use of the parametric tests, before selecting an appropriate
statistical test, we should take care if the performance data is paired or unpaired. Paired data is data in which
natural or matched couplings occur. This means that each data value in one sample is uniquely paired to a
data value in the other sample. The choice between paired and unpaired samples depends on experimental
design, and researchers need to be aware of this when designing their experiment. Using Common Random
Numbers (CRN) is a well-known technique for generating paired samples. If same seeds are used during
the optimization, CRNs might reduce the variances and lead to more reliable statistical conclusions [Nazzal
et al., 2012]. [Kleijnen, 1988].

6.3.3 A Pipeline for Selecting an Appropriate Statistical Test

A pipeline for selecting an appropriate statistical test for benchmarking optimization algorithms is presented
in Figure 6. Further, we are going to explain some of them depending from the benchmarking scenario (i.e.,

29

Pipeline for Selectingê Most Commonly used Statistical Tests

How many data
samples?

The required conditions for
the safe use of the
parametric tests are

satisþed?

Two data samples
More than

êtwo data samples

The required conditions for
the safe use of the
parametric tests are

satisþed?

Unpaired samples:
êt-test
or

Paired samples:
paired t-testêê

Yes

Unpaired samples:
Mann-Whitney U test

or
Paired samples:

Wilcoxon signed rank testêê

No

Unpaired samples:
êone-way ANOVA

or
Paired samples:

repeated
measurementsêANOVA

Unpaired samples:
êKruskal-Wallis test

or
Paired samples:

Friedman test, Friedman-aligned
test, Iman-Davenport test, etc.

If the null hypothesis
is rejected, select an
appropriate post-hoc
procedure for your
omnibus statistical

test.

Required conditions for
the safe use of the parametric tests:

1. Independent samples
2. If the data samples are normally distributed?

Kolmogorov-Smirnov test,
Shapiro-Wilk test, etc.

3. Homoscedasticity of variances
Levene's test, Bartlett's test,etc.

Set the
signiþcance level
for testing the null

hypothesis

Figure 6: A pipeline for selecting an appropriate statistical test [Eftimov et al., 2020].

single-problem or multiple-problem analysis).

Single-problem analysis. As we previously mentioned, in this case, the performance measure data is
obtained using multiple runs of k algorithm instances a1, . . . , ak on one selected problem instance πj .

The comparison of samples in pairs is called a pairwise comparison. Note, that a pairwise comparison
of algorithms does not necessary mean that the corresponding samples are paired. In fact, most pairwise
comparisons use unpaired samples, because the setup for pairwise sampling is demanding, e.g., implementing
random number streams etc. If more than two samples are compared at the same time, a multiple comparison
is performed.

For pairwise comparison, the t test [Sheskin, 2003] is the appropriate parametric one, while its non-
parametric version is the Mann-Whitney U test (i.e., Wilcoxon-rank sum test) [Hart, 2001]. In the case
when more than two algorithms are involved, the parametric version is the one-wayANOVA [Lindman, 1974,
Montgomery, 2017], while its appropriate non-parametric test is the Kruskal-Wallis rank sum test [Kruskal
and Wallis, 1952]. Here, if the null hypothesis is rejected, then we should continue with a post-hoc procedure
to define the pairs of algorithms that contribute to the statistical significance.

Multiple-problem analysis. The mean of the performance measure from multiple runs can be used as
representative value of each algorithm on each problem. However, as stated above, averaging is sensitive to
outliers, which needs to be considered especially because optimization algorithms could have poor runs. For
this reason, the median of the performance measure from the multiple runs can also be used as more robust
statistic.

Both mean and median are sensitive to errors inside some ε-neighborhood (i.e., small difference between
their values that is not recognized by the ranking schemes of the non-parametric tests), which can additionally
affect the statistical result. For these reasons, Deep Statistical Comparison (DSC) for comparing evolutionary
algorithms was proposed [Eftimov et al., 2017]. Its main contribution is its ranking scheme, which is based
on the whole distribution, instead of using only one statistic to describe the distribution, such as mean or

30

median.
The impact of the selection of the three above-presented transformations, which can be used to find a

representative value for each algorithm on each problem, to the final result of the statistical analysis in the
multiple-problem analysis is presented in [Eftimov and Korošec, 2018].

Statistical tests. No matter which transformation is used, once the data for analysis is available, the
next step is to select an appropriate statistical test. For pairwise comparison, the t test is the appropriate
parametric one [Sheskin, 2003], while its relevant non-parametric version is the Wilcoxon signed rank test
[Wilcoxon, 1945]. In the case when more than two algorithms are involved, the parametric version is the
repeated measurements ANOVA [Lindman, 1974, Montgomery, 2017], while its appropriate non-parametric
tests are the Friedman rank-based test [Friedman, 1937], Friedman-aligned test [Garćıa et al., 2009], and
Iman-Davenport test [Garćıa et al., 2009]. Additionally, if the null hypothesis is rejected, same as the
single-problem analysis, we should continue with a post-hoc procedure to define the pairs of algorithms that
contribute to the statistical significance.

Other non-parametric tests are the non-parametric rank based tests, which are suitable when the distri-
bution assumptions are questionable [Sheskin, 2003]. Using them, the data is ranked and then the p-value
is calculated for the ranks and not the actual data. This ranking helps to eliminate the problem of skewness
and in handling extreme values. The permutation test [Pesarin, 2001] estimates the permutation distribution
by shuffling the data without replacement and identifying almost all possible values of the test statistic. The
Page’s trend test [Derrac et al., 2014] is also a non-parametric test that can be used to analyse convergence
performance of evolutionary algorithms.

Post-hoc procedures. When we have more than two algorithms that are involved in the comparison, the
appropriate statistical test can find statistical significance between the algorithms’ performances, but is is
not able to define the pairs of algorithms that contribute to this statistical significance. For this reason, if
the null hypothesis is rejected, we should continue with a post-hoc test.

The post-hoc testing can be done in two scenarios: i) all pairwise comparisons and ii) multiple comparisons
with a control algorithm. Let us assume that we have k algorithms involved in the comparison, so in the
first scenario we should perform k(k − 1)/2 comparisons, and in the second one k − 1.

In the case of all pairwise comparisons, the post-hoc test statistic should be calculated. It depends
on the appropriate statistical test that is used to compare all algorithms together, which rejected the null
hypothesis. After that, the obtained p-values are corrected with some post-hoc procedure. For example, if
the null hypothesis in the Friedman test, Friedman aligned-ranks test, or Iman–Davenport test, is rejected,
we can use the Nemenyi, Holm, Shaffer, and Bergmann correction to adapt the p-values.

The multiple comparisons with a control algorithm is the scenario when our newly developed is the
control algorithm and we are comparing it with state-of-the-art algorithms. Same as the previous scenario,
the post-hoc statistic depends on the appropriate statistical test that is used to compare all algorithms
together, which rejected the null hypothesis, and the obtained p-values are corrected with some post-hoc
procedure. In the case of Friedman test, Friedman aligned-ranks test , or Iman–Davenport test, appropriate
post-hoc procedures are: Bonferroni, Holm, Hochberg, Hommel, Holland, Rom, Finner, and Li.

Another way to the multiple comparisons with a control algorithms is to perform all comparisons between
the control algorithm and each other algorithm using some pairwise test. In this case, we should be careful
when making a conclusion, since we are losing the control on the Family-Wise Error Rate(FWER) when
performing multiple pairwise comparisons. All obtained p-values will come from independent pairwise com-
parisons. The calculation of the true statistical significance for combining pairwise comparisons is presented
in [Eftimov et al., 2017, Garćıa et al., 2009].

More information about different post-hoc procedures and their application in benchmarking theory in
evolutionary computation is presented in [Garćıa et al., 2009].

31

6.4 Relevance Analysis

6.4.1 Motivation

The third step of the recommended approach is related to the practical relevance of our statistical findings:
are the differences really meaningful in practice or are they only statistical ”artifacts” caused by an inadequate
experimental design? A typical example for these artifacts is a difference in performance, say δ, which is
statistically significant but of no practical relevance, because a value as small as δ cannot be measured in
real-world scenarios. So, there is still a gap when transferring the learned knowledge from theory to practice.
This happens because the statistical significance that exists is not scientifically meaningful in a practical
sense.

Example 6.2 (Assembly line). Let us assume that two optimization algorithms that should minimize the
average time of a production process, e.g., an assembly line, are compared. The mean difference in perfor-
mance is δ = 10−14, which is statistically significant. However, this difference has no meaning in reality,
because it is far below the precision of the assembly line timer.

For this reason, when we are performing a statistical analysis, we should also try to find the relevance of
the statistical significance to real world application. We should also mention that the practical significance
depends from the specific problem being solved. Additionally, this is also true in benchmarking performed
for scientific publications, where the comparisons of the performance measures can be affected by several
factors such as computer accuracy (i.e., floating points), variable types (4-byte float, 8-byte float, 10-byte
float), or even the stopping criteria that is the error threshold when the algorithms are stopped. All these
factors can result in different values, which does not represent the actual performance of the algorithms even
if statistical significance is found.

6.4.2 Severity: Relevance of Parametric Test Results

In order to probe the meaningfulness of the statistically significant result, it is suggested to perform a
post-data analysis. One such post data analysis is the severity measure, a meta statistical principle [Bartz-
Beielstein et al., 2010, Mayo and Spanos, 2006]. Severity describes the degree of support to decisions made
using classical hypothesis testing. Severity takes into account the data and performs a post-data evaluation
to scrutinize the decisions made by analyzing how well the data fits the testing framework. The severity is
the actual power attained in the post data analysis and can be described separately for the decision of either
rejecting or not rejecting the null hypothesis.

The conclusions obtained from the hypothesis testing is dependent on sample size and can suffer from
the problem of large n. Severity deals with this problem directly by changing the intensity of the severity
test. For an increased number of runs, the severity test is less severe. And for a smaller number of runs, the
severity test is more severe [Mayo and Spanos, 2006].

6.4.3 Multiple-Problem Analysis

We present two approaches that investigate the scientific meaningfulness of statistically significant results
in the multiple-problem setting. One approach is the Chess Rating Systems for Evolutionary Algorithms
(CRS4EA), which is an empirical algorithm for comparing and ranking evolutionary algorithms [Veček et al.,
2014]. It makes a chess tournament where the optimization algorithms are considered as chess players and
a comparison between the performance measures of two optimization algorithms as the outcome of a single
game. A draw limit that defines when two performance measure values are equal should be specified by
the user and it is a problem specific. At the end, each algorithm has its own rating which is a result
from the tournament and the statistical analysis is performed using confidence intervals calculated using the
algorithms rating.

The second approach is the practical Deep Statistical Comparison (pDSC), which is a modification of the
DSC approach used for testing for statistical significance [Eftimov and Korošec, 2019]. The basic idea is that
the data on each problem should be pre-processed with some practical level specified by a user, and after

32

that involved with DSC to find relevant difference. Two pre-processing steps are proposed: i) sequential
pre-processing, which pre-processes the performance measures from multiple runs in a sequential order, and
ii) a Monte-Carlo approach, which pre-processes the performance measure values by using a Monte-Carlo
approach to avoid the dependence of the practical significance on the order of the independent runs. A
comparison between the CRS4EA and pDSC is presented in [Eftimov and Korošec, 2019]. Using these two
approaches the analysis is made for a multiple-problem scenario. Additionally, the rankings from pDSC
obtained on a single-problem level can be used for single-problem analysis.

