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Abstract—The optimization of complex real-world problems
might benefit from well tuned algorithm’s parameters. We pro-
pose a methodology that performs this tuning in an effective and
efficient algorithmical manner. This approach combines methods
from statistical design of experiments, regression analysis, design
and analysis of computer experiments methods, and tree-based
regression. It can also be applied to analyze the influence of
different operators or to compare the performance of different
algorithms. An evolution strategy and a simulated annealing
algorithm that optimize an elevator supervisory group controller
system are used to demonstrate the applicability of our approach
to real-world optimization problems.

I. INTRODUCTION
This article is dedicated to the question “how to find a set

of working parameters for direct search algorithms when the
number of allowed experiments is very low”. This problem
is relevant for the optimization of many real-world applica-
tions (RWA) [1]. Experiences gained during the last years at
the collaborative research center “Design and Management
of Complex Technical Processes and Systems by Means of
Computational Intelligence Methods” in Dortmund show that
engineers and other optimization practitioners adopt “standard
parameterizations” found in the literature [2]. As experts for
their specific optimization problem they want to apply, but
not to analyze optimization algorithms. Hence, practitioners
might be interested in a comprehensive method that supports
the finding of suitable algorithm parameters.
Each algorithm-problem combination requires a specific

parameterization. There is no standard parameter setting that
works equally well on every problem. The no free lunch the-
orem for search states that there does not exist any algorithm
that is better than another over all possible instances of opti-
mization problems [3]. Many methods have been proposed in
the past to tackle this problem. For instance, Jelasity presents
a framework for extracting knowledge “that characterizes a
whole domain” automatically [4]. Our goal is similar, but we
will concentrate on single problem instances only. Therefore,
it is related to the statistical methods developed by Kleijnen.
His seminal book “statistical tools for simulation practitioners”
proposes statistical tools such as regression analysis, analysis

of variance etc. [5]. Kleijnen and Pala describe a situation
where only a limited number of preliminary investigations are
possible to find good parameter settings [6]. Unfortunately,
many of these methods require special assumptions (normally
distributed data with constant variance), and their results are
sometimes hard to interpret.
Santner et al. describe modern statistical methods for de-

signing and analyzing deterministic computer experiments.
These modern techniques will be referred to as design and
analysis of computer experiments (DACE) methods in the
remainder of this paper [7]. They have been successfully
applied to reduce the computational cost of optimization
problems involving time–consuming function evaluations [8].
Tree based methods (classification and regression trees,

CART) are intuitively to interpret and do not require assump-
tions regarding the underlying distribution [9]. We propose a
combination of classical statistical tools, DACE and CART.
The main focus of this article lies on complex real-world

optimization problems. Therefore we present a comprehensive
example that describes problems of practical relevance: eleva-
tor supervisory group control, as one instance of “optimization
via simulation” problems. We will demonstrate the applicabil-
ity of our approach to two popular direct search algorithms:
simulated annealing and evolution strategies.
The remainder of this article is structured as follows:

in Section II, we introduce the elevator supervisory group
control problem. Section III describes evolutionary algorithms
and simulated annealing. A statistical methodology to set up
computer experiments in an efficient manner is discussed in
Section IV. Experimental results are presented and discussed
in Section V. Finally, Section VI presents a summary and an
outlook.

II. ELEVATOR GROUP CONTROL
The growing number of high rise buildings in the last

decades is a challenge to the elevator industry. For instance,
almost all new buildings in modern Hong Kong have more
than 30 floors. The elevator group controller is the central part
of an elevator system. It assigns elevators to customer service



calls. These assignments are based on a certain heuristic or
policy. This policy should be optimal with respect to overall
service quality, customer waiting and transport times, traffic
throughput, energy consumption, transportation capacity of the
overall system, and many more goals. Especially in high-
rise buildings elevator controllers have to meet many of these
(sometimes conflicting) goals, making this problem a multi-
criteria optimization problem.
In this article we will concentrate on one objective only: the

minimization of the time passengers have to wait after having
requested service until they can enter the elevator car. This
time-span is called the waiting time.
We consider control strategies that have been implemented

by Fujitec, one of the world’s leading elevator manufacturers.
Fujitec developed a neural network (NN) based controller that
is trained by a set of fuzzy controllers. Each fuzzy controller
represents control strategies for different traffic situations such
as “up-peak”-traffic in office buildings in the morning, or
“balanced” traffic” with lower intensity during the day. The
resulting control strategies are robust, but not very efficient.
The control strategy of the NN depends on the network

structure and the neural weights. Some of these weights are
variable, whereas the network structure remains unchanged.
Optimization of these weights might lead to an improved
controller behavior [10]. A discrete-event based elevator group
simulator has been provided by Fujitec. Hence, this problem
can be characterized as an “optimization via simulation”
problem.

