
New Experimentalism Applied to

Evolutionary Computation

Dissertation
zur Erlangung des Grades eines
Doktors der Naturwissenschaften

der Universität Dortmund
am Fachbereich Informatik

von

Thomas Bartz–Beielstein

Dortmund

2005

Tag der mündlichen Prüfung: 20. April 2005
Dekan: Bernhard Steffen

Gutachter: Hans-Paul Schwefel, Peter Buchholz

To Eva, Leon, Benna, and Zimba.

Contents

List of Figures x

List of Tables xii

Introduction 1

1 Experiments 11
1.1 Introduction . 11
1.2 Demonstrating and Understanding . 12

1.2.1 Why Do We Need Experiments in Computer Science? 12
1.2.2 Important Research Questions . 14

1.3 Experimental Algorithmics . 15
1.3.1 Pre-experimental Planning . 15
1.3.2 Guidelines from Experimental Algorithmics 15

1.4 Observational Data and Noise . 16
1.5 Models . 17
1.6 The New Experimentalism . 18

1.6.1 Mayo’s Models of Statistical Testing 19
1.6.2 Neyman-Pearson Philosophy . 20
1.6.3 The Objectivity of NPT: Attacks and Misunderstandings 22
1.6.4 The Objectivity of NPT: Defense and Understanding 23
1.6.5 Related Approaches . 29

1.7 Popper and the New Experimentalists . 32
1.8 Summarizing: Experiments . 33

2 Statistics 35
2.1 Introduction . 35
2.2 Hypothesis Testing . 36

2.2.1 The Two-Sample z-Test . 36
2.2.2 The Two-Sample t-Test . 37
2.2.3 The Paired t-Test . 38

2.3 Monte Carlo Simulations . 38
2.4 DOE: Standard Definitions . 41
2.5 The Analysis of Variance . 43

vi CONTENTS

2.6 Linear Regression Models . 43
2.7 Graphical Tools . 45

2.7.1 Half-Normal Plots . 45
2.7.2 Scatter Plots . 46
2.7.3 Interaction Plots . 46
2.7.4 Box Plots . 48

2.8 Tree-Based Methods . 49
2.9 Design and Analysis of Computer Experiments 50

2.9.1 The Stochastic Process Model . 52
2.9.2 Regression Models . 52
2.9.3 Correlation Models . 52
2.9.4 Sensitivity Analysis . 53

2.10 Comparison . 53
2.11 Summary . 54

3 Problems 57
3.1 Introduction . 57
3.2 Problems Related to Test Suites . 58
3.3 Test Functions . 59

3.3.1 Test Functions for Schwefel’s Scenario 1 and 2 59
3.3.2 Test Functions for Schwefel’s Scenario 2 59
3.3.3 Test Functions for Schwefel’s Scenario 3 61

3.4 Elevator Group Control . 61
3.4.1 The Elevator Supervisory Group Controller Problem 61
3.4.2 A Simplified Elevator Group Control Model: The S-ring 63
3.4.3 The S-Ring Model as a Test Generator 66

3.5 Randomly Generated Test Problems . 67
3.6 Summary . 68

4 Designs 69
4.1 Introduction . 69
4.2 Computer Experiments . 70
4.3 Classical Algorithm Designs . 71
4.4 Modern Algorithm Designs . 74
4.5 Sequential Algorithm Designs . 75
4.6 Problem Designs . 76

4.6.1 Initialization . 76
4.6.2 Termination . 78

4.7 Discussion: Designs for Computer Experiments 79
4.8 Summary . 79

5 Search 81
5.1 Introduction . 81
5.2 Deterministic Optimization Algorithms . 81

5.2.1 Nelder and Mead . 81
5.2.2 Variable Metric . 82

5.3 Stochastic Search Algorithms . 83

CONTENTS vii

5.3.1 The Two Membered Evolution Strategy 83
5.3.2 Multimembered Evolution Strategies 85
5.3.3 Particle Swarm Optimization . 85