6.5 Open Issues

An important aspect not addressed in this iteration of the document is the analysis of the benchmark
problems themselves rather than the performance of the algorithms operating thereon. That is, which
means exist for investigating structural characteristics of the benchmarking problem at hand? How can one
(automatically) extract its most relevant information? How should those information be interpreted? There
exists a variety of approaches for this, and each of them helps to improve the understanding of the respective
problem, and in consequence may facilitate the design, selection and/or configuration of a suitable algorithm.

Linked to the above is a discussion of methods for visualizing problem landscapes. Visualizing the
landscape of a continuous problem, or plotting approximate tours for a given TSP instance, usually improves
our understanding of its inherent challenges and reveals landscape characteristics such as multimodality.
Moreover, such visualizations also help to study the search behavior of the algorithms under investigation.
Unfortunately, the vast majority of works treats the issue of visualizing problems very poorly, so we will
make sure to address this particular issue in the continuation of this document.

7 Experimental Design

7.1 Design of Experiments (DoE)

Unfortunately, many empirical evaluations of optimization algorithms are performed and reported with-
out addressing basic experimental design considerations [Brownlee, 2007]. An important step to make this
procedure more transparent and more objective is to use DOE and related techniques. They provide an al-
gorithmic procedure to make comparisons in benchmarking more transparent. Experimental design provides
an excellent way of deciding which and how many algorithm runs should be performed so that the desired
information can be obtained with the least number of runs.

DOE is planning, conducting, analyzing, and interpreting controlled tests to evaluate the influence of
the varied factors on the outcome of the experiments. The importance and the benefits of a well designed
planned experiment have been summarized by Hooker [1995]. Johnson [2002b] suggests to report not only
the run time of an algorithm, but also explain the corresponding adjustment process (preparation or tuning
before the algorithm is run) in detail, and therefore to include the time for the adjustment in all reported
running times to avoid a serious underestimate.

The various key implications involved in the DOE are clearly explained in Kleijnen [2001]. A compre-
hensive list of the recent publications on design techniques can be found in Kleijnen [2017]. The various
design strategies in the Design and Analysis of Computer Experiments (DACE) are discussed by Santner
et al. [2003]. Wagner [2010] discusses important experimental design topics, e.g., “How many replications of
each design should be performed?” or “How many different algorithm runs should be evaluated?”

This section discusses various important practical aspects of formulating the design of experiments for a
stochastic optimization problem. The key principles are outlined. For a detailed reading of the DOE, the
readers are referred to Montgomery [2017] and Kleijnen [2015].

7.2 Design Decisions

Design decisions can be based on geometric or on statistical criteria [Pukelsheim, 1993, Santner et al., 2003].
Regarding geometric criteria, two different design techniques can be distinguished: The samples can be

33

placed either (1) on the boundaries, or (2) in the interior of the design space. The former technique is used
in DOE whereas DACE uses the latter approach. An experiment is called sequential if the experimental
conduct at any stage depends on the results obtained so far. Sequential approaches exist for both variants.

We recommend using factorial designs or space-filling designs instead of the commonly used One-factor-
at-a-time (OFAT) designs. When several factors are involved in an experiment, the OFAT design strategy is
inefficient as it suffers from various limitations including huge number of experimental runs and inability to
identify the interactions among the factors involved. It is highly recommended to use a multi-factorial design
[Montgomery, 2017]. The Factorial designs are robust and faster when compared with OFAT. For a complete
insight into Fully-Factorial and Fractional Factorial designs the readers are redirected to Montgomery [2017].
The Taguchi design [Roy, 2001] is a variation of the fractional factorial design strategy, which provides robust
designs at better costs with fewer evaluations. The Plackett and Burman design [Plackett and Burman, 1946]
are recommended for screening. The modern space-filling designs are sometimes more efficient and require
fewer evaluations than the fractional designs, especially in case of non-linearity. Further information about
space-filling designs can be found in Santner et al. [2003].

However, it is still an open question which design characteristics are important: “. . . extensive empir-
ical studies would be useful for better understanding what sorts of designs perform well and for which
models” [Santner et al., 2003, p. 161].

7.3 Designs for Benchmark Studies

In the context of DOE and DACE, runs of an optimization algorithm instance will be treated as experi-
ments. There are many degrees of freedom when an optimization algorithm instance is run. In many cases
optimization algorithms require the determination of parameters (e.g., the population size in ESs) before the
optimization run is performed. From the viewpoint of an experimenter, design variables (factors) are the
parameters that can be changed during an experiment. Generally, there are two different types of factors
that influence the behavior of an optimization algorithm:

1. problem-specific factors, i.e., the objective function,

2. algorithm-specific factors, i.e., the population size of an ES and other parameters which need to be set
to derive an executable algorithm instance.

We will consider experimental designs that comprise problem-specific factors and algorithm-specific factors.
Algorithm-specific factors will be considered first. Implicit parameters can be distinguished from explicit
parameters (synonymously referred to as endogeneous and exogeneous in [Beyer and Schwefel, 2002]). The
latter are explicitly exposed to the user, whereas the former are often hidden, i.e., either made inaccessible
to the user (e.g., when the algorithm code is not made available) or simply “hidden” in the implementation
and not easily identifiable as a parameter that can be optimized.

An algorithm design is a set of parameters, each representing one specific setting of the design variables of
an algorithm and defining an algorithm instance. A design can be specified by defining ranges of values for the
design parameters. Note that a design can contain none, one, several, or even infinitely many design points,
each point representing an algorithm instance. Consider the set of explicit strategy parameters for PSO
algorithms with the following values: swarm size s = 10, cognitive parameter c1 ∈ [1.5, 2], social parameter
c2 = 2, starting value of the inertia weight wmax = 0.9, final value of the inertia weight wscale = 0, percentage
of iterations for which wmax is reduced witerscale = 1, and maximum value of the step size vmax = 100. This
algorithm design contains infinitely many design points, because c1 is not fixed.

Problem designs provide information related to the optimization problem, such as the available resources
(number of function evaluations) or the problem’s dimension.

An experimental design consists of a problem design and an algorithm design. Benchmark studies require
complex experimental designs, because they are combinations of several problem and algorithm designs.
Furthermore, as discussed in Section 5, one or several performance measures must be specified.

34

7.4 How to Select a Design for Benchmarking

The following points have to be considered when designing an benchmark study23:

• What are the main goals of the experiment? (see Section 2)

• What is/are the test problem(s) and which (type of) instances do we select? (see Section 3)

• How many algorithms are to be tested? (see Section 4.3)

• How many test problems/test classes are relevant for the study? (see Section 3)

• How tuning of algorithms has to be performed? (see Section 4.2)

• What validation procedures are considered to evaluate the results of the experiment? (see Section 5)

• How will the results be analyzed? (see Section 6)

• How will the results be presented? (see Section 8)

• How are randomization and replicability of the experiment achieved? (see Section 9)

7.5 Tuning Before Benchmarking

Brownlee [2007] discusses the importance of tuning an algorithm before benchmarking. Bartz-Beielstein and
Preuss [2010] state that comparisons of tuned versus untuned algorithms are not fair and should be avoided.
During a benchmark study the employed parameter settings are extremely important as they largely define
the obtained performance. Depending on the availability of code for the algorithms under scope and time
for parameter searches, there are different possibilities to make a fair comparison:

• In the best case, the code for all methods is available. It is then possible to perform a parameter search
for each problem and each algorithm via a tuning method. Taking the best parameter sets for each
method for each problem ensures comparing the algorithms at their peak performance.

• If algorithm runs on the chosen problems take too long for a full tuning process, one may however
perform a simple space-filling design on the parameter space, e.g., a LHD or a low-discrepancy point
set [Matoušek, 2009] with only a few design points and repeats. This prevents misconfigurations of
algorithms as one probably easily gets into the “ball park” [De Jong, 2007] of relatively good parameter
settings. Most likely, neither algorithm works at its peak performance level, but the comparison is still
fair.

• If no code other than for one’s own algorithm is available, one has to resort to comparing with default
parameter values. For a new algorithm, these could be determined by a common tuning process over
the whole problem set. Note however, that such comparison deliberately abstains from setting good
parameters for specific problems, even if this would be attempted for any real-world application.

7.6 Open Issues

(O7.1) Best Designs.
Same authors consider LHDs as the default choice, even if for numerous applications a superiority
of other space-filling or low-discrepancy designs has been demonstrated Santner et al. [2003]. The
question when to prefer i.i.d. uniform sampling, LHDs, low-discrepancy point sets, other space-filling
designs, or sets minimizing some other diversity criterion is largely open.

23At the moment, this is only a list, which will be extended in forthcoming versions of this survey.

35

(O7.2) Multiple Objectives.
Sometimes properties of the objective function are used to determine the quality of a design. There-
fore, it remains unclear how to measure the quality in settings where the objective function is
unknown. Furthermore, problems occur if wrong assumptions about the objective function, e.g.,
linearity, are made. And, last but not least, in MOO, where no single objective can be specified,
finding the optimal design can be very difficult [Santner et al., 2003].

8 How to Present Results?

8.1 General Recommendations

Several papers have been published in the last years, which give recommendations on how to report results.
As Gent and Walsh [1994] already stated in 1994, after having generated some good results in your benchmark
study, there are still many mistakes to make. They give the following recommendations:

1. present statistics

2. report negative results

3. do not push deadlines

Barr et al. [1995] in their classical work on reporting empirical results of heuristics specify a loose exper-
imental setup methodology with the following steps:

1. define the goals of the experiment,

2. select measure of performance and factors to explore,

3. design and execute the experiment,

4. analyze the data and draw conclusions, and finally

5. report the experimental results.

They then suggest eight guidelines for reporting results, in summary they are; reproducibility, specify all
influential factors (code, computing environment, etc.), be precise regarding measures, specify parameters,
use statistical experimental design, compare with other methods, reduce variability of results, ensure results
are comprehensive. They then go on to clarify these points with examples.

8.2 Reporting Methodologies

Besides recommendations, that provide valuable hints on how to report results, there exist also methodolo-
gies, which employ a scientific methodology, e.g., based on hypothesis testing [Popper, 1959, 1975]. Such a
methodology was proposed by Bartz-Beielstein and Preuss [2010]. They propose organizing the presentation
of experiments into seven parts, as follows:

(R.1) Research question
Briefly names the matter dealt with, the (possibly very general) objective, preferably in one sentence.
This is used as the report’s “headline” and related to the primary model.

(R.2) Pre-experimental planning
Summarizes the first—possibly explorative—program runs, leading to task and setup (R-3 and R-4).
Decisions on employed benchmark problems or performance measures should be taken according to
the data collected in preliminary runs. The report on pre-experimental planning should also include
negative results, e.g., modifications to an algorithm that did not work or a test problem that turned
out to be too hard, if they provide new insight.