Optimization via Simulation
Computer simulations are suitable means to optimize many

actual real-world problems. Imagine e.g. a sequence of traffic
signals along a certain route or elevators movements in high-
rise buildings. “Optimization via simulation” subsumes all
problems in which the performance of the system is deter-
mined by running a computer simulation. As the result of
a simulation run is a random variable, we cannot optimize
the actual value of the simulation output, or the performance
of the system y. The goal of optimization via simulation is
to optimize the expected performance E[y(x1, x2, . . . , xn)],
where the xi denote the controllable input variables [11].
In general, we consider global optimization problems. Func-

tion values may be provided by some sort of “black box”,
e.g. by running a simulation. For a given collection of function
arguments corresponding function values can be generated,
but not much more is supposed to be known. Random search
algorithms and related stochastic optimization approaches are
popular methods to optimize these problems [2].

III. DIRECT SEARCH ALGORITHMS
Evolutionary algorithms (EA) are randomized search heuris-

tics that are well-known for their problem solving capabilities,
especially for complex real-world applications. They can be
characterized as direct search methods, since they do not
construct a model of the fitness function [12]. Additionally
to evolution strategies (ES), that build a special class of EA,

TABLE I
EXOGENOUS PARAMETERS OF A “STANDARD” EVOLUTION STRATEGY.

FROM [13]. THE ∗ SYMBOL DENOTES QUALITATIVE FACTORS.

Symbol Factor Parameter Range Typical Values
µ P Number of par-

ent individuals
IN 15

ν = λ/µ S Offspring-parent
ratio

IR+ 7

σ(0)
i InitS Initial standard

deviations
IR+ 3

κ K Maximum age IR+ 1
cτ TauMult Multiplier for

individual and
global mutation
parameters

IR+ 1

nσ NSigma∗ Number of stan-
dard deviations.
D denotes the
problem dimen-
sion

{1, D} D

ρ Rho∗ Mixing number {1, µ} µ
rx XReco∗ Recombination

operator for
object variables

{i, d} d (discrete)

rσ SReco∗ Recombination
operator
for strategy
variables

{i, d} i (intermediate)

a simulated annealing algorithm will be considered in this
article.

A. Evolution Strategies
An ES-algorithm run can be described briefly as follows: the

parental population is initialized at time (generation) t = 0.
Then λ offspring individuals are generated in the following
manner: a parent family of size ρ is selected randomly from
the parent population. Recombination is applied to the object
variables and the strategy parameters. The mutation operator is
applied to the resulting offspring vector. Selection is performed
to generate the next parent population. If a termination crite-
rion is not fulfilled, the generation counter (t) is incremented
and the process continues with the generation of the next
offspring.
Thus, an ES requires the specification of the following

exogenous parameters before an optimization run is started:
1) Number of parent individuals: µ.
2) Number of offspring individuals: λ.
Based on µ and λ, the selection pressure ν is defined as
the offspring–parent ratio λ/µ. For given µ and ν values,
λ is calculated as µ ·ν and rounded to the nearest whole
number.

3) Initial mean step sizes (standard deviations of the mu-
tations of the decision variables): σ(0)

i , i = 1, . . . , nσ.
The algorithms’ performance may increase if problem
specific σ(0)

i values for each dimension are chosen. To
prevent an exponential blow up in the number of ES
parameterizations, we assume scaled object variables.
Therefore, only one initial step size is necessary for
all dimensions: σ(0) = σ(0)

i ∀ i ∈ {1, . . . , D}. The



relevance of this parameter decreases with an increasing
number of permitted iteration steps. As many real-world
optimization problems permit only a small number of
iterations, the selection of an adequate σ(0) value might
improve the performance.