5.4 Summary . 88

6 Comparison 89
6.1 Introduction . 89
6.2 The Fiction of Optimization . 91
6.3 Performance Measures . 92

6.3.1 Scenarios . 92
6.3.2 Effectivity . 94
6.3.3 Efficiency . 95
6.3.4 How to Determine the Maximum Number of Iterations 100

6.4 The Classical DOE Approach . 101
6.4.1 A Three-Stage Approach . 101
6.4.2 Tuning an Evolution Strategy . 102

6.5 Design and Analysis of Computer Experiments 106
6.5.1 Sequential Designs Based on DACE 107
6.5.2 Sequential Parameter Optimization . 107
6.5.3 Experimental Results . 111
6.5.4 Example: Optimizing the Inertia Weight Variant of PSO 111
6.5.5 Optimizing the PSO Constriction Factor Variant 117
6.5.6 Comparing Particle Swarm Variants 119
6.5.7 Optimizing the Nelder-Mead Simplex Algorithm and a Quasi-Newton

Method . 119
6.6 Experimental Results for the S-Ring Model 120
6.7 Criteria For Comparing Algorithms . 123
6.8 Summary . 124

7 Understanding 125
7.1 Introduction . 125
7.2 Selection Under Uncertainty . 126

7.2.1 A Survey of Different Selection Schemes 126
7.2.2 Indifference Zone Approaches . 127
7.2.3 Subset Selection . 127
7.2.4 Threshold Selection . 130
7.2.5 Sequential Selection . 133

7.3 A Case Study: Threshold Selection . 133
7.3.1 Pre-Experimental Studies . 133
7.3.2 A Simulation Study . 134
7.3.3 Plateaus and Discrete Test Functions 138
7.3.4 An Exact Analysis of the Local Performance 139
7.3.5 Summary of the Exact Analysis . 143

7.4 Global Performance . 143
7.4.1 A Simple Threshold Selection Scheme for Evolution Strategies 145

7.5 Bounded Rationality . 147
7.6 Summary . 148

viii CONTENTS

8 Summary and Outlook 151

Bibliography 159

Nomenclature 177

Index 183

List of Figures

1.1 Theory and practice . 16
1.2 Statistical models . 21
1.3 Influence of the sample size on the test result. 25
1.4 Observed difference and three hypothetical differences. 27
1.5 Observed significance level . 28
1.6 Rejecting a hypothesis. Case RE-1. 30
1.7 Rejecting a hypothesis. Case RE-2. 30
1.8 Accepting a hypothesis. Case AC-1. 31

2.1 The generic bootstrap procedure. 40
2.2 Bootstrap to determine the observed significance level 40
2.3 Histograms of the bootstrap samples . 42
2.4 Observed significance versus difference based on bootstrap 42
2.5 Half-normal plot . 46
2.6 Scatter plot . 47
2.7 Scatter plot: Outliers removed . 47
2.8 Interaction plot . 48
2.9 Five elements of a box plot. 48
2.10 Regression tree. 1-SE rule . 51
2.11 Pruned regression tree . 51

3.1 Heuristic for the comparison of two algorithms. 58
3.2 Dynamics in an elevator system. 63
3.3 S-ring . 64
3.4 S-ring. Estimated versus noisy function values. 66

4.1 Central composite design with axial runs. 73
4.2 DOE approximation error. 74
4.3 Latin hypercube design. 75
4.4 Two LHD samples of ten points. 76
4.5 Expected improvement heuristic. 77

5.1 BFGS method on Rosenbrock’s function . 83
5.2 The two membered evolution strategy or (1 + 1)-ES. 84

x LIST OF FIGURES

5.3 Heuristic Rule: 1/5 Success Rule. 84

6.1 Mean, median, maximum, and minimum function values. 93
6.2 Two methods to determine the performance of an algorithm 96
6.3 Run length distributions of the default and tuned PSO 97
6.4 Cumulative distribution function for the performance ratio 99
6.5 Average run length vs. problem dimension . 100
6.6 Regression tree . 115
6.7 PSO: Predicted values and MSE . 115
6.8 PSO: Predicted values and MSE. Design correction 116
6.9 PSO results: Histogram and Boxplot . 116
6.10 Observed significance level. Comparison of the default and tuned PSO 118
6.11 Comparing PSO constriction and PSO constriction*. 120
6.12 Sequential approach: Run length distribution 121