36

(R.3) Task
Concretizes the question in focus and states scientific claims and derived statistical hypotheses to test.
Note that one scientific claim may require several, sometimes hundreds, of statistical hypotheses. In
case of a purely explorative study, as with the first test of a new algorithm, statistical tests may not
be applicable. Still, the task should be formulated as precisely as possible. This step is related to the
experimental model.

(R.4) Setup
Specifies problem design and algorithm design, including the investigated algorithm, the controllable
and the fixed parameters, and the chosen performance measuring. The information provided in this
part should be sufficient to replicate an experiment.

(R.5) Results/Visualization
Gives raw or produced (filtered) data on the experimental outcome and additionally provides basic
visualizations where meaningful. This is related to the data model.

(R.6) Observations
Describes exceptions from the expected, or unusual patterns noticed, without subjective assessment
or explanation. As an example, it may be worthwhile to look at parameter interactions. Additional
visualizations may help to clarify what happens.

(R.7) Discussion
Decides about the hypotheses specified in R-3, and provides necessarily subjective interpretations of
the recorded observations. Also places the results in a wider context. The leading question here is:
What did we learn?

This methodology was extended and refined in Preuss [2015]. It is important to divide parts R-6 and R-7,
to facilitate different conclusions drawn by others, based on the same results/observations. This distinction
into parts of increasing subjectiveness is similar to the suggestions of Barr et al. [1995], who distinguish
between results, their analysis, and the conclusions drawn by the experimenter.

Note that all of these parts are already included in current good experimental reports. However, they
are usually not separated but wildly mixed. Thus we only suggest to insert labels into the text to make the
structure more obvious.

We also recommend to keep a journal of experiments with single reports according to the above scheme to
enable referring to previous experiments later on. This is useful even if single experiments do not find their
way into a publication, as it improves the overview of subsequent experiments and helps to avoid repeated
tests.

8.3 Open Issues

The former addressed presentation of negative results (cf. Gent and Walsh [1994] and above in 2) is not
adequately accepted in the research community. While a paper improving existing experimental results
or outperforming a different algorithm regularly gets accepted for publication, papers presenting negative
results regularly will not.

9 How to Guarantee Reproducibility?

Reproducibility has been a topic of interest in the experimental analysis of algorithms for many decades.
Classical works [Johnson, 2002a] advise ensuring reproducibility, but caution that the classical understanding
of reproducibility in computer science, i.e., running exactly the same code on the same machine returns
exactly the same measurements, differs substantially from the understanding in other experimental sciences,
i.e., a different implementation of the experiment under similar conditions returns measurements that lead
to the same conclusions.

37

For example, the “Reproducibility guidelines for AI research”24 intended to be adopted by the Association
for the Advancement of Artificial Intelligence (AAAI) are clearly focused on the concept of reproducibility
in computer science.

Trying to clearly define various reproducibility concepts, the ACM distinguishes among:25

Repeatability (Same team, same experimental setup) The measurement can be obtained with stated pre-
cision by the same team using the same measurement procedure, the same measuring system, under
the same operating conditions, in the same location on multiple trials. For computational experiments,
this means that a researcher can reliably repeat her own computation.

Replicability (Different team, same experimental setup) The measurement can be obtained with stated
precision by a different team using the same measurement procedure, the same measuring system, under
the same operating conditions, in the same or a different location on multiple trials. For computational
experiments, this means that an independent group can obtain the same result using the author’s own
artifacts.

Reproducibility (Different team, different experimental setup) The measurement can be obtained with
stated precision by a different team, a different measuring system, in a different location on multiple
trials. For computational experiments, this means that an independent group can obtain the same
result using artifacts which they develop completely independently.

The above classification helps to identify various levels of reproducibility, reserving the term “Repro-
ducibility” to the most scientifically useful, yet hardest to achieve. There are many practical guidelines and
software systems available to achieve Repeatibility and Replicability [Gent et al., 1997, Johnson, 2002a],
including code versioning tools (Subversion and Git), data repositories (Zenodo), reproducible documents
(Rmarkdown and Jupyter notebooks), and reproducible software environments (OSF26, CodeOcean and
Docker). However, it is not so clear how to successfully achieve Reproducibility. For achieving reproducibil-
ity, one must give up on exactly reproducing the results and provide statistical guidelines that are commonly
accepted by the field to provide sufficient evidence for a conclusion, even under different, but similar, exper-
imental conditions. What constitutes similar experimental conditions is dependent on the experiment and
there is no simple answer when benchmarking algorithms.

10 Summary and Outlook

10.1 Summary

This survey compiles ideas and recommendations from more than a dozen researchers with different back-
grounds and from different institutions around the world. Promoting best practice in benchmarking is its
main goal. This first version is a result from long and fruitful discussions among the authors. The authors
agreed on eight essential topics, that should be considered in every benchmark study (goals, problems, al-
gorithms, performance, analysis, design, presentation, and reproducibility). These topics defined the section
structure of this article.

However, this is only the first version. It is hopefully a good starting point, but definitely not a textbook
that explains every single approaches in detail. It is basically a guide (similar to the famous hitch-hiker’s
guide to EC [Heitkötter and Beasley, 1994]) and has a long list of references, which covers classical papers
as well as the most recent ones.

Every section presents recommendations, best practice examples, and open issues.
Although we tried to include the most relevant contributions, we are aware that important contributions

are missing. Because the acceptance of the proposed recommendations is crucial, we would like to invite

24http://folk.idi.ntnu.no/odderik/reproducibility_guidelines.pdf
25Quoting from:

https://www.acm.org/publications/policies/artifact-review-badging
26https://osf.io/

38

http://folk.idi.ntnu.no/odderik/reproducibility_guidelines.pdf
https://www.acm.org/publications/policies/artifact-review-badging
https://osf.io/

more researchers to share their knowledge with us. Moreover, as the field of benchmarking is constantly
changing, this article will be regularly updated and published on arXiv. Interested readers can use the
associated e-mail address for this project: benchmarkingbestpractice@gmail.com.

There are several other initiatives that are trying to improve benchmarking standards in query-based
optimization fields, e.g., the Benchmarking Network27, an initiative built to consolidate and to stimulate
activities on benchmarking iterative optimization heuristics.

10.2 Outlook

As mentioned above, this survey is only the beginning of a wonderful journey. It can serve as a starting
point for many activities that improve the quality of benchmark studies and enhance the quality of research
in EC and related fields. Next steps can be as follows:

1. offer tutorials and organize workshops,

2. compile videos, which explain how to set up the experiments, analyze results, and report important
findings,

3. provide software tools,

4. develop a comprehensible check-list, especially for beginners in benchmarking,

5. include a discussion section in every section, which describes controversial topics and ideas.

The final goal is to provide well-accepted guidelines (rules) that might be useful for authors and reviewers.
Consider the following (rudimentary and incomplete) checklist, that can serve as a guideline for authors and
reviewers:

1. goals: did the authors clearly state the reasons for this study?

2. problems: is the selection of problem instances well motivated and justified?

3. algorithms: do comparisons include relevant competitors?

4. performance: is the choice of the performance measure adequate?

5. analysis: are standards from statistics considered?

6. design: does the experimental setup enable efficient and fair experimentation? What measures are
taken to avoid “cherry-picking results”?

7. presentation: are the results well organized and explained?

8. reproducibility: data and code availability?

Transparent, well accepted standards will improve the review process in EC and related fields significantly.
These common standards might also accelerate the review process, because it improves the quality of submis-
sions and helps reviewers to write objective evaluations. Most importantly, it is not our intention to dictate
specific test statistics, experimental designs, or performance measures. Instead, we claim that publications
in EC would improve, if authors explain, why they have chosen this specific measure, tool, or design. And,
last but not least, authors should describe the goal of their study.

In our opinion, starting this discussion is very important. Maybe, this survey poses more questions than
answers, which is fine. Therefore, we conclude this article with a famous saying that is attributed to Robert
Feynman28:

I would rather have questions that can’t be answered than answers that can’t be questioned.
27https://sites.google.com/view/benchmarking-network/
28https://en.wikiquote.org/w/index.php?title=Talk:Richard_Feynman&oldid=2681873#%22I_would_rather_have_

questions_that_cannot_be_answered%22

39

mailto:benchmarkingbestpractice@gmail.com
https://sites.google.com/view/benchmarking-network/
https://en.wikiquote.org/w/index.php?title=Talk:Richard_Feynman&oldid=2681873#%22I_would_rather_have_questions_that_cannot_be_answered%22
https://en.wikiquote.org/w/index.php?title=Talk:Richard_Feynman&oldid=2681873#%22I_would_rather_have_questions_that_cannot_be_answered%22

Acknowledgments

This work has been initiated at Dagstuhl seminar 19431 on Theory of Randomized Optimization Heuristics,29 and we gratefully
acknowledge the support of the Dagstuhl seminar center to our community.

We thank C. M. Fonseca for his important input and our fruitful discussion, which helped us shape the section on perfor-
mance measures.

C. Doerr acknowledges support from the Paris Ile-de-France region and from a public grant as part of the Investissement
d’avenir project, reference ANR-11-LABX-0056-LMH, LabEx LMH.

T. Weise acknowledges support from the National Natural Science Foundation of China under Grant 61673359 and the
Hefei Specially Recruited Foreign Expert program.

T. Eftimov acknowledges support from the Slovenian Research Agency under research core funding No. P2-0098 and project
No. Z2-1867.

A. Fischbach and T. Bartz-Beielstein acknowledge support from the German Federal Ministry of Education and Research
in the funding program Forschung an Fachhochschulen under the grant number 13FH007IB6 (KOARCH).

S. Chandrasekaran and T. Bartz-Beielstein acknowledge support from the Ministerium für Kultur und Wissenschaft des
Landes Nordrhein-Westfalen in the funding program FH Zeit für Forschung under the grant number 005-1703-0011 (OWOS).

B. Naujoks and T. Bartz-Beielstein acknowledge support from the European Commission’s H2020 programme, H2020-
MSCA-ITN-2016 UTOPIAE (grant agreement No. 722734), as well as the DAAD (German Academic Exchange Service),
Project-ID: 57515062 “Multi-objective Optimization for Artificial Intelligence Systems in Industry”.

J. Bossek acknowledges support by the Australian Research Council (ARC) through grant DP190103894.
J. Bossek and P. Kerschke acknowledge support by the European Research Center for Information Systems (ERCIS).

We also acknowledge support from COST action 15140 on Improving Applicability of Nature-Inspired Optimisation by

Joining Theory and Practice (ImAppNIO).