4) Number of standard deviations: nσ with 1 ≤ nσ ≤ D.
D denotes the problem dimension.

5) Multiplier for the individual mutation (learning) param-
eter and the global mutation parameter: cτ . The value
cτ is used as a scaling parameter for τ0 and τ : τ0 =
cτ/

√
2D and τ = cτ/

√
2
√

D. Mutation is based
on the extended log-normal rule, that enables learning
perpendicular mutation ellipsoids [14].1

6) Mixing number: ρ.
The mixing number denotes the size of the parent family
(mating population) that is chosen from the parent pool
of size µ to create one offspring. The mixing number is
treated as a qualitative factor with two levels: b denotes
the bisexual scheme with ρ = 2, whereasm is the multi-
sexual recombination scheme with ρ = µ.

7) Recombination operator for object variables: rx.
We consider discrete (d) and intermediate (i) recombi-
nation methods that depend on the mixing number ρ.

8) Recombination operator for strategy variables: rσ .
9) Selection mechanism, maximum life span: κ.
Plus-strategies (µ+λ), and comma-strategies (µ, λ) can
be generalized by introducing the parameter κ that de-
fines the maximum age (in generations) of an individual.
If κ is set to 1, we obtain the comma-strategy, if κ equals
+∞, we model the plus-strategy.

Beyer and Schwefel provide a comprehensive introduction
to this special class of EA [14]. An in-depth discussion of
evolutionary algorithms and other direct search methods can
be found in [15].2

B. Simulated Annealing
Simulated annealing (SANN) is an (imperfect) analogy with

the following phenomenon from thermodynamics: molecules
of a liquid move freely at high temperatures. This mobility is
lost, if the liquid is cooled down. Slow cooling enables the
system to reach its minimum energy state: the molecules form
a pure crystal that is completely ordered. If this cooling is too
quick, a suboptimal state is reached.
Metropolis et al. [16] incorporated this method into numer-

ical calculations. The method SANN in this article is taken
from the freely available software package R [17]. It uses the
Metropolis function for the acceptance probability. The next
candidate point is generated from a Gaussian Markov kernel
with scale proportional to the actual temperature. Temperatures
are decreased according to the logarithmic cooling schedule
as given in [18]. The exogenous parameters for the standard

1Although cτ = 1 leads to “standard” values that can be found in the
literature: τ0 = 1/

√
2D and τ = 1/

p
2
√

D, we cannot recommend
this parameterization. I.e., high dimensional fitness functions might require
completely different τ resp. τ0 values.
2[12] is an updated and translated version of [15].

TABLE II
EXOGENOUS PARAMETERS FOR THE STANDARD SIMULATED ANNEALING
(SANN).DESCRIPTION TAKEN FROM THE R DOCUMENTATION [17].

Symbol Factor Parameter Default Values
t temp Controls the SANN method.

Starting temperature for the cool-
ing schedule

10

m tmax Number of function evaluations at
each temperature for the SANN
method

10

simulated annealing are shown in Tab. II. In addition to these
parameters the SANN requires the specification of a vector of
scaling values for the parameters.

IV. EXPERIMENTAL ANALYSIS OF SEARCH HEURISTICS

The execution of a computer optimization program will be
treated as an experiment [5]. The input parameters are called
factors, whereas the output performances are called responses.
We will use statistical experimental design to perform these
experiments in an efficient manner. Our goal is to determine
which of the exogenous algorithm’s parameters have the great-
est effect on the performance measure (screening), or which
parameter setting might lead to an improved performance
(modeling and optimization).
Experimental designs are well-known means in many other

scientific disciplines (biology, psychology) to decide which
particular configuration is tested in advance. As randomness is
replaced by pseudo-randomness, computer experiments enable
the experimenter to proceed from passive observation to active
experimentation [5].
The software library rpart developed by Therneau and

Atkinson was used to construct the regression trees [19]. It
is part of the statistical software package R, that was used to
analyze the experimental results [17]. The MATLAB toolbox
DACE (design and analysis of computer experiments) was used
to construct the Kriging approximation models [20].