7.1 Indifference zone approach. Single stage procedure. 128
7.2 Gupta selection . 129
7.3 δ∗-Near-Best Selection . 131
7.4 Threshold selection. 131
7.5 The (1 + 1)-ES with threshold selection. 135
7.6 (1 + 1)-ES simulation . 136
7.7 Progress rate ϕ and threshold selection. Test functions abs, id, and sphere. 137
7.8 Progress rate ϕ and threshold selection. Test function bilcos. 139
7.9 Density function . 141
7.10 Threshold acceptance . 141
7.11 Threshold acceptance . 142
7.12 Annealing schedule . 144
7.13 Observed significance level . 147
7.14 Simplicity of curves . 148

8.1 Theory and practice . 157

List of Tables

1 Experimental tools and objects . 7

1.1 Observed significance . 31

3.1 Common test functions . 60
3.2 S-ring state transition. 65
3.3 S-ring test instances . 67

4.1 Fractional factorial 29−5
III design . 73

5.1 NMS: Default parameter setting . 82
5.2 (1 + 1) ES. Algorithm design . 85
5.3 ES: Default parameter setting . 86
5.4 PSO with inertia weight: Default parameter setting 87
5.5 PSO with constriction factor: Default parameter setting 88

6.1 Test design matrix . 99
6.2 Performance ratios . 99
6.3 Fractional-factorial design for evolution strategies. 104
6.4 Evolution strategy: Symbols and levels . 104
6.5 Tabulated raw data . 105
6.6 Steepest descent . 105
6.7 ES. Comparison of the function values . 106
6.8 Sequential parameter optimization . 108
6.9 PSO: Problem design . 109
6.10 PSO: Algorithm design . 110
6.11 PSO on the Rosenbrock function . 113
6.12 PSO constriction variant: Algorithm design 119
6.13 PSO: Results on the Rosenbrock function . 121
6.14 Problem design. 122
6.15 S-ring optimization results . 123

7.1 Problem design. 134
7.2 Problem design. 134
7.3 Problem design. 138

xii LIST OF TABLES

7.4 Problem design. 143
7.5 (1 + 1)-ES: Algorithm design . 145
7.6 Problem designs. 146
7.7 Sphere optimization results . 146

Introduction

The philosophy of science seems to be in
a state of flux, and the possibilities
opened up by the new experimentalists
seem to offer genuine hope for a recovery
of some of the solid intuitions of the
past about the objectivity of science,
but in the context of a much more
detailed and articulate understanding of
actual scientific practice.

Robert Ackermann

This thesis tries to prepare good grounds for experimental research in evolutionary com-
putation. We claim that experiments are necessary—a purely theoretical approach cannot be
seen as a reasonable alternative. Our approach is related to the discipline of experimental al-
gorithmics that provides methods to improve the quality of experimental research. However,
this discipline is based on popperian paradigms:

1. No experiment without theory and

2. Theories should be falsifiable.

Following Hacking (1983) and Mayo (1996), we argue in this thesis that:

1. Experiment can have a life of its own and

2. Falsifiability should be complemented with verifiability.

This concept, known as the new experimentalism, is an influential discipline in the modern
philosophy of science. It provides a statistical methodology to learn from experiments. For
a correct interpretation of experimental results, it is crucial to distinguish the statistical
significance of an experimental result from its scientific meaning. This thesis attempts to
introduce the concept of the new experimentalism in evolutionary computation.