29https://www.dagstuhl.de/19431

40

https://www.dagstuhl.de/19431

Glossary

AAAI Association for the Advancement of Artificial Intelligence. 38

ACM Association for Computing Machinery. 15, 38

ASlib Algorithm Selection Library. 17

BBOB Black-Box-Optimization-Benchmarking. 15

BFGS Broyden-Fletcher-Goldfarb-Shanno. 19

CEC Congress on Evolutionary Computation. 15–17

CMA-ES Covariance Matrix Adaptation Evolution Strategy. 6, 20

COCO Comparing Continuous Optimizers. 4, 12

CRN Common Random Numbers. 29

CRS4EA Chess Rating Systems for Evolutionary Algorithms. 32, 33

DACE Design and Analysis of Computer Experiments. 33, 34

DOE Design of Experiments. 5, 10, 18, 33, 34

EA Evolutionary Algorithm. 15, 16, 20

EC Evolutionary Computation. 4, 5, 12, 22, 38, 39

EDA Exploratory Data Analysis. 26–28

EDAlgo Estimation of Distribution Algorithm. 20

EGO Efficient Global Optimization. 20

ELA Exploratory Landscape Analysis. 14, 26

ERT Expected Running Time. 24

ES Evolution Strategy. 22, 34

FE Function Evaluation. 22

GECCO Genetic and Evolutionary Computation Conference. 15, 16

GPD Generalized Position-Distance. 15

IEEE Institute of Electrical and Electronics Engineers. 15

irace iterated racing. 20

LABS Low Auto-correlation Binary Sequence. 13

LHD Latin Hypercube Design. 9, 18, 35

MACODA Many Criteria Optimization and Decision Analysis. 17

41

MAX-SAT Maximum Satisfiability. 22

MOO Multi-Objective Optimization. 22, 24, 25, 36

NFLT no free lunch theorem. 4

NM Nelder Mead. 28, 29

OFAT One-factor-at-a-time. 34

ParamILS Iterated Local Search in Parameter Configuration Space. 20

PBO Pseudo-Boolean Optimization. 15

pDSC practical Deep Statistical Comparison. 32, 33

PSO Particle Swarm Optimization. 20, 34

SANN Simulated Annealing. 19, 28, 29

SAT Boolean Satisfiability. 22

SMAC Sequential Model-based Algorithm Configuration. 20

SPOT Sequential Parameter Optimization Toolbox. 10, 20

TSP Traveling Salesperson Problem. 14, 22, 23, 25, 33

42

References

Emile Aarts and Jan Korst. Simulated annealing and Boltzmann machines. New York, NY; John Wiley and Sons
Inc., 1988.

Stavros P Adam, Stamatios-Aggelos N Alexandropoulos, Panos M Pardalos, and Michael N Vrahatis. No Free Lunch
Theorem: A Review. In Approximation and Optimization, pages 57 – 82. Springer, 2019.

Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru Ohta, and Masanori Koyama. Optuna: A next-generation
hyperparameter optimization framework. In Proceedings of the 25th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, pages 2623–2631, 2019.

Mohammad M Amini and Richard S Barr. Network reoptimization algorithms: A statistically designed comparison.
ORSA Journal on Computing, 5(4):395–409, 1993.

Theodore W Anderson and Donald A Darling. Asymptotic theory of certain” goodness of fit” criteria based on
stochastic processes. The annals of mathematical statistics, pages 193–212, 1952.

Carlos Ansótegui, Yuri Malitsky, Horst Samulowitz, Meinolf Sellmann, and Kevin Tierney. Model-based genetic
algorithms for algorithm configuration. In Proc. of International Conf. on Artificial Intelligence (IJCAI’15), pages
733–739. AAAI, 2015.

Anne Auger and Benjamin Doerr. Theory of Randomized Search Heuristics. World Scientific, 2011.

Anne Auger and Nikolaus Hansen. Performance evaluation of an advanced local search evolutionary algorithm. In
Proceedings of the IEEE Congress on Evolutionary Computation, pages 1777–1784. IEEE, 2005.

Thomas Bäck, David B. Fogel, and Zbigniew Michalewicz. Handbook of Evolutionary Computation. IOP Publishing
Ltd., GBR, 1st edition, 1997.

Richard S Barr, Bruce L Golden, James P Kelly, Mauricio GC Resende, and William R Stewart. Designing and
reporting on computational experiments with heuristic methods. Journal of Heuristics, 1(1):9–32, 1995.

Maurice Stevenson Bartlett. Properties of sufficiency and statistical tests. Proceedings of the Royal Society of London.
Series A-Mathematical and Physical Sciences, 160(901):268–282, 1937.

Thomas Bartz-Beielstein. Experimental Research in Evolutionary Computation—The New Experimentalism. Natural
Computing Series. Springer, 2006.

Thomas Bartz-Beielstein and Mike Preuss. The Future of Experimental Research. In Thomas Bartz-Beielstein,
Marco Chiarandini, Luis Paquete, and Mike Preuss, editors, Experimental Methods for the Analysis of Optimization
Algorithms, pages 17–46. Springer, Berlin, Heidelberg, New York, 2010.

Thomas Bartz-Beielstein and Martin Zaefferer. Model-based methods for continuous and discrete global optimization.
Applied Soft Computing, 55:154 – 167, 2017.

Thomas Bartz-Beielstein, Konstantinos E Parsopoulos, and Michael N Vrahatis. Design and analysis of optimization
algorithms using computational statistics. Applied Numerical Analysis & Computational Mathematics, 1(2):413–
433, 2004.

Thomas Bartz-Beielstein, Christian WG Lasarczyk, and Mike Preuss. Sequential Parameter Optimization. In Pro-
ceedings of the 2005 IEEE Congress on Evolutionary Computation, volume 1, pages 773 – 780. IEEE, 2005.

Thomas Bartz-Beielstein, Marco Chiarandini, Lúıs Paquete, and Mike Preuss. Experimental methods for the analysis
of optimization algorithms. Springer, 2010.

Thomas Bartz-Beielstein, Lorenzo Gentile, and Martin Zaefferer. In a nutshell: Sequential parameter optimization.
Technical report, TH Köln, 2017.

Vahid Beiranvand, Warren Hare, and Yves Lucet. Best Practices for Comparing Optimization Algorithms. Opti-
mization and Engineering, 18(4):815 – 848, 2017.

43

James Bergstra and Yoshua Bengio. Random Search for Hyper-Parameter Optimization. Journal of Machine Learning
Research (JMLR), 13:281 – 305, 2012.

James Bergstra, Dan Yamins, and David D Cox. Hyperopt: A python library for optimizing the hyperparameters of
machine learning algorithms. In Proceedings of the 12th Python in science conference, volume 13, page 20. Citeseer,
2013.

H.-G. Beyer and H.-P. Schwefel. Evolution strategies—A comprehensive introduction. Natural Computing, 1:3–52,
2002.

Leonardo C. T. Bezerra, Manuel López-Ibáñez, and Thomas Stützle. An Empirical Assessment of the Properties
of Inverted Generational Distance on Multi- and Many-Objective Optimization. In Proc. of the 9th International
Conference on Evolutionary Multi-Criterion Optimization, volume 10173 of LNCS, pages 31–45. Springer, 2017.

Bernd Bischl, Pascal Kerschke, Lars Kotthoff, Thomas Marius Lindauer, Yuri Malitsky, Alexandre Fréchette, Hol-
ger H. Hoos, Frank Hutter, Kevin Leyton-Brown, Kevin Tierney, and Joaquin Vanschoren. ASlib: A Benchmark
Library for Algorithm Selection. Artificial Intelligence (AIJ), 237:41 – 58, 2016.

Mark S. Boddy and Thomas L. Dean. Solving Time-Dependent Planning Problems. Technical Report CS-89-03,
Brown University, Department of Computer Science, Providence, RI, USA, February 1989. URL ftp://ftp.cs.

brown.edu/pub/techreports/89/cs89-03.pdf.

Mohammad Reza Bonyadi, Zbigniew Michalewicz, and Luigi Barone. The Travelling Thief Problem: The First
Step in the Transition from Theoretical Problems to Realistic Problems. In 2013 IEEE Congress on Evolutionary
Computation, pages 1037 – 1044. IEEE, 2013.

Mohammad Reza Bonyadi, Zbigniew Michalewicz, Markus Wagner, and Frank Neumann. Evolutionary Computa-
tion for Multicomponent Problems: Opportunities and Future Directions. In Optimization in Industry: Present
Practices and Future Scopes, pages 13 – 30. Springer, 2019. doi:10.1007/978-3-030-01641-8 2.

Peter A. N. Bosman and Dirk Thierens. The balance between proximity and diversity in multiobjective evolutionary
algorithms. IEEE Transactions on Evolutionary Computation (TEVC), 7(2):174 – 188, May 2003.

Jakob Bossek, Pascal Kerschke, Aneta Neumann, Markus Wagner, Frank Neumann, and Heike Trautmann. Evolving
Diverse TSP Instances by Means of Novel and Creative Mutation Operators. In Proc. of the 15th ACM/SIGEVO
Conference on Foundations of Genetic Algorithms, pages 58 – 71. ACM, 2019.

Jakob Bossek, Pascal Kerschke, Aneta Neumann, Frank Neumann, and Carola Doerr. Evolving Sampling Strategies
for One-Shot Optimization Tasks. In Proc. of Parallel Problem Solving from Nature. Springer, 2020a. Full version
available online at https://arxiv.org/abs/1912.08956.

Jakob Bossek, Pascal Kerschke, and Heike Trautmann. A Multi-Objective Perspective on Performance Assessment
and Automated Selection of Single-Objective Optimization Algorithms. Applied Soft Computing Journal (ASOC),
88:105901, March 2020b.

Jakob Bossek, Pascal Kerschke, and Heike Trautmann. Anytime Behavior of Inexact TSP Solvers and Perspectives
for Automated Algorithm Selection. In Proc. of the IEEE Congress on Evolutionary Computation. IEEE, 2020c.
A preprint of this manuscript can be found at https://arxiv.org/abs/2005.13289.

Olivier Bousquet, Sylvain Gelly, Karol Kurach, Olivier Teytaud, and Damien Vincent. Critical Hyper-Parameters:
No Random, No Cry. CoRR, abs/1706.03200, 2017. URL http://arxiv.org/abs/1706.03200.

Jürgen Branke. Evolutionary optimization in dynamic environments. Kluwer Academic Publishers, 2001.

Jürgen Branke, Christian Schmidt, and Hartmut Schmeck. Efficient Fitness Estimation in Noisy Environments. In
Genetic and Evolutionary Computation Conference (GECCO’01), pages 243 – 250. Morgan Kaufmann, 2001.

Dimo Brockhoff, Tea Tušar, Anne Auger, and Nikolaus Hansen. Using well-understood single-objective functions in
multiobjective black-box optimization test suites, 2016.

44

ftp://ftp.cs.brown.edu/pub/techreports/89/cs89-03.pdf
ftp://ftp.cs.brown.edu/pub/techreports/89/cs89-03.pdf
http://dx.doi.org/10.1007/978-3-030-01641-8_2
https://arxiv.org/abs/1912.08956
https://arxiv.org/abs/2005.13289
http://arxiv.org/abs/1706.03200

Jason Brownlee. A Note on Research Methodology and Benchmarking Optimization Algorithms. Technical report,
Complex Intelligent Systems Laboratory (CIS), Centre for Information Technology Research (CITR), Faculty of
Information and Communication Technologies (ICT), Swinburne University of Technology, Victoria, Australia,
Technical Report ID 70125, 2007.