A. Experimental design (DOE)

The “one-factor-at-a-time” method has been considered for
a long time as the only correct way to perform experiments.
It varies experimental factors one at a time, whereas the
remaining factors are held constant. However, this method
turned out to be inefficient in terms of the experimental
runs needed: i.e., it is necessary to assume that there are no
interactions, that means that the effect would be the same at the
other settings of the other variables [21]. 2k factorial designs
are much more economical strategies than “one-factor-at-a-
time” sequences of runs. The experimenter chooses two levels
for each factor and performs optimization runs at each of the
2k factor level combinations. The capital letters in the first
row of Tab. III represent factors, and a minus and a plus sign
denote the two levels of the factor. Choosing the levels “+”
and “-” as 7 and 20 for the factor P respectively, leads to the
configuration shown in the second column of Tab. IV.



TABLE III
FRACTIONAL FACTORIAL 29−5

III DESIGN. THIS DESIGN IS USED FOR
SCREENING THE ES PARAMETERS.

A B C D E= F= G= H= J=
ABC BCD ACD ABD ABCD

1 − − − − − − − − +
2 + − − − + − + + −
3 − + − − + + − + −
4 + + − − − + + − +
5 − − + − + + + − −
6 + − + − − + − + +
7 − + + − − − + + +
8 + + + − + − − − −
9 − − − + − + + + −
10 + − − + + + − − +
11 − + − + + − + − +
12 + + − + − − − + −
13 − − + + + − − + +
14 + − + + − − + − −
15 − + + + − + − − −
16 + + + + + + + + +

2k−p fractional factorial designs are suitable to estimate
factor effects when restricted computational resources pro-
hibit full factorial designs or when many factors are under
consideration. They can estimate the main effects and some
interactions. Box et al. present rules for constructing fractional
factorial designs [21].

B. Regression Analysis
Consider the linear regression model: y = Xβ + ϵ. Given

the results yi from n optimization runs with corresponding
experimental settings xi (i = 1, . . . , n), we can apply least
squares methods to determine the values of q regression
coefficients βj (j = 1, . . . , q ≤ n), that minimize the sum of
squares deviations between the observed and the fitted values
in the regression model.
The statistical software package R provides the function

stepAIC to perform an automated stepwise regression model
selection based on Akaike’s information criterion (AIC). AIC
determines a log-likelihood value, according to the formula
2*(-maximized log-likelihood + npar), where npar represents

TABLE IV
FRACTIONAL FACTORIAL DESIGN FOR EVOLUTION STRATEGIES.

µ ν σ(0) nσ cτ ρ rx rσ κ
1 7 4 1 1 1 2 i i 1
2 20 4 1 1 2 2 d d +∞
3 7 7 1 1 2 10 i d +∞
4 20 7 1 1 1 20 d i 1
5 7 4 5 1 2 10 d i +∞
6 20 4 5 1 1 20 i d 1
7 7 7 5 1 1 2 d d 1
8 20 7 5 1 2 2 i i +∞
9 7 4 1 12 1 10 d d +∞
10 20 4 1 12 2 20 i i 1
11 7 7 1 12 2 2 d i 1
12 20 7 1 12 1 2 i d +∞
13 7 4 5 12 2 2 d d 1
14 20 4 5 12 1 2 i i +∞
15 7 7 5 12 1 10 d i +∞
16 20 7 5 12 2 20 i d 1

the number of parameters in the fitted model, to determine the
relevant parameters in the regression model. This value is an
analogue to the cost-complexity parameter from Eq. 2.
How regression analysis can be used to perform a line

search to improve the algorithm’s performance is described
in detail in [5], [1]. Kleijnen provides an in-depth discussion
of regression methods in simulation, Bartz–Beielstein gives an
introduction and overview over regression analysis and related
methods for direct search algorithms.

