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Abstract

Statistical design of experiments methods are used to improve the
parameterization of a multi-objective evolution strategy on an airfoil
design problem. The application of these methods require a mea-
sure to compare the approximated Pareto fronts generated by a multi-
objective evolution strategy. A new technique is proposed that deter-
mines intersection points of attainment surfaces with cross-lines. The
parameterization of the evolution strategy and consequently the results
of the airfoil design test-case under investigation can be improved.

1 Introduction

This article deals with evolution strategies (ES) that build a special class of
evolutionary algorithms (EA), see [BS02] for a comprehensive introduction.
We will investigate different ES parameter settings using DOE techniques.
This will lead to results, that are tailored for each specific optimization
problem. Nevertheless, the methodology presented in this paper is applicable
to any kind of parameterizable search algorithm such as simulated annealing,
tabu search or genetic algorithms.

Stochastic search algorithms such as evolutionary algorithms are consid-
ered as alternatives to classical search and optimization techniques. The
latter generate one single optimized solution in one run whereas the former,
as population based algorithms, can produce a set of solutions. Optimization
runs require the specification of exogenous algorithm parameters such as the
population size or the selective pressure. Since many real-world problems
are computationally expensive, only few optimization runs are possible, that
should be performed with “good” exogenous parameters. We will consider
the naive, but intuitively understandable characterization of “good” strategy
parameters: they lead to robust solutions, that are found with a minimum



amount of fitness function evaluations. The reader is referred to [BB03]
or [ES03] for a more detailed discussion of this topic. Design of Experiments
(DOE) techniques can be applied to optimization algorithms, considering the
run of an algorithm as an experiment, gaining knowledge about the behav-
ior of the algorithm and the interactions and significances of its parameters.
To profit from the chances DOE techniques offer to improve optimization
algorithms, the performances of these algorithms using different parameter-
izations have to be compared.

In the current case of a multi-objective optimization task, the outcome
of an algorithm run is a set of points that build an approximation of a
Pareto optimal front. The resulting solutions should be close to and di-
versely distributed over the Pareto optimal front [Deb01]. To compare these
approximated Pareto fronts, different techniques have been suggested using
lines crossing the associated attainment surfaces [FF96, KC02|. Here, the
approach from [NWBHO02] is extended by using parallel lines in the corre-
sponding sector of the search space. The sections of the y-axes can easily be
used to distinguish between the parallels and to improve the density of lines
in this approach. The sequence of sections from attainment surfaces of dif-
ferent experiments and the cross-lines are used to measure the performance
of the corresponding parameterization.

The problem under investigation is the design of the profile of an aircraft
wing. The design of whole aircrafts is a complex and very expensive task. It
requires the fulfillment of different objectives and exhibits multiple domains
for optimization. One of these domains is the aircraft wing design. The task
is to optimize the profile of a wing, an airfoil, given optimized airfoils for
two different flight conditions. Therefore, the airfoil optimization problem
belongs to the class of multi-objective optimization problems.

The rest of the paper is organized as follows: section 2 gives an introduc-
tion to airfoil design problems. The ES and its parameterization is briefly
described in section 3. In addition, DOE and regression basics that are
used to perform a comparison of different optimization run configurations
are presented in this section. An approach that extracts a set of points from
attainment surfaces generated from different optimization runs to enable a
statistical comparison is introduced in section 4. A constructive example
and experimental results are presented in section 5. Finally, section 6 gives
a summary.

2 Airfoil Design Optimization

To avoid the tradeoff between computational expensive highly sophisticated
computational fluid dynamics (CFD) methods and reduced preciseness and
reliability of results in aircraft design, an aircraft is subdivided into logi-
cal parts for optimization. In this paper only the wing is studied. But



Table 1: Summarized design conditions (c=chord length)