Eduardo G Carrano, Elizabeth F Wanner, and Ricardo HC Takahashi. A multicriteria statistical based comparison
methodology for evaluating evolutionary algorithms. IEEE Transactions on Evolutionary Computation, 15(6):
848–870, 2011.

Marie-Liesse Cauwet, Camille Couprie, Julien Dehos, Pauline Luc, Jérémy Rapin, Morgane Rivière, Fabien Teytaud,
and Olivier Teytaud. Fully parallel hyperparameter search: Reshaped space-filling. CoRR, abs/1910.08406, 2019.
URL http://arxiv.org/abs/1910.08406.

Shelvin Chand and Markus Wagner. Evolutionary Many-Objective Optimization: A Quick-Start Guide. Surveys in
Operations Research and Management Science, 20(2):35 – 42, 2015.

Pete Chapman, Julian Clinton, Randy Kerber, Thomas Khabaza, Thomas Reinartz, Colin Shearer, and Rüdiger
Wirth. CRISP-DM 1.0: Step-by-Step Data Mining Guide. Technical report, SPSS Inc., 2000.

Marco Chiarandini, Luis Paquete, Mike Preuss, and Enda Ridge. Experiments on Metaheuristics: Methodological
Overview and Open Issues. Technical report, Institut for Matematik og Datalogi Syddansk Universitet, 2007.

Nicos Christofides. The Vehicle Routing Problem. Revue française d’automatique, d’informatique et de recherche
opérationnelle (RAIRO). Recherche opérationnelle, 10(1):55 – 70, 1976. URL http://www.numdam.org/item?id=

RO_1976__10_1_55_0.

Carlos Artemio Coello Coello and Margarita Reyes Sierra. A Study of the Parallelization of a Coevolutionary Multi-
objective Evolutionary Algorithm. In Proc. of the Third Mexican International Conference on Artificial Intelligence
(MICAI), pages 688–697. Springer, 2004.

Matej Črepinšek, Shih-Hsi Liu, and Marjan Mernik. Replication and Comparison of Computational Experiments in
Applied Evolutionary Computing: Common Pitfalls and Guidelines to Avoid Them. Applied Soft Computing, 19:
161 – 170, June 2014.

Harlan Crowder, Ron S Dembo, and John M Mulvey. On reporting computational experiments with mathematical
software. ACM Transactions on Mathematical Software (TOMS), 5(2):193–203, 1979.

Kenneth De Jong. Parameter Setting in EAs: a 30 Year Perspective. In Parameter Setting in Evolutionary Algorithms,
pages 1 – 18. Springer, 2007.

Thomas Dean and Mark S. Boddy. An analysis of time-dependent planning. In Howard E. Shrobe, Tom M. Mitchell,
and Reid G. Smith, editors, Proceedings of the 7th National Conference on Artificial Intelligence, AAAI-88, pages
49–54. AAAI Press/MIT Press, Menlo Park, CA, 1988. URL http://www.aaai.org/Conferences/AAAI/aaai88.

php.

Joaqúın Derrac, Salvador Garćıa, Daniel Molina, and Francisco Herrera. A practical tutorial on the use of nonpara-
metric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm
and Evolutionary Computation, 1(1):3–18, 2011.

Joaqúın Derrac, Salvador Garćıa, Sheldon Hui, Ponnuthurai Nagaratnam Suganthan, and Francisco Herrera. Analyz-
ing convergence performance of evolutionary algorithms: A statistical approach. Information Sciences, 289:41–58,
2014.

Jay L Devore. Probability and Statistics for Engineering and the Sciences. Cengage learning, 2011.

Luc Devroye. The compound random search. Ph.D. dissertation, Purdue Univ., West Lafayette, IN, 1972.

Josef Dick and Friedrich Pillichshammer. Digital Nets and Sequences: Discrepancy Theory and Quasi–Monte Carlo
Integration. Cambridge University Press, 2010.

Benjamin Doerr and Frank Neumann. Theory of Evolutionary Computation – Recent Developments in Discrete
Optimization. Springer, 2020.

45

http://arxiv.org/abs/1910.08406
http://www.numdam.org/item?id=RO_1976__10_1_55_0
http://www.numdam.org/item?id=RO_1976__10_1_55_0
http://www.aaai.org/Conferences/AAAI/aaai88.php
http://www.aaai.org/Conferences/AAAI/aaai88.php

Benjamin Doerr, Carola Doerr, and Johannes Lengler. Self-adjusting mutation rates with provably optimal success
rules. In Proceedings of the Genetic and Evolutionary Computation Conference, pages 1479 – 1487. ACM, 2019.

Carola Doerr and Markus Wagner. On the Effectiveness of Simple Success-Based Parameter Selection Mechanisms
for Two Classical Discrete Black-Box Optimization Benchmark Problems. In Proc. of Genetic and Evolutionary
Computation Conference, pages 943–950. ACM, 2018.

Carola Doerr, Hao Wang, Furong Ye, Sander van Rijn, and Thomas Bäck. IOHprofiler: A Benchmarking and
Profiling Tool for Iterative Optimization Heuristics. arXiv e-prints, art. arXiv:1810.05281, Oct 2018. Wiki page of
IOHprofiler is available at https://iohprofiler.github.io/.

Carola Doerr, Furong Ye, Naama Horesh, Hao Wang, Ofer M. Shir, and Thomas Bäck. Benchmarking Discrete
Optimization Heuristics with IOHprofiler. Applied Soft Computing, 88:106027, 2020.

Elizabeth D Dolan and Jorge J Moré. Benchmarking optimization software with performance profiles. Mathematical
programming, 91(2):201–213, 2002.

Marco Dorigo, Mauro Birattari, and Thomas Stutzle. Ant colony optimization. IEEE computational intelligence
magazine, 1(4):28–39, 2006.

Tome Eftimov and Peter Korošec. The impact of statistics for benchmarking in evolutionary computation research.
In Proceedings of the Genetic and Evolutionary Computation Conference Companion, pages 1329–1336, 2018.

Tome Eftimov and Peter Korošec. Identifying practical significance through statistical comparison of meta-heuristic
stochastic optimization algorithms. Applied Soft Computing, 85:105862, 2019.

Tome Eftimov, Peter Korošec, and Barbara Koroušić Seljak. A Novel Approach to Statistical Comparison of Meta-
Heuristic Stochastic Optimization Algorithms Using Deep Statistics. Information Sciences, 417:186 – 215, 2017.

Tome Eftimov, Gašper Petelin, and Peter Korošec. Dsctool: A web-service-based framework for statistical comparison
of stochastic optimization algorithms. Applied Soft Computing, 87:105977, 2020.

Katharina Eggensperger, Matthias Feurer, Frank Hutter, James Bergstra, Jasper Snoek, Holger H. Hoos, and Kevin
Leyton-Brown. Towards an Empirical Foundation for Assessing Bayesian Optimization of Hyperparameters. In
NIPS Workshop on Bayesian Optimization in Theory and Practice, volume 10, December 2013.

Ágoston Endre Eiben and Márk Jelasity. A Critical Note on Experimental Research Methodology in EC. In Proceed-
ings of the 2002 IEEE Congress on Evolutionary Computation, volume 1, pages 582 – 587. IEEE, 2002.

Ágoston Endre Eiben and Selmar K Smit. Evolutionary Algorithm Parameters and Methods to Tune Them. In
Autonomous search, pages 15 – 36. Springer, 2011.

Ágoston Endre Eiben and James E Smith. Introduction to Evolutionary Computing. Natural Computing. Springer,
2 edition, 2015.

Álvaro Fialho, Lúıs Da Costa, Marc Schoenauer, and Michèle Sebag. Analyzing bandit-based adaptive operator
selection mechanisms. Annals of Mathematics and Artificial Intelligence, 60:25 – 64, 2010.

Steffen Finck, Nikolaus Hansen, Raymond Ros, and Anne Auger. COCO Documentation, Release 15.03, November
2015. URL http://coco.lri.fr/COCOdoc/COCO.pdf.

Andreas Fischbach and Thomas Bartz-Beielstein. Improving the reliability of test functions generators. Applied
Soft Computing, 92:106315, 2020. ISSN 1568-4946. doi:https://doi.org/10.1016/j.asoc.2020.106315. URL http:

//www.sciencedirect.com/science/article/pii/S1568494620302556.

Philip J. Fleming and John J. Wallace. How not to lie with statistics: The correct way to summarize benchmark
results. Commun. ACM, 29(3):218–221, March 1986.

Roger Fletcher. Conjugate gradient methods for indefinite systems. In Numerical analysis, pages 73–89. Springer,
1976.

46

https://iohprofiler.github.io/
http://coco.lri.fr/COCOdoc/COCO.pdf
http://dx.doi.org/https://doi.org/10.1016/j.asoc.2020.106315
http://www.sciencedirect.com/science/article/pii/S1568494620302556
http://www.sciencedirect.com/science/article/pii/S1568494620302556

Alexandre Fréchette, Lars Kotthoff, Tomasz Michalak, Talal Rahwan, Holger H. Hoos, and Kevin Leyton-Brown.
Using the shapley value to analyze algorithm portfolios. In Proc. of the Thirtieth AAAI Conference on Artificial
Intelligence, pages 3397 —- 3403. AAAI Press, 2016.

Milton Friedman. The use of ranks to avoid the assumption of normality implicit in the analysis of variance. Journal
of the american statistical association, 32(200):675–701, 1937.

Salvador Garćıa, Daniel Molina, Manuel Lozano, and Francisco Herrera. A study on the use of non-parametric tests
for analyzing the evolutionary algorithms’ behaviour: a case study on the cec’2005 special session on real parameter
optimization. Journal of Heuristics, 15(6):617, 2009.

Ian P. Gent and Toby Walsh. How not to do it. In AAAI Workshop on Experimental Evaluation of Reasoning and
Search Methods, 1994.

Ian P. Gent, Stuart A. Grant, Ewen MacIntyre, Patrick Prosser, Paul Shaw, Barbara M. Smith, and Toby Walsh.
How not to do it. Technical Report 97.27, School of Computer Studies, University of Leeds, May 1997.

Fred Glover. Tabu search—part i. ORSA Journal on computing, 1(3):190–206, 1989.

Bruce L Golden, Arjang A Assad, Edward A Wasil, and Edward Baker. Experimentation in optimization. European
Journal of Operational Research, 27(1):1–16, 1986.

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT press, 2018.

David Hadka and Patrick M. Reed. Diagnostic assessment of search controls and failure modes in many-objective
evolutionary optimization. Evolutionary Computation, 20(3):423 – 452, 2012.

Raphael T. Haftka. Requirements for papers focusing on new or improved global optimization algorithms. Structural
and Multidisciplinary Optimization, 54(1):1–1, 2016.

Doug Hains, L. Darrell Whitley, Adele E. Howe, and Wenxiang Chen. Hyperplane Initialized Local Search for
MAXSAT. In Proc. of the Genetic and Evolutionary Computation Conference, pages 805 – 812. ACM, 2013.