C. Tree Based Regression
The screening phase during the DOE analysis is concerned

with the search for interesting parts of the data. An exact
model is only of minor importance at this stage of exploration.
Tree-based regression methods might be advantageous, be-
cause they are simple and easy to interpret. Furthermore, they
do not require specific assumptions regarding the distribution
of the (fitness) values yi.
Another attraction of tree based methods is their ability to

handle missing values. Surrogate splits can be used if missing
values are found in the tree growing phase.
Regression trees can be used for a combination of qualitative

and quantitative factors such as population size and selection
operators. Growing and pruning regression trees can be seen
as a type of variable selection [22].
A regression tree is constructed in the following manner: the

variable, that splits the tree best, is selected first. After splitting
the data into two groups, this procedure is applied separately
to each subgroup until a minimum size of the subgroup is
reached (5 is a common value) or until no improvement can
be made [19]. Cross-validation is used in a second stage of
the tree construction to prune the tree.
1) Splitting criteria: In the terminology of classical analy-

sis of variance, the splitting criterion can be characterized as
a rule to maximize the between-groups sum-of-squares. Let
SST denote the sums of squares for the node, and SSL, SSR

the sums of squares for the left and right son. Then

SST − (SSL + SSR) (1)

is used as a splitting criterion.
2) Cutting trees: To discuss the cutting methods in more

detail, we introduce some symbols: y denotes the arithmetic
mean of N values, y =

∑N
i=1 yi/N . The deviance at leaf i

is defined as Di =
∑

cases j(yj − yi)2, and R(T ) is the sum
of Di over the leaves that belong to the subtree T . |T | is the
number of terminal nodes in the tree.
A tree may be too complex to describe the data concisely.

Pruning is an analogue to variable selection in regression
(principle of parsimony). Cost-complexity pruning considers
rooted subtrees of the tree T and “snips” off the least important
splits. Consider the cost-complexity parameter k. As the set
of rooted subtrees of T that minimize

Rk(T ) = R(T ) + k · |T |, (2)

is nested, we can find the optimal tree by sequential snipping
on the current tree [9], [22].



rpart combines tree construction and pruning in one
method. The threshold complexity parameter cp plays a central
role in the rpart implementation. Let T0 denote the tree with
no splits. The following scaled version of Eq. 2 is implemented
in rpart:

Rcp(T ) = R(T ) + R(T ) · cp · |T | · R(T0). (3)

This criterion can be interpreted as follows: let R2 denote the
proportion of the total variation about the mean y explained
by the regression:

R2 =
∑

(ŷi − y)2/
∑

(yi − y)2. (4)

If any split does not increase the overall R2 of the model by
at least cp, than this split is not considered any further by the
program [19]. The rpart program runs by default a 10-fold-
cross-validation.
3) Complexity: The standard error (SE) and cross validation

provide a rule (1-SE rule) to find the best number of splits: it
takes the smallest cross validation error, adds the correspond-
ing standard error to determine the least cross validation error
that is smaller than this number. rpart’s plotcp method
enables a visual selection of a suitable cp value based on the
1-SE rule.

V. EXPERIMENTAL RESULTS
The applicability of our approach to real-world optimization

problems is demonstrated in this section. The tree-based
regression approach is applied to three important tasks of
experimental research: the analysis of the influence of existing
operators, the integration of new or modified operators, and the
comparison of different algorithms.
Eiben distinguishes three types of optimization problems:

design problems (create one excellent solution at least once),
repetitive problems (find good solutions for different problem
instances), and on-line control problems (repetitive problems
that have to be solved in real-time) [23]. As the elevator
supervisory group control problem belongs to the second type
of problems, 5, 000 fitness function evaluations have been
chosen as a termination criterion (more than 90% of the
execution time is spent on fitness evaluations).
As mentioned in Sec. II, the starting point of the opti-

mization has been determined by a set of fuzzy controllers.
This point is already close to the optimum (ceiling effect).
Therefore, also minor improvements of the fitness values are
relevant. Fitness function values smaller than 32.0 (our goal
is to minimize the waiting time) have not been found so
far. In the following, Nexp denotes the number of performed
experiments for each configuration (the repeats with different
random seeds).

A. Analyzing existing operators
Based on simulation data provided by Fujitec Ltd. (Japan)

the influence of exogenous parameter settings on the per-
formance of evolution strategies was investigated at NuTech
Solutions GmbH (Germany) and the Collaborative Research
Center SFB 531, University of Dortmund (Germany). It was an

TABLE V
EVOLUTION STRATEGY: SYMBOLS AND LEVELS. VALUES CHOSEN WITH

RESPECT TO RESULTS FOUND DURING OPTIMIZATION RUNS WITH

DIFFERENT CONTROLLER. THE ∗ SYMBOL DENOTES QUALITATIVE

FACTORS.