Case | high lift | low drag
Property
My, -] 0.20 0.77
Re, -] 5-106 107
a [°] 10.8 1.0

concentrating on this 3-dimensional parts is still too hard for todays compu-
tational resources to solve with the necessary preciseness in times allowing
for the coupling to optimization procedures. Instead we decided to tackle
the 2-dimensional airfoil design problem under different design conditions.
In reality, the design conditions given by the Mach- and Reynolds-number,
angle of attack, etc. change continuously. In our test case two design con-
ditions have been fixed, one describing a sub-sonic (high-lift) condition, the
other one describing a transonic (low-drag) condition. The exact design con-
ditions are shown in table 1. The task in this special re-design test case
is to minimize the difference in the pressure distribution between the air-
foil proposed by the optimization procedure and the target airfoils given for
each design condition. The intention here is to identify the best optimiza-
tion procedures for general airfoil design problems or even design problems
in general. Therefore the objective functions read:

Fi(5) = [ (Coll) = Cpyarger(6)Pds i€ {1,2),

with s being the airfoil arc-length measured around the airfoil. C, is the
pressure coefficient distribution of the current and Cp target, , the pressure
coefficient distribution of the target airfoils, respectively.

The multi-point test case with this design conditions has been under
investigation before with a multi-objective (14 10)—ES using de-randomized
step size adaption (MODES III). This algorithm selects a non-dominated
solution with the largest difference in solutions space to other non-dominated
solution for becoming the parent of the next generation [NWBHO02|. In this
article we consider multi-membered ES with p parents individuals. The
parents are collected by executing the above algorithm u times.

3 Evolution Strategies and Experimental Designs

Evolution strategies are population based, randomized search heuristics.
They can be described briefly as follows: a parent population P of size
1 is initialized at time ¢ = 0. Then A offspring individuals are generated by
selecting a parent family of size p from P. Recombination and mutation are



Table 2: Exogenous parameters of an evolution strategy.

‘ Symbol ‘ Factor ‘ Parameter ‘ Range ‘ Typical Values ‘
7 P Number of parent individ- | IN 15
uals
v=Ap|S Offspring-parent ratio R+ 7
O'Z(O) I Initial standard devia- | Ry 3
tions
Ng N Number of standard de- | {1,D} | D

viations. D denotes the
problem dimension

cr T Multiplier for individual | R4 1
and global mutation pa-
rameters
P R Mixing number {Lu} | p
Ty X Recombination operator | {i,d} | d (discrete)
for object variables
To S Recombination operator | {i,d} | i (intermediate)
for strategy variables
K K Maximum age R+ 1

applied to the offspring individuals and a selection is performed to determine
the next parent population. This process continues with the generation of
the next set of offspring individuals until a termination criterion is fulfilled.
The reader is referred to [BS02| for an comprehensive introduction to ES.
The exogenous parameters that have to be determined before an ES run
is started are summarized in table 2. Fine-tuning of ES parameters might
improve the algorithm and reveal information about its robustness. The role
of the parent—offspring ratio v = A\/u, or the relationship between recombi-
nation and mutation operator might be important to improve the behavior
of the algorithm. Thus, we interpret an optimization run as an experiment.
The experimenter can modify the exogenous parameters. Experimental de-
sign provides an excellent way of deciding which optimization runs should
be performed so that the desired information can be obtained with the least
amount of experiments [Mon01]. The input parameters and structural as-
sumptions, that define a optimization algorithm are called factors, the out-
put value(s) are called response(s). The different values of parameters are
called levels. Levels can be qualitative, i.e. selection scheme, or quantitative,
i.e. population size. An experimental design is a set of factor level combi-
nations. One parameter design setting is run for different pseudo-random
number settings, resulting in replicated outputs. Kleijnen classifies the com-
monly used “one factor at a time approach” to enhance the behavior of the
algorithm as inefficient and ineffective and recommends DOE [KG92].



Table 3: Fractional factorial 2%} 2 design.