Research Problem

At present, it is intensely discussed which type of experimental research methodologies should
be used to improve the acceptance and quality of evolutionary algorithms (EA). A broad spec-
trum of presentation techniques makes new results in evolutionary computation (EC) almost

2 INTRODUCTION

incomparable. Sentences like “This experiment was repeated 10 times to obtain significant
results” or “We have proven that algorithm A is better than algorithm B” can still be found
in actual EC publications. Eiben and Jelasity (2002) explicitly list four problems:

1. The lack of standardized test-functions, or benchmark problems.

2. The usage of different performance measures.

3. The impreciseness of results, and therefore no clearly specified conclusions.

4. The lack of reproducibility of experiments.

In fact, there is a gap between theory and experiment in evolutionary computation. How
to promote good standards and quality of research in the field of evolutionary computation
was discussed during the genetic and evolutionary computation conference (GECCO) in 2002.
Bentley noted:

Computer science is dominated by the need to publish, publish, publish, but
sometimes this can happen at the expense of research. All too often poor papers,
clumsy presentations, bad reviews or even bad science can clutter a conference,
causing distractions from the more carefully prepared work (Bentley, 2002).

There is a great demand for these topics as one can see from the interest in tutorials devoted
to these questions during two major conferences in evolutionary computation, the congress
on evolutionary computation (CEC) and GECCO (Wineberg and Christensen, 2004; Bartz-
Beielstein and Markon, 2004).

Background

Evolutionary computation shares these problems with other scientific disciplines such as sim-
ulation, artificial intelligence, numerical analysis or industrial optimization (Dolan and More,
2001). Cohen’s survey of 150 publications from the Proceedings of the Eighth American As-
sociation for Artificial Intelligence (AAAI) “gave no evidence that the work they described
has been tried out on more than a single example problem” (Cohen et al., 2000). He clearly
demonstrated that there is no essential synergy between experiment and theory in these pa-
pers.
But Cohen did not only report these negative results, he also provided valuable examples
how empirical research can be related to theory (Cohen, 1995). Solutions from other dis-
ciplines that have been applied successfully for many years might be transferable to evolu-
tionary computation. We have chosen four criteria to classify existing experimental research
methodologies that have a lot in common with our approach. First, we can mention effective
approaches. They find a solution, but are not very efficient and are not focused on understand-
ing. Greedy, or brute-force approaches belong to this group. Second, auto-pilot methods can
be mentioned. Meta-algorithms belong to this category. They might locate good parameter
sets, though without providing much insight as how sensitive performance is to parameter
changes. Third, approaches that model problems of mostly academic interest can be listed.
These approaches consider artificial test functions or infinite population sizes. Finally, the
fourth category comprehends approaches that might be applicable to our problems although
they have been developed with a different goal. Methods for deterministic computer exper-
iments can be mentioned here. We will give a brief overview of literature on experimental
approaches from these four domains.

INTRODUCTION 3

Effective Approaches

The methodology presented in this thesis has its origins in statistical design of experiments
(DOE). But, classical DOE techniques as used in agricultural or industrial optimization
must be adapted if applied to optimization models since stochastic optimization uses pseudo-
random numbers (Fisher, 1935). Randomness is replaced by pseudo-randomness. For ex-
ample, blocking and randomization, important techniques to reduce the systematic influence
of different experimental conditions, are unnecessary in computer-based optimization. The
random number seed is the only random element during the optimization run.

Classical DOE techniques are commonly used in simulation studies—a whole chapter in a
broadly cited textbook on simulation describes experimental designs (Law and Kelton, 2000).
Kleijnen demonstrated how to apply DOE in simulation (Kleijnen, 1987, 1997). As simulation
is related to optimization (simulation models equipped with an objective function define a
related optimization problem), we suggest the use of DOE for the analysis of optimization
problems and algorithms (Kelton, 2000).

This thesis is not the first attempt to use classical DOE methods in EC. However, our
approach takes the underlying problem instance into account. Therefore, we do not try to
draw any problem independent conclusions such as: “The optimal mutation rate in genetic
algorithms is 0.1.” In addition, we propose an approach that requires a small amount of
fitness function evaluations only. Schaffer et al. (1989) propose a complete factorial design
experiment that requires 8400 run configurations, each configuration was run to 10, 000 fitness
function evaluations. Feldt and Nordin (2000) use statistical techniques for designing and
analyzing experiments to evaluate the individual and combined effects of genetic programming
(GP) parameters. Three binary classification problems are investigated in a total of seven
experiments consisting of 1108 runs of a machine code genetic programming system. Myers
and Hancock (2001) present an empirical modeling of genetic algorithms. This approach
requires 129, 600 program runs. François and Lavergne (2001) demonstrate the applicability
of generalized linear models to design evolutionary algorithms. Again, data sets of size 1000
or even more are necessary, although a simplified evolutionary algorithm with two parameters
only is designed. Myers and Hancock (2001) used a similar approach.