Symbol Factor −1 Level +1 Level
µ P 7 20
ν S 4 7
σ(0) InitS 1 5
cτ TauMult 1 2
κ K +∞ 1
nσ NSigma∗ 1 12
ρ Rho∗ b m
rx XReco∗ i d
rσ SReco∗ i d

TABLE VI
FIRST EXPERIMENTS TO ANALYZE THE INFLUENCE OF κ SELECTION ON

THE PERFORMANCE OF AN EVOLUTION STRATEGY OPTIMIZING THE

ELEVATOR GROUP CONTROL PROBLEM. 32 EXPERIMENTS.
Estimate Std. Error t value Pr(>|t|)

(Intercept) 34.27 0.2785 −1.2E+02 7.937E−40
P −0.03506 0.01815 1.9 0.06356

InitS −0.096 0.05964 1.6 0.1187
Rho1 0.1728 0.1193 −1.4 0.1586

interesting question whether or not the kappa selection scheme
improves the performance. Starting point of our investigations
was the data that have been collected during optimization
runs in the last years. These data gave no clear evidence
whether or not it might be beneficial to use kappa strategies.
As the elevator group controller was modified (updated) during
these investigations several times, results are not directly
comparable. New experiments with the actual controller have
been performed for this article. Future updates of the controller
may change its behavior considerably. Therefore, methods
used to obtain the results are of primary interest, whereas the
results per se are of temporary interest only.
Previous results, that were obtained with a different con-

troller version, recommended the experimental design shown
in Tab. V. Additionally to these 16 experimental runs, a second
set of 16 runs was performed. The latter were based on
run configurations shown in Tab. I. These configurations are
discussed in detail in [1].
The following experiments were performed to investigate

the question if the kappa selection scheme (κ = 4) improves
the performance of an evolution strategy when optimizing the
elevator group control problem.
Experiments, based on the experimental design from

Tab. IV, were performed to gather the data. Each experimental
setting was repeated only once due to the costly function
evaluations. The all time best fitness function value, that has
been found during the optimization run, has been chosen as
response value y.
The 1-SE rule selects a tree with 2 splits. Figure 1 shows the

unpruned tree. The first split partitions the n = 32 observations
into groups of 8 and 24 events. The first group includes



|

P=7,10,20

K=1

P=2

K=4

33.64
n=32

33.43
n=24

33.19
n=12

33.67
n=12

34.28
n=8

Fig. 1. Regression tree. The label of each node shows the mean fitness of an evolution strategy optimizing the elevator group control problem. The first
split partitions the 32 events in the root node into two groups of 8 and 24 events. The average fitness value in the first (left) subnode reads 33.43, it is 34.28
in the second subnode. The population size (P = µ) was chosen to perform the first split. The second split is based on the kappa value. The corresponding
cost-complexity plot and the regression analysis show that only the first split is significant.

experimental runs with a population size of µ = 2 and an
average value of 34.28, the second group contains population
sizes of µ = 7, 10 and 20 with a fitness value of 33.43.
The corresponding classical regression analysis indicates

that the population size µ has a significant effect. The reduced
regression model in Tab. VI includes the initial step size σ(0)

and the size of the mating pool ρ, but these factors are not
highly significant. Finally, the algorithm was run with the
tuned parameter setting. The tuned algorithm was able to find
a solution with fitness y = 32.252.
These first results from 32 experiments indicate that an

increased population size improves the performance. Classical
regression analysis and tree-based regression support this
assumption. DACE methods have not been used at this stage
of experimentation, since the model contains 4 qualitative
factors. Although a further increase of the population size is
theoretically possible, we did not analyze this option any fur-
ther due to the huge computational effort of these simulation
experiments. We will concentrate our analysis on enhanced
selection techniques such as threshold selection (cf. the newly
developed Gupta selection scheme introduced below) instead.
The kappa selection scheme did not produce the expected
benefit.
Summarizing we can state that there is no evidence that

kappa selection improves the ES performance in this case. A
comma strategy performs equally good or even better than
the kappa strategy. The population size seems to be more

important than introducing an aging mechanism.
It is important to annotate that this result applies to this spe-

cific instance of an optimization problem only. Other elevator
controllers might exhibit a different behavior. Results from
the final run supported the assumption that our conclusions
are correct.