‘z"POKXS‘PO K XS‘yl Yo Ys Y4 y5‘
/- - - + +]2 2 1 i i{.0 .07 .0 .07 .06
21+ = = = =5 2 1 d d|.06 .0 07 .0 .09
3|— + — — +12 35 1 d i|.0 .0 0 .16 .0
4/+ 4+ - + =15 5 1 i d|.18 35 .67 .14 .03
5/]— - 4+ + -2 2 250 i d|.09 .0 .19 .08 .01
6|+ - + — +|5 2 250 4 i|.11 .17 .02 .1 15
7T\—- + + — —12 5 250 d d].18 .0 .04 .21 .45
8+ + + — 4+ |5 5 250 4 i].38 41 .01 .24 .21

Generally, a optimization model can be represented as follows:

y:fl(zla""zka’rO)’ (1)

where f; is a mathematical function, e.g. fi : R¥f! — IR: Given the
values of the argument z; and the random number seed ¢, the optimization
program yields exactly one value. The Taylor series expansion yields the first
order approximation y = fo = Zf:o Bizr- The last equation is the basis for
regression models based on optimization data. Our goal is to use least square
methods to estimate the linear model y = X + ¢, where the y denotes a
column vector with the n responses, € is the vector of n error terms, and
denotes the vector with ¢ parameters 3; (n > ¢q). We will consider orthogonal
designs with two factors for each level (2 factorial designs), and orthogonal
design where center points are added to the 2¥ design (central composite
designs). A variable z is called standardized, if z ranges between —1 and
+1. The original variables with range [I, h] can be standardized using the
linear transformation z = a+ bz with a = (I+h)/2 and b = (I — h)/2. Thus,
the entry —1 in the design matrix denotes a factor at its lowest level, and +1
a factor at its highest level. Table 3 shows the parameter settings used in
this study: as the number of fitness function evaluations is restricted, only
small population sizes appear to be reasonable.

The two levels of factor P were chosen as 2 and 5 (consult table 2 for a
mapping of EA parameters to factors). The same values have been selected
for the two levels of the selective pressure. Hence, the following parent-
offspring population sizes have been used for the first design: (2+4), (2+10),
(54 10), and 5 + 25. The maximum age in generations of the individuals
K was varied from 1 to 250. Two different recombination schemes, global
discrete and global intermediate have been selected for the object and strat-
egy parameters (factors X and S), respectively. Experiments based on this



design produced the fitness values y; shown in the last five columns of ta-
ble 3. Section 4 describes how these values have been determined. Response
surface methods provide means to determine the direction of improvement
using the path of the steepest descent (minimization problem) based on the
estimated first-order model [KG92].

4 Comparing the Performance of Different Multi-
Objective Evolutionary Algorithms

Attainment surfaces mark all solutions that are sure to be dominated by
the set of already obtained non-dominated solutions. The objective space
is divided into two regions whether the points are dominated by the results
of the algorithm or not [FF96, KC00, KC02|. Repeated runs of the multi-
objective evolutionary algorithm (MOEA) result in a set of attainment sur-
faces A; = {A;;} for the ith run configuration (i =1,...,m;j =1,...,k;), if
the 4th run configuration is repeated k; times. Intersecting attainment sur-
faces with cross-lines enable us to define a metric for a comparison of several
MOEA parameter design configurations. Cross-lines can be defined as

1. diagonal imaginary lines running in the direction of the improvement
in all objectives [FP96],

2. lines intersecting the origin [KC00], or

3. lines that are parallel to the first bisector of the angle NWBHO02]. The
forthcoming investigations are based on this approach.

Eight different parameter design configurations are compared, (i = 1,...,8).
The jth run, j = 1,...,5, of the ith algorithm parameter configuration de-
fines an attainment surface A;; and gives the point of intersection S;;; with
the kth cross-line L. Figure 1 visualizes this situation with three cross-lines
and one attainment surface. Thus, for every run configuration we obtain a
distribution of points of intersections on every cross-line, see figure 2. Fi-
nally, the percentage of the cross-lines on which the ith run configuration
performs best is determined. This value induces a ranking on the set of run
configurations under consideration.

As the cross-lines can be chosen arbitrarily, the optimization practitioner
can easily define regions of special interest in the objective space. Figure 3
reveals that already a small number of cross-lines can give a good approxi-
mation of the quality of an algorithms parameterization.

5 Results

In the following, DOE methods and the cross-line ranking technique are
combined to improve the ES algorithm. We are also interested in a robust



ES parameterization that can be found systematically and efficiently.
Starting point of this experiment is the analysis of the parameterization

of the ES on the airfoil-design optimization problem as shown in table 1. The

maximum number of fitness function evaluations was set to 1000. In the first

Table 4: ES parameter designs for the 18 dimensional airfoil-design.