Michael Pilegaard Hansen and Andrzej Jaszkiewicz. Evaluating the Quality of Approximations to the Non-Dominated
Set. IMM Tech. Report IMM-REP-1998-7, Technical University of Denmark, Institute of Mathematical Modelling,
Lyngby, Denmark, March 1998.

Nikolaus Hansen. Invariance, self-adaptation and correlated mutations in evolution strategies. In Proc. of Interna-
tional Conference on Parallel Problem Solving from Nature, pages 355–364. Springer, 2000. ISBN 978-3-540-45356-7.

Nikolaus Hansen, Sibylle D Müller, and Petros Koumoutsakos. Reducing the time complexity of the derandomized
evolution strategy with covariance matrix adaptation (cma-es). Evolutionary computation, 11(1):1–18, 2003.

Nikolaus Hansen, Anne Auger, Steffen Finck, and Raymond Ros. Real-parameter black-box optimization bench-
marking: Experimental setup. Technical report, Université Paris Sud, INRIA Futurs, Équipe TAO, Orsay, France,
March 24, 2012. URL http://coco.lri.fr/BBOB-downloads/download11.05/bbobdocexperiment.pdf.

Nikolaus Hansen, Anne Auger, Dimo Brockhoff, Dejan Tušar, and Tea Tušar. COCO: performance assessment.
CoRR, abs/1605.03560, 2016a. URL http://arxiv.org/abs/1605.03560.

Nikolaus Hansen, Anne Auger, Olaf Mersmann, Tea Tušar, and Dimo Brockhoff. COCO: A Platform for Comparing
Continuous Optimizers in a Black-Box Setting. arXiv preprint, abs/1603.08785v3, August 2016b. URL http:

//arxiv.org/abs/1603.08785v3.

Anna Hart. Mann-whitney test is not just a test of medians: differences in spread can be important. Bmj, 323(7309):
391–393, 2001.

Jörg Heitkötter and David Beasley. The hitch-hiker’s guide to evolutionary computation, 1994.

Michael Hellwig and Hans-Georg Beyer. Benchmarking Evolutionary Algorithms For Single-Objective Real-valued
Constrained Optimization – A Critical Review. Swarm and Evolutionary Computation, 44:927–944, 2019.

47

http://coco.lri.fr/BBOB-downloads/download11.05/bbobdocexperiment.pdf
http://arxiv.org/abs/1605.03560
http://arxiv.org/abs/1603.08785v3
http://arxiv.org/abs/1603.08785v3

John N Hooker. Needed: An Empirical Science of Algorithms. Operations research, 42(2):201 – 212, 1994.

John N Hooker. Testing Heuristics: We Have It All Wrong. Journal of Heuristics, 1(1):33 – 42, 1995.

Simon Huband, Philip Hingston, Luigi Barone, and Lyndon While. A Review of Multiobjective Test Problems and a
Scalable Test Problem Toolkit. IEEE Transactions on Evolutionary Computation (TEVC), 10(5):477 – 506, 2006.

Frank Hutter, Holger H. Hoos, Kevin Leyton-Brown, and Thomas Stützle. ParamILS: an automatic algorithm
configuration framework. Journal of Artificial Intelligence Research, 36:267–306, 2009.

Frank Hutter, Holger H. Hoos, and Kevin Leyton-Brown. Sequential Model-Based Optimization for General Algorithm
Configuration. In International Conference on Learning and Intelligent Optimization, pages 507 – 523. Springer,
2011.

Frank Hutter, Manuel López-Ibáñez, Chris Fawcett, Thomas Marius Lindauer, Holger H. Hoos, Kevin Leyton-Brown,
and Thomas Stützle. AClib: A Benchmark Library for Algorithm Configuration. In Proc. of the 8th International
Conference on Learning and Intelligent Optimization, pages 36 – 40. Springer, 2014.

Frank Hutter, Lars Kotthoff, and Joaquin Vanschoren. Automated Machine Learning: Methods, Systems, Challenges.
Springer, 2019.

Hisao Ishibuchi, Hiroyuki Masuda, Yuki Tanigaki, and Yusuke Nojima. Modified Distance Calculation in Generational
Distance and Inverted Generational Distance. In Proc. of the 8th International Conference on Evolutionary Multi-
Criterion Optimization, pages 110 – 125. Springer, 2015.

W. James and Charles Stein. Estimation with quadratic loss. In Proc. of the 4th Berkeley Symposium on Mathematical
Statistics and Probability, Vol. 1: Contributions to the Theory of Statistics, pages 361–379. University of California
Press, 1961.

Alexandre D. Jesus, Arnaud Liefooghe, Bilel Derbel, and Lúıs Paquete. Algorithm Selection of Anytime Algorithms.
In Proc. of the 2020 Genetic and Evolutionary Computation Conference, pages 850 – 858. ACM, 2020.

Yaochu Jin and Jürgen Branke. Evolutionary Optimization in Uncertain Environments – A Survey. IEEE Transac-
tions on Evolutionary Computation, 9(3):303 – 317, 2005.

David S Johnson, Cecilia R Aragon, Lyle A McGeoch, and Catherine Schevon. Optimization by Simulated Annealing:
An Experimental Evaluation. Part I, Graph Partitioning. Operations Research, 37(6):865 – 892, 1989.

David S Johnson, Cecilia R Aragon, Lyle A McGeoch, and Catherine Schevon. Optimization by Simulated Annealing:
An Experimental Evaluation. Part II, Graph Coloring and Number Partitioning. Operations Research, 39(3):378 –
406, 1991.

David Stifler Johnson. A Theoretician’s Guide to the Experimental Analysis of Algorithms. In Proc. of a DIMACS
Workshop on Data Structures, Near Neighbor Searches, and Methodology: Fifth and Sixth DIMACS Implementation
Challenges, volume 59 of DIMACS – Series in Discrete Mathematics and Theoretical Computer Science, pages 215–
250, 2002a.

David Stifler Johnson. A Theoretician’s Guide to the Experimental Analysis of Algorithms. Data Structures, Near
Neighbor Searches, and Methodology: Fifth and Sixth DIMACS Implementation Challenges, 59:215 – 250, 2002b.

David Stifler Johnson and Lyle A. McGeoch. Experimental Analysis of Heuristics for the STSP. In The Traveling
Salesman Problem and its Variations, volume 12 of Combinatorial Optimization, chapter 9, pages 369 – 443. Kluwer
Academic Publishers, 2002.

Donald R. Jones, Matthias Schonlau, and William J. Welch. Efficient global optimization of expensive black-box
functions. Journal of Global Optimization, 13(4):455–492, 1998.

G. Karafotias, M. Hoogendoorn, and A. E. Eiben. Parameter control in evolutionary algorithms: Trends and chal-
lenges. IEEE Transactions on Evolutionary Computation, 19(2):167–187, April 2015.

Stuart A. Kauffman. The Origins of Order: Self-Organization and Selection in Evolution. Oxford University Press,
USA, 1993.

48

James Kennedy and Russell Eberhart. Particle swarm optimization. In Neural Networks, 1995. Proceedings., IEEE
International Conference on, volume 4, pages 1942–1948. IEEE, 1995.

Pascal Kerschke and Heike Trautmann. Automated Algorithm Selection on Continuous Black-Box Problems by
Combining Exploratory Landscape Analysis and Machine Learning. Evolutionary Computation (ECJ), 27(1):
99 – 127, 2019a.

Pascal Kerschke and Heike Trautmann. Comprehensive Feature-Based Landscape Analysis of Continuous and Con-
strained Optimization Problems Using the R-package flacco. In Applications in Statistical Computing, pages
93 – 123. Springer, 2019b.

Pascal Kerschke, Jakob Bossek, and Heike Trautmann. Parameterization of State-of-the-Art Performance Indicators:
A Robustness Study based on Inexact TSP Solvers. In Proceedings of the Genetic and Evolutionary Computation
Conference Companion, pages 1737 – 1744. ACM, 2018a.

Pascal Kerschke, Lars Kotthoff, Jakob Bossek, Holger H. Hoos, and Heike Trautmann. Leveraging TSP Solver
Complementarity through Machine Learning. Evolutionary Computation (ECJ), 26(4):597 – 620, December 2018b.

Pascal Kerschke, Holger H. Hoos, Frank Neumann, and Heike Trautmann. Automated Algorithm Selection: Survey
and Perspectives. Evolutionary Computation (ECJ), 27:3 – 45, 2019a.

Pascal Kerschke, Hao Wang, Mike Preuss, Christian Grimme, André H. Deutz, Heike Trautmann, and Michael T. M.
Emmerich. Search Dynamics on Multimodal Multi-Objective Problems. Evolutionary Computation (ECJ), 27:
577 – 609, 2019b.

Scott Kirkpatrick, C Daniel Gelatt, and Mario P Vecchi. Optimization by Simulated Annealing. Science, 220(4598):
671 – 680, 1983.

Jack P. C. Kleijnen. Analyzing Simulation Experiments with Common Random Numbers. Management Science, 34
(1):65 – 74, 1988.

Jack P. C. Kleijnen. Experimental Design for Sensitivity Analysis of Simulation Models. Workingpaper, Operations
Research, 2001.

Jack P. C. Kleijnen. Design and Analysis of Simulation Experiments. In International Workshop on Simulation,
pages 3–22. Springer, 2015.

Jack P. C. Kleijnen. Regression and Kriging Metamodels with their Experimental Designs in Simulation: A Review.
European Journal of Operational Research, 256(1):1–16, 2017.

Lasse Kliemann and Peter Sanders. Algorithm Engineering: Selected Results and Surveys, volume 9220. Springer,
2016.

Joshua Damian Knowles and David Corne. On Metrics for Comparing Nondominated Sets. In Proc. of the 2002
Congress on Evolutionary Computation. IEEE, 2002.

William H Kruskal and W Allen Wallis. Use of ranks in one-criterion variance analysis. Journal of the American
statistical Association, 47(260):583–621, 1952.

Abhishek Kumar, Guohua Wu, Mostafa Z. Ali, Rammohan Mallipeddi, Ponnuthurai Nagaratnam Suganthan, and
Swagatam Das. Guidelines for real-world single-objective constrained optimisation competition. Technical report,
2020.

Per Kristian Lehre and Carsten Witt. Black-box search by unbiased variation. Algorithmica, 64:623–642, 2012.

Howard Levene. Robust tests for equality of variances. Contributions to probability and statistics. Essays in honor
of Harold Hotelling, pages 279–292, 1961.

Bingdong Li, Jinlong Li, Ke Tang, and Xin Yao. Many-Objective Evolutionary Algorithms: A Survey. ACM
Computing Surveys, 48(1), September 2015.

49

Lisha Li, Kevin G. Jamieson, Giulia DeSalvo, Afshin Rostamizadeh, and Ameet Talwalkar. Hyperband: A Novel
Bandit-Based Approach to Hyperparameter Optimization. Journal of Machine Learning Research, 18:185:1–185:52,
2017.