B. Development of a new operator and comparision to existing
standards
A common problem for direct search methods is the se-

lection of a subset of k “good” candidate out of a set of n
(1 ≤ k < n) under uncertainty. The goal of subset selection
is to identify a subset containing the best candidate. Gupta
proposed a single stage procedure (Gupta selection), that is
applicable when the fitness of the candidates are balanced and
are normal with common variance [24].
From N ≥ 2 candidate solutions X1, . . . , XN n fitness

values Yi1, . . . , Yin (1 ≤ i ≤ N) are determined. Candidate
Xi has a fitness value with unknown mean µi and common
unknown variance σ2

i . The sample mean of the ith candidate
is yi, and y[1] ≤ . . . ≤ y[N ] is the related order statistic. The
selection of a (random-size) subset that contains the “best”
candidate is called a correct selection (CS). Based on the
pooled estimate ŝ2 of the common variance σ2 (with m =
N · (n− 1) degrees of freedom) the ith candidate is included
in the selection if yi ≥ y[N ]−hŝ2

√
2/n. This selection scheme

guarantees that for a pre-specified constant P ∗ a correct



TABLE VII
COMPARISON OF PLUS TO GUPTA SELECTION (MINIMIZATION).

Configuration median mean fitness s.d. best Nexp
Plus selection 33.4980 33.6592 0.5784 32.8920 10

Gupta selection 33.1220 33.0736 0.4420 32.2040 10

selection is made with probability P{CS|(µ, σ2} ≥ P ∗. The
equicoordinate critical point of the equicorrelated multivariate
central t-distribution h = T (1−P∗)

N−1,m,1/2 plays an important role
in this selection scheme.
Applying the Gupta selection to evolutionary algorithms

leads to dynamic population sizes: if the fitness function
values are disturbed by noise, the population size is increased,
whereas the population size is reduced in certain environments.
To reduce the required memory (and to keep the implemen-
tation simple), for the ith candidate its averge fitness value
yi and the sum of its squared fitness values

∑k
t=1 y2

i (t) only
have to be stored. Only the last 5 fitness values are used to
determine these values (sliding window technique).
In order to demonstrate the performance of new algorithms

or operators, it is a common practice to compare them to
standard implementations. We propose a modification of this
practice: for a given (set of) test problems, compare the tuned
new algorithm to the tuned standard algorithm and mention
the extra costs for the tuning procedures.
As the Gupta selection scheme belongs to the plus selection

schemes, a comparison to the “classical” plus selection scheme
was performed. The corresponding evolution strategies have
been tuned with regression tree methods and the results from
runs with the tuned parametrizations have been compared. The
parametrizations of the tuned algorithms read: µ = 15, ν = 7,
σ(0) = 3, nσ = 36, cτ = 1, ρ = m, rx = i, rσ = d, and
µ = 10, ν = 7, σ(0) = 5, nσ = 36, cτ = 1, ρ = m, rx =
i, rσ = d, for the plus and Gupta selection respectively. A
comparison of tuned evolution strategies with plus and Gupta
selection respectively is shown in Tab. VII. A t-test reveals
that the difference is significant.
The Gupta selection scheme consists of several components:

the reevaluation, the sliding window technique, the “cooling
scheme” for the probability of a correct-selection, the variation
of the population size etc. In addition to the analysis presented
here, a detailled analysis of the significance of these compo-
nents has to be performed. This analysis may lead to a deeper
understanding of the selection scheme and might be helpful
to close the gap between experiment and theory.