As we include methods from computational statistics, our approach can be seen as an
extension of these classical approaches. Furthermore, classical DOE approaches rely strongly
on hypothesis testing. The reconsideration of the framework of statistical hypothesis testing
is an important aspect in our approach.

Auto-Pilot Methods

The search for useful parameter settings of algorithms itself is an optimization problem. Ob-
viously optimization algorithms, so called meta-algorithms, can be defined to accomplish
this task. Meta-algorithms for evolutionary algorithms have been proposed by many au-
thors (Bäck, 1996; Kursawe, 1999). But this approach does not solve the original problem
because it requires the determination of a parameter setting of the meta-algorithm. Rardin
and Uzsoy (2001) present a tutorial that discusses the experimental evaluation of heuristic
search algorithms when the complexities of the problem do not allow exact solutions. Their
tutorial describes how to design test instances, how to measure performance, and how to ana-
lyze and present the experimental results. The main interest of their experimental evaluation
approach is how close an algorithm comes to producing an optimal solution, which can be

4 INTRODUCTION

measured as the algorithm-to-optimal ratio.
Birattari et al. (2002) developed a “racing algorithm” for configuring meta-heuristics, that

combines blocking designs, non-parametric hypothesis testing and Monte Carlo methods. The
aim of their work was “to define an automatic hands-off procedure for finding a good con-
figuration through statistical guided experimental evaluations”. This is unlike the approach
presented here, that provides means for understanding algorithms’ performance (data-scopes
similar to microscopes in biology and telescopes in astronomy) and does not claim to provide
an automatic procedure to find improved configurations.

Instead, we argue that the experimenter’s skill plays an important role in this analysis. It
cannot be replaced by automatic rules. The difference between automatic rules and learning
tools is an important topic discussed in the remainder of this thesis.

Academic Approaches

Experimental algorithmics offer methodologies for the design, implementation, and perfor-
mance analysis of computer programs for solving algorithmic problems (Demetrescu and
Italiano, 2000; Moret, 2002). McGeoch (1986) examines the application of experimental, sta-
tistical, and data analysis tools to problems in algorithm analysis. Barr and Hickman (1993)
and Hooker (1996) tackle the question how to design computational experiments and how to
test heuristics. Johnson et al. (1989, 1991) is a seminal study of simulated annealing. Most
of these studies are focused on algorithms, and not on programs. Algorithms can be analyzed
on a sheet of paper, whereas the analysis of programs requires real hardware. The latter
analysis includes the influence of rounding errors or limited memory capacities. We will use
both terms simultaneously, because whether we refer to the algorithm or the program will be
clear from the context.

Compared to these goals, our aim is to provide methods for very complex real-world
problems, when only a few optimization runs are possible, i.e. optimization via simulation.
The elevator supervisory group controller study discussed in Beielstein et al. (2003a) required
more than a full week of round-the-clock computing in a batch job processing system to test 80
configurations. Furthermore, our methods are applied to real computer programs and not to
abstract algorithms. However, there is an interesting link between algorithms and programs
or complexity theory and the experimental approach:

Example 1 (Hooker, 1994)
Consider a small subset of very special traveling salesperson problems T . This subset is
NP-complete, and any class of problems in NP that contains T is ipso facto NP-complete.
Consider the class P ′ that consists of all problems in P and T . As P ′ contains all easy
problems in the world, it seems odd to say that problems in P ′ are hard. But P ′ is no less
NP-complete than TSP. Why do we state that TSP is hard? Hooker suggests that “we
regard TSP as a hard class because we in fact find problems in TSP to be hard in practice”.
We acknowledge that TSP contains many easy problems, but we are able to generate larger
and larger problems that become more and more difficult. Hooker suggests that it is this
empirical fact that justifies our saying that TSP contains characteristically hard problems.
And, in contrast to P ′, TSP is a natural problem class, or as philosophers of science would
say, a natural kind. �

INTRODUCTION 5

Approaches With Different Goals

Although our methodology has its origin in DOE, classical DOE techniques used in agricul-
tural and industrial simulation and optimization tackle different problems and have different
goals.