Rui Li, Michael T. M. Emmerich, Jeroen Eggermont, Ernst G. P. Bovenkamp, Thomas Bäck, Jouke Dijkstra, and
Johan H. C. Reiber. Mixed-Integer NK Landscapes. In Proc. of Parallel Problem Solving from Nature, pages 42–51.
Springer, 2006.

Tianjun Liao, Krzysztof Socha, Marco A Montes de Oca, Thomas Stützle, and Marco Dorigo. Ant Colony Opti-
mization for Mixed-Variable Optimization Problems. IEEE Transactions on Evolutionary Computation, 18(4):
503 – 518, 2013.

Arnaud Liefooghe, Manuel López-Ibáñez, Lúıs Paquete, and Sébastien Verel. Dominance, Epsilon, and Hypervolume
Local Optimal Sets in Multi-Objective Optimization, and How to Tell the Difference. In Proc. of the 20th Annual
Conference on Genetic and Evolutionary Computation, pages 324 – 331. ACM, 2018.

Harold R Lindman. Analysis of variance in complex experimental designs. WH Freeman & Co, 1974.

Hai-Lin Liu, Lei Chen, Kalyanmoy Deb, and Erik D. Goodman. Investigating the Effect of Imbalance Between Conver-
gence and Diversity in Evolutionary Multiobjective Algorithms. IEEE Transactions on Evolutionary Computation
(TEVC), 21(3):408–425, September 2017.

Jialin Liu, Antoine Moreau, Mike Preuss, Baptiste Rozière, Jérémy Rapin, Fabien Teytaud, and Olivier Teytaud.
Versatile black-box optimization. CoRR, abs/2004.14014, 2020. URL https://arxiv.org/abs/2004.14014.

Qunfeng Liu, William V. Gehrlein, Ling Wang, Yuan Yan, Yingying Cao, Wei Chen, and Yun Li. Paradoxes in
Numerical Comparison of Optimization Algorithms. IEEE Transactions on Evolutionary Computation, pages
1–15, 2019.

Manuel López-Ibáñez, Jérémie Dubois-Lacoste, Leslie Pérez Cáceres, Mauro Birattari, and Thomas Stützle. The
irace package: Iterated racing for automatic algorithm configuration. Operations Research Perspectives, 3:43–58,
2016.

Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-SNE. Journal of Machine Learning Research
(JMLR), 9(Nov):2579–2605, 2008.

Katherine Mary Malan and Andries Petrus Engelbrecht. A Survey of Techniques for Characterising Fitness Land-
scapes and Some Possible Ways Forward. Information Sciences (JIS), 241:148 – 163, 2013.

Jǐŕı Matoušek. Geometric Discrepancy. Springer, Berlin, 2 edition, 2009.

Deborah G Mayo and Aris Spanos. Severe testing as a basic concept in a neyman–pearson philosophy of induction.
The British Journal for the Philosophy of Science, 57(2):323–357, 2006.

Kent McClymont and Ed Keedwell. Benchmark Multi-Objective Optimisation Test Problems with Mixed Encodings.
In Proceedings of the 2011 IEEE Congress on Evolutionary Computation, pages 2131 – 2138. IEEE, 2011.

Catherine C McGeoch. Experimental Analysis of Algorithms. PhD thesis, Carnegie Mellon University, Pittsburgh
PA, 1986.

Catherine C McGeoch. Toward an experimental method for algorithm simulation. INFORMS Journal on Computing,
8(1):1–15, 1996.

Michael D. McKay, Richard J. Beckman, and W. J. Conover. A comparison of three methods for selecting val-
ues of input variables in the analysis of output from a computer code. Technometrics, 21(2):239–245, 1979.
doi:10.2307/1268522.

Ivan Reinaldo Meneghini, Marcos Antonio Alves, António Gaspar-Cunha, and Frederico Gadelha Guimaraes. Scalable
and customizable benchmark problems for many-objective optimization. Applied Soft Computing, 90:106139, 2020.

50

https://arxiv.org/abs/2004.14014
http://dx.doi.org/10.2307/1268522

Olaf Mersmann, Mike Preuss, and Heike Trautmann. Benchmarking Evolutionary Algorithms: Towards Exploratory
Landscape Analysis. In Proc. of International Conference on Parallel Problem Solving from Nature, pages 73 – 82.
Springer, 2010.

Olaf Mersmann, Bernd Bischl, Heike Trautmann, Mike Preuss, Claus Weihs, and Günter Rudolph. Exploratory
Landscape Analysis. In Proc. of the 13th Annual Conference on Genetic and Evolutionary Computation, pages
829 – 836. ACM, 2011.

Olaf Mersmann, Bernd Bischl, Heike Trautmann, Markus Wagner, Jakob Bossek, and Frank Neumann. A Novel
Feature-Based Approach to Characterize Algorithm Performance for the Traveling Salesperson Problem. Annals
of Mathematics and Artificial Intelligence, 69(2):151 – 182, 2013.

Laurent Meunier, Yann Chevaleyre, Jérémy Rapin, Clément Royer, and Olivier Teytaud. On averaging the best
samples in evolutionary computation. In Proc. of Parallel Problem Solving from Nature. Springer, 2020a. Full
version available online at https://arxiv.org/abs/2004.11685.

Laurent Meunier, Carola Doerr, Jérémy Rapin, and Olivier Teytaud. Variance reduction for better sampling in
continuous domains. CoRR, abs/2004.11687, 2020b. URL https://arxiv.org/abs/2004.11687.

Douglas C Montgomery. Design and Analysis of Experiments. John Wiley & Sons, 9 edition, 2017.

Jorge J Moré and Stefan M Wild. Benchmarking derivative-free optimization algorithms. SIAM Journal on Opti-
mization, 20(1):172–191, 2009.

Jorge J Moré, Burton S Garbow, and Kenneth E Hillstrom. Testing Unconstrained Optimization Software. ACM
Transactions on Mathematical Software (TOMS), 7(1):17 – 41, 1981.

Mario Andrés Muñoz Acosta, Michael Kirley, and Saman K. Halgamuge. Exploratory Landscape Analysis of Contin-
uous Space Optimization Problems Using Information Content. IEEE Transactions on Evolutionary Computation
(TEVC), 19(1):74 – 87, 2015a.

Mario Andrés Muñoz Acosta, Yuan Sun, Michael Kirley, and Saman K. Halgamuge. Algorithm Selection for Black-
Box Continuous Optimization Problems: A Survey on Methods and Challenges. Information Sciences (JIS), 317:
224 – 245, 2015b.

Matthias Müller-Hannemann and Stefan Schirra. Algorithm Engineering: Bridging the Gap Between Algorithm
Theory and Practice. Springer, 2010.

Mario A. Muñoz and Kate A. Smith-Miles. Performance Analysis of Continuous Black-Box Optimization Algorithms
via Footprints in Instance Space. Evolutionary Computation, 25(4):529–554, December 2017.

Dima Nazzal, Mansooreh Mollaghasemi, H Hedlund, and A Bozorgi. Using Genetic Algorithms and an Indifference-
Zone Ranking and Selection Procedure Under Common Random Numbers for Simulation Optimisation. Journal
of Simulation, 6(1):56 – 66, 2012.

John A Nelder and Roger Mead. A simplex method for function minimization. The computer journal, 7(4):308–313,
1965.

Randal S Olson and Jason H Moore. Tpot: A tree-based pipeline optimization tool for automating machine learning.
In Workshop on automatic machine learning, pages 66–74, 2016.

Randal S Olson, William La Cava, Patryk Orzechowski, Ryan J Urbanowicz, and Jason H Moore. Pmlb: a large
benchmark suite for machine learning evaluation and comparison. BioData mining, 10(1):1–13, 2017.

Patryk Orzechowski, William La Cava, and Jason H Moore. Where are we now? a large benchmark study of recent
symbolic regression methods. In Proceedings of the Genetic and Evolutionary Computation Conference, pages
1183–1190, 2018.

Patryk Orzechowski, Franciszek Magiera, and Jason H Moore. Benchmarking manifold learning methods on a large
collection of datasets. In European Conference on Genetic Programming (Part of EvoStar), pages 135–150. Springer,
2020.

51

https://arxiv.org/abs/2004.11685
https://arxiv.org/abs/2004.11687

Tom Packebusch and Stephan Mertens. Low autocorrelation binary sequences. Journal of Physics A: Mathematical
and Theoretical, 49(16):165001, 2016. doi:10.1088/1751-8113/49/16/165001. URL https://doi.org/10.1088%

2F1751-8113%2F49%2F16%2F165001.

Ingo Paenke, Jürgen Branke, and Yaochu Jin. Efficient search for robust solutions by means of evolutionary algorithms
and fitness approximation. IEEE Trans. Evolutionary Computation, 10(4):405–420, 2006.

Sinno Jialin Pan and Qiang Yang. A Survey on Transfer Learning. IEEE Transactions on Knowledge and Data
Engineering, 22(10):1345–1359, Oct 2010.

Luis Paquete, Marco Chiarandini, and Thomas Stützle. Pareto Local Optimum Sets in the Biobjective Traveling
Salesman Problem: An Experimental Study. In Metaheuristics for Multiobjective Optimisation, pages 177 – 199.
Springer, 2004.

Fortunato Pesarin. Multivariate permutation tests: with applications in biostatistics, volume 240. Wiley Chichester,
2001.

Robin L Plackett and J Peter Burman. The design of optimum multifactorial experiments. Biometrika, 33(4):305–325,
1946.

Sergey Polyakovskiy, Mohammad Reza Bonyadi, Markus Wagner, Zbigniew Michalewicz, and Frank Neumann. A
Comprehensive Benchmark Set and Heuristics for the Traveling Thief Problem. In Proc. of the 2014 Annual
Conference on Genetic and Evolutionary Computation, pages 477 —- 484. ACM, 2014. ISBN 9781450326629.

Karl Raimund Popper. The Logic of Scientific Discovery. Hutchinson & Co, 2 edition, 1959.

Karl Raimund Popper. Objective Knowledge: An Evolutionary Approach. Oxford University Press, 1975.

Mike Preuss. Experimentation in Evolutionary Computation, pages 27–54. Springer, 2015.

Kenneth V. Price. Differential Evolution vs. The Functions of the 2nd ICEO. In Proc. of the IEEE International
Conference on Evolutionary Computation, pages 153 – 157. IEEE, 1997.

F. Pukelsheim. Optimal Design of Experiments. Wiley, New York NY, 1993.

Jeremy Rapin and Olivier Teytaud. Nevergrad - A gradient-free optimization platform. https://GitHub.com/

FacebookResearch/Nevergrad, 2018.

Carlo Raquel and Xin Yao. Dynamic multi-objective optimization: A survey of the state-of-the-art. In Shengxiang
Yang and Xin Yao, editors, Evolutionary Computation for Dynamic Optimization Problems, pages 85–106. Springer,
2013.

Ingo Rechenberg. Evolutionsstrategie ’94. frommann-holzboog, 1994.

Nery Riquelme, Christian von Lücken, and Benjamı́n Barán. Performance Metrics in Multi-Objective Optimization.
In Proc. of the 2015 Latin American Computing Conference (CLEI), pages 1 – 11. IEEE, 2015.