ES Airfoil-Design Model (D = 18)
First design

Variable || Low Up Final value
(-1) (+1)

z1=P 2 5 6

z2=0 2 5 7

zz3=K 1 250 125

za=X i d )

5 = S i d

step of our analysis we are only interested in the influence of the main effects
on the optimization process. Therefore we chose a 2%} 2 fractional factorial
design shown in table 3, that requires only eight different parameter settings.
The first design is shown in table 4. Standardizing the original variables and
applying techniques from regression analysis reveals that the population size
(factor P) and the selective pressure (factor O) are significant.!

For both factors higher values improve the algorithm’s performance. This
can also be seen from the regression equation?

g = — 0.1954341 + 0.0373030z1 + 0.0463030x2

+ 0.0003129z3 + 0.0458182z4 — 0.0055455x5, @)

and is depicted in figure 4.

Based on equation 5, the (normalized) direction of the steepest descent
can be determined. As u (factor P) and p (factor O) are statistically sig-
nificant, we can restrict the line search to the related two dimensions. The
other settings are held constant during the line-search. Starting from the
center point Zy = (4,4,125,4,d), we can can generate the following points
to perform the line search:

Zo1 = (4.2672,4.5,125,d,7) ,

!Significance is used here in the sense of classical definitions from statistics.
2The z; denote the standardized variables, whereas z; denote the corresponding natural
variables. The regression analysis is performed on the standardized variables [MonO01].



Zoo = (5.0345,5.5,125,d,4) , ...

To determine the population size, the values from the first two entries
have to be rounded to the next whole integer, since we can perform the
optimization with whole individuals only. A comparison of the approximated
Pareto optimal fronts from the first first design to the improved design is
shown in Figure 5.

6 Summary

A performance measure that enables the application of statistical design of
experiment methods to multi-criteria optimization algorithms was proposed.
Different ES parameter settings for a an airfoil optimization task were com-
pared using DOE to improve the algorithm’s performance. We extended
the methods used in [NWBHO02|, that are based on Fonseca’s and Fleming’s
attainment-surface approach [FP96]. The approach presented in this arti-
cle is a flexible. Specific user preference can be easily integrated, i.e. by
specifying additional cross-lines in the region of interest. Furthermore, it is
intuitively understandable and can be combined with other statistical meth-
ods. The experimental results show that DOE methods provide convenient
means to improve the performance of MOEA, especially if the evaluation
of the fitness function is very costly. Therefore we recommend to perform
a few tests (with parameter settings based on fractional factorial designs)
to determine a “good” strategy parameter setting for the real optimization.
This preliminary analysis can easily be accomplished with statistical software
packages such as R [IG96].
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Figure 1: Attainment surface with cross-lines for one run of one simulation
run-configuration. Low-drag is plotted against high-lift.
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Figure 2: Points of intersection on cross-lines. The first run configuration
performs best on cross-line L1, whereas the fourth run configuration performs
best on Ls.
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Figure 3: Barplots of the distributions of the best parameter design config-
urations. The eight different run-configurations from table 3 are compared.
The 1st row from above shows the results of a comparison based on 10 cross-
lines, whereas the 2nd row from above shows the same comparison based on
100 crossing lines. These plots reveal that already a small number of crossing
lines can give a good approximation of the quality of an parameter design
configuration.
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Figure 4: Comparison of four different factor settings, see table 3. The first
figure in the first row from above shows the results if the factor P (population
size) is set to a low value (here: u = 2), whereas the second figure in the
first shows the situation, when P was set to a high value (here: u = 5). The
first figure in the second row shows the results if both factors are set to a
low value, whereas the second figure display the results if both factors are
set to its high values. The identical line segments are included in the figures
to enhance the comparability of the results.
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Figure 5: Comparison of the first and the improved factor setting, see table 4.
Black circles denote the results from the initial design, whereas grey triangle
denote the results from the improved design. Both objectives have to be

minimized.
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