TABLE VIII
SIMULATED ANNEALING. FULL FACTORIAL 22 DESIGN

A B tmax temp
1 − − 5 5
2 + − 10 5
3 − + 5 10
4 + + 10 10

C. Simulated Annealing
The simulated annealing algorithm requires the determina-

tion of two exogenous strategy parameters only, see Tab. II:
starting temperature for the cooling schedule, and the number
of function evaluations at each temperature. Since these are
only quantitative factors, the SANN algorithm provides an
interesting example to compare classical regression analysis,
tree-based regression and DACE methods.
In the following, we will tackle the question: which ex-

ogenous strategy parameters influence the performance of
SANN optimizing the elevator group control problem instance
provided by Fujitec significantly?
The problem instance used for these experiments differs

from the optimization problem in the previous examples. They
are based on a different controllers, their fitness function
values are not comparable.
Due to the small number of parameters, a 22 full factorial

design shown in Tab. VIII was chosen to perform the first
experimental runs. The overall mean of the fitness values reads
1382.0. The tree based analysis leads to the hypothesis that
10 is a good value for both Temp and TMax. Additionally,
TMax appears to have an greater influence on the algorithm’s
performance than Temp.
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Fig. 2. Kriging approximation of the simulated annealing parameterization.
The tree based regression analysis recommends a similar parameter setting.
Classical regression techniques failed.

The classical regression analysis approach fails for this
problem instance. It was not able to determine signicficant
factors.
Figure 2 shows a Kriging surface approximation based on

a Gaussian correlation function [20]. The results from this
model are in correspondence with the tree-based result. The
best function values might be obtained in the vicinity of the
point (Temp, TMax) = (10, 10).
Table IX presents a comparison of the different regression

techniques: a technique is considered as flexible, if it can cope
with different types of variables (quantitative, qualitative) and
does not require assumptions on the underlying distribution.
The results should be plausible, even complex interactions



should be detected. Exactness can be related to the question
whether the method is able to model gathered data and to
predict new values. Finally, we are judging the availabilty of
related literature and software packages as well.

TABLE IX
COMPARISON OF DIFFERENT ANALYSIS METHODS.

Classical
regression
analysis [25]

Tree-based re-
gression [9]

DACE [7]

Flexibility - ++ -
Plausibility + ++ ++
Exactness - +- ++
Availability ++ +- -

This overview reveals that a comparison of different tech-
niques is useful. E.g. tree-based regression can be used at the
first stage to screen out the important factors. If only a few
quantitative factors remain in the model, DACE techniques
can be applied to get an exact approximation of the functional
relationsship between parameter settings and algorithms per-
formance. Sequential designs have been applied successfully
during our analysis [7].

VI. SUMMARY AND OUTLOOK

A method was presented that enables the optimization
practitioner to determine relevant parameter settings for op-
timization algorithms. Based on statistical design of experi-
ments, classical regression analysis, tree based regression, and
DACE models, the practitioner can select parameters in a pre-
experimental phase, that lead to an improved performance of
the algorithm. Summarizing we can state:

• Regression trees appear to be useful tools to comple-
ment classical and modern regression analysis techniques.
The tree-based approach is consistent with the other
approaches and sometimes easier to interpret than these
methods [26]. Like DACE methods, tree based methods
can extract information from the data even if the classical
approach fails.

• Standard parameterizations of search algorithms might
be improved significantly. This was demonstrated for a
variant of a simulated annealing and an evolution strategy.

• Although test-suites might give hints for good starting
points, it is worth to tune the parameterizations, especially
when RWA are to be optimized.

• The applicability of our approach to an NP-hard sequen-
tial decision-making problem, the elevator supervisory
group control, was demonstrated.

The approach presented here can also be applied to compare
different optimization algorithms, e.g. ES to SANN, or to
validate theoretical results. However, this is beyond the scope
of this article, and will be subject of a further study.
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Metamodel-assisted evolution strategies. In J. J. Merelo Guervós et al.,
editor, Parallel Problem Solving from Nature – PPSN VII, Proc. Seventh
Int’l Conf., Granada, pages 361–370, Berlin, 2002. Springer.

[9] L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone. Classification
and Regression Trees. Wadsworth, 1984.

[10] T. Beielstein, C.P. Ewald, and S. Markon. Optimal elevator group
control by evolution strategies. In Proc. 2003 Genetic and Evolutionary
Computation Conf. (GECCO’03), Chicago, Berlin, 2003. Springer.

[11] J. Banks, J. S. Carson II, B. L. Nelson, and D. M. Nicol. Discrete Event
System Simulation. Prentice Hall, 2001.

[12] H.-P. Schwefel. Evolution and Optimum Seeking. Sixth-Generation
Computer Technology. Wiley Interscience, New York, 1995.
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