Howard Harry Rosenbrock. An Automatic Method for Finding the Greatest or Least Value of a Function. The
Computer Journal, 3(3):175 – 184, 1960.

Jonathan Rowe and Michael Vose. Unbiased black box search algorithms. In Proc. of Genetic and Evolutionary
Computation Conference, pages 2035 – 2042. ACM, 2011.

Ranjit K Roy. Design of experiments using the Taguchi approach: 16 steps to product and process improvement. John
Wiley & Sons, 2001.

Ragav Sachdeva, Frank Neumann, and Markus Wagner. The dynamic travelling thief problem: Benchmarks and
performance of evolutionary algorithms, 2020.

Thomas J Santner, Brian J Williams, William I Notz, and Brain J Williams. The design and analysis of computer
experiments, volume 1. Springer, 2003.

52

http://dx.doi.org/10.1088/1751-8113/49/16/165001
https://doi.org/10.1088%2F1751-8113%2F49%2F16%2F165001
https://doi.org/10.1088%2F1751-8113%2F49%2F16%2F165001
https://GitHub.com/FacebookResearch/Nevergrad
https://GitHub.com/FacebookResearch/Nevergrad

Thiago Santos and Sebastio Xavier. A convergence indicator for multi-objective optimization algorithms. Technical
report, Federal University of Ouro Preto, Ouro Preto, MG, Brazil, October 2018. arXiv:1810.12140v1 [cs.NE]
29 Oct 2018.

Michael A. Schumer and Kenneth Steiglitz. Adaptive step size random search. IEEE Transactions on Automatic
Control, 13:270–276, 1968.

Hans-Paul Schwefel. Evolutionsstrategie und numerische Optimierung. PhD thesis, Technische Universität Berlin,
Fachbereich Verfahrenstechnik, Berlin, Germany, 1975.

David F Shanno. Conditioning of quasi-newton methods for function minimization. Mathematics of computation, 24
(111):647–656, 1970.

Samuel Sanford Shapiro and Martin B Wilk. An analysis of variance test for normality (complete samples).
Biometrika, 52(3/4):591–611, 1965.

David J Sheskin. Handbook of parametric and nonparametric statistical procedures. crc Press, 2003.

Yuhui Shi and Russell Eberhart. A Modified Particle Swarm Optimizer. In Proc. of the 1998 IEEE International
Conference on Evolutionary Computation, within the IEEE World Congress on Computational Intelligence, pages
69–73. IEEE, 1998.

Ofer M. Shir, Carola Doerr, and Thomas Bäck. Compiling a Benchmarking Test-Suite for Combinatorial Black-Box
Optimization: A Position Paper. In Proc. of Genetic and Evolutionary Computation Conference, pages 1753 – 1760.
ACM, 2018.

Urban Škvorc, Tome Eftimov, and Peter Korošec. Understanding the Problem Space in Single-Objective Numerical
Optimization Using Exploratory Landscape Analysis. Applieed Soft Computing (ASOC), 90:106138, 2020.

Kate Smith-Miles and Thomas T. Tan. Measuring Algorithm Footprints in Instance Space. In 2012 IEEE Congress
on Evolutionary Computation. IEEE, 2012.

Krzysztof Socha and Marco Dorigo. Ant colony optimization for continuous domains. European journal of operational
research, 185(3):1155–1173, 2008.

Charles Stein. Inadmissibility of the usual estimator for the mean of a multivariate normal distribution. In Proc.
of the 3rd Berkeley Symposium on Mathematical Statistics and Probability, Vol. 1: Contributions to the Theory of
Statistics, pages 197–206. University of California Press, 1956.

Jörg Stork, Ágoston Endren Eiben, and Thomas Bartz-Beielstein. A new taxonomy of continuous global optimization
algorithms, 2018. URL https://arxiv.org/abs/1808.08818/. arXiv e-prints:1808.08818.

El-Ghazali Talbi. Metaheuristics: From Design to Implementation. John Wiley & Sons Inc., July 2009. ISBN
978-0-470-27858-1.

Ryoji Tanabe and Hisao Ishibuchi. An Easy-to-Use Real-World Multi-Objective Optimization Problem Suite. Applied
Soft Computing (ASOC), 89:106078, 2020.

John Wilder Tukey. Exploratory Data Analysis, volume 2. Reading, MA, 1977.

Tea Tušar, Dimo Brockhoff, and Nikolaus Hansen. Mixed-integer benchmark problems for single- and bi-objective
optimization. In Proceedings of the Genetic and Evolutionary Computation Conference, pages 718 —- 726. ACM,
2019.

Niki Veček, Marjan Mernik, and Matej Črepinšek. A chess rating system for evolutionary algorithms: A new method
for the comparison and ranking of evolutionary algorithms. Information Sciences, 277:656–679, 2014.

Vanessa Volz, Boris Naujoks, Pascal Kerschke, and Tea Tušar. Single- and Multi-Objective Game-Benchmark for
Evolutionary Algorithms. In Proceedings of the Genetic and Evolutionary Computation Conference, pages 647 –
655. ACM, 2019.

53

https://arxiv.org/abs/1808.08818/

Tobias Wagner. A subjective review of the state of the art in model-based parameter tuning. In Thomas Bartz-
Beielstein, Marco Chiarandini, Luis Paquete, and Mike Preuss, editors, Workshop on Experimental Methods for
the Assessment of Computational Systems (WEMACS 2010), Algorithm Engineering Report, pages 1–13. TU
Dortmund, Faculty of Computer Science, Algorithm Engineering (Ls11), 2010.

Thomas Weise. jsspinstancesandresults: Results, data, and instances of the job shop scheduling problem, 2019.
URL http://github.com/thomasWeise/jsspInstancesAndResults/. A meta-study of 145 algorithm setups from
literature on the JSSP.

Thomas Weise and Zijun Wu. Difficult features of combinatorial optimization problems and the tunable w-model
benchmark problem for simulating them. In Proceedings of the Genetic and Evolutionary Computation Conference
Companion, GECCO ’18, pages 1769 –– 1776. ACM, 2018. ISBN 9781450357647.

Thomas Weise, Raymond Chiong, Ke Tang, Jörg Lässig, Shigeyoshi Tsutsui, Wenxiang Chen, Zbigniew Michalewicz,
and Xin Yao. Benchmarking optimization algorithms: An open source framework for the traveling salesman
problem. IEEE Computational Intelligence Magazine, 9:40–52, August 2014.

L. Darrell Whitley, Soraya B. Rana, John Dzubera, and Keith E. Mathias. Evaluating Evolutionary Algorithms.
Artificial Intelligence (AIJ), 85(1-2):245 – 276, 1996.

L. Darrell Whitley, Jean-Paul Watson, Adele Howe, and Laura Barbulescu. Testing, Evaluation and Performance of
Optimization and Learning Systems. In Ian C. Parmee, editor, Adaptive Computing in Design and Manufacture
V, pages 27 – 39, London, 2002. Springer.

Frank Wilcoxon. Individual comparisons by ranking methods. Biometrics bulletin, 1(6):80–83, 1945.

David H. Wolpert and William G. Macready. No Free Lunch Theorems for Optimization. IEEE Transactions on
Evolutionary Computation, 1(1):67–82, April 1997.

Guohua Wu, Rammohan Mallipeddi, and Ponnuthurai Nagaratnam Suganthan. Problem definitions and evaluation
criteria for the CEC 2017 competition on constrained real-parameter optimization. Technical report, National
University of Defense Technology, Changsha, Hunan, PR China and Kyungpook National University, Daegu,
South Korea and Nanyang Technological University, Singapore, September 2017.

Lin Xu, Frank Hutter, Holger H. Hoos, and Kevin Leyton-Brown. SATzilla: Portfolio-Based Algorithm Selection for
SAT. Journal of Artificial Intelligence Resesearch (JAIR), 32:565–606, 2008.

Aimin Zhou, Qingfu Zhang, and Yaochu Jin. Approximating the Set of Pareto-optimal Solutions in Both the De-
cision and Objective Spaces by an Estimation of Distribution Algorithm. IEEE Transactions on Evolutionary
Computation, 13(5):1167 – 1189, 2009.

Shlomo Zilberstein. Using anytime algorithms in intelligent systems. AI Magazine, 17(3):73–83, 1996.

Eckart Zitzler. Evolutionary Algorithms for Multiobjective Optimization: Methods and Applications. PhD thesis, Ei-
dgenössische Technische Hochschule Zürich, Institut für Technische Informatik und Kommunikationsnetze, Zürich,
Switzerland, November 1999. URL https://sop.tik.ee.ethz.ch/publicationListFiles/zitz1999a.pdf. TIK-
Schriftenreihe Nr. 30.

54

http://github.com/thomasWeise/jsspInstancesAndResults/
https://sop.tik.ee.ethz.ch/publicationListFiles/zitz1999a.pdf

	1 Introduction
	2 Goals of Benchmarking Activities
	2.1 Visualization and Basic Assessment of Algorithms and Problems
	2.2 Sensitivity of Performance with Respect to Algorithm Design and Problem Characteristics
	2.3 Benchmarking as Training: Performance Extrapolation
	2.4 Theory-Oriented Goals
	2.5 Benchmarking in Algorithm Development
	2.6 Open Issues and Challenges

	3 Problem Instances
	3.1 Desirable Characteristics of a Problem Set
	3.2 Evaluating the Quality of a Problem Set
	3.3 Available Benchmark Sets
	3.4 Open Issues

	4 Algorithms
	4.1 Algorithm Families
	4.2 Hyperparameter Handling in Benchmarks
	4.3 Algorithm Portfolio Selection Guideline
	4.4 Discussion and Open Issues

	5 How to Measure Performance?
	5.1 General Concepts
	5.2 Quality Metrics
	5.3 Aggregating Metrics over Multiple Runs
	5.4 Open Issues

	6 How to Analyze Results?
	6.1 Three-Level Approach
	6.2 Exploratory Data Analysis
	6.2.1 Motivation
	6.2.2 The Glorious Seven
	6.2.3 Graphical Tools

	6.3 Confirmatory Analysis
	6.3.1 Motivation
	6.3.2 Assumptions for the Safe Use of the Parametric Tests
	6.3.3 A Pipeline for Selecting an Appropriate Statistical Test

	6.4 Relevance Analysis
	6.4.1 Motivation
	6.4.2 Severity: Relevance of Parametric Test Results
	6.4.3 Multiple-Problem Analysis

	6.5 Open Issues

	7 Experimental Design
	7.1 Design of Experiments (DoE)
	7.2 Design Decisions
	7.3 Designs for Benchmark Studies
	7.4 How to Select a Design for Benchmarking
	7.5 Tuning Before Benchmarking
	7.6 Open Issues

	8 How to Present Results?
	8.1 General Recommendations
	8.2 Reporting Methodologies
	8.3 Open Issues

	9 How to Guarantee Reproducibility?
	10 Summary and Outlook
	10.1 Summary
	10.2 Outlook

	Glossary
	References