Parameter control deals with parameter values (endogenous strategy parameters) that
are changed during the optimization run (Eiben et al., 1999). This differs from our approach
that is based on parameter values that are specified before the run is performed (exogenous
strategy parameters). The assumption that specific problems require specific EA parameter
settings is common to both approaches (Wolpert and Macready, 1997).

Design and analysis of computer experiments (DACE) as introduced in Sacks et al. (1989)
models the deterministic output of a computer experiment as the realization of a stochastic
process. The DACE approach focuses entirely on the correlation structure of the errors and
makes simplistic assumptions about the regressors. It describes “how the function behaves”,
whereas regression as used in classical DOE describes “what the function is” (Jones et al.,
1998, p.14). DACE requires other experimental designs than classical DOE, e.g. Latin hy-
percube designs (McKay et al., 1979). We will discuss differences and similarities of these
designs and present a methodology how DACE can be applied to stochastic optimization
algorithms.

Despite the differences mentioned above, it might be beneficial to adapt some of these
well-established ideas from other fields of research to improve the acceptance and quality of
evolutionary algorithms.

Common Grounds: Optimization Runs Treated as Experiments

Gregory et al. (1996) performed an interesting study of dynamic scheduling that demonstrates
how synergetic effects between experiment and theory can evolve. The methodology presented
in their study is closely related to our approach.
Optimization runs will be treated as experiments. In our approach, an experiment consists
of a problem, an environment, an objective function, an algorithm, a quality criterion, and
an initial experimental design. We will use methods from computational statistics to im-
prove, compare and understand algorithms’ performances. The focus in this work lies on
natural problem classes: Its elements are problems that are based on real-world optimization
problems in contrast to artificial problem classes (Eiben and Jelasity, 2002). Hence, the ap-
proach presented here might be interesting for optimization practitioners who are confronted
with a complex real-world optimization problem in a situation where only few preliminary
investigations are possible to find good parameter settings.

Furthermore, the methodology presented in this thesis is applicable a priori to tune dif-
ferent parameter settings of two algorithms to provide a fair comparison. Additionally, these
methods can be used in other contexts to improve the optimization runs. They are applicable
to generate systematically feasible starting points that are better than randomly generated
initial points, or to guide the optimization process to promising regions of the search space.
Meta-model assisted search strategies as proposed in Emmerich et al. (2002) can be mentioned
in this context. Jin (2003) gives a survey over approximation methods in EC.

Before introducing our understanding of experimental research in EC, we may ask for the
importance of experiments in other scientific disciplines. For example, the role of experiments
in economics changed radically during the last decades.

6 INTRODUCTION

Wind Tunnels

The path breaking work of Vernon L. Smith (2002 Nobel Prize in Economics together with
Daniel Kahneman) in experimental economics provided criteria to find out whether economic
theories hold up in reality. Smith demonstrated that a few relatively uninformed people can
create an efficient market. This result did not square with theory. Economic theory claimed
that one needed a horde of “perfectly informed economic agents”. He reasoned that economic
theories could be tested in an experimental setting: An economic wind tunnel. Smith had a
difficult time to get the corresponding article published (Smith, 1962). Nowadays this article
is regarded as the landmark publication in experimental economics.

Today, many cases of economic engineering are of this sort. For example, before being
exported to the real world, the auctions for “third generation” mobile phones were designed
and tested in the economic laboratory at CalTech (Guala, 2003). This course of action
suggests that experiments in economics serve the same function that a wind tunnel does in
aeronautical engineering. But, the relationship between the object of experimentation and
the experimental tool is of importance: How much reductionism is necessary to use a tool
for an object? Table 1 lists some combinations. Obviously some combinations fit very good,
whereas others make no sense at all.

We propose an experimental approach to analyze algorithms that is suitable to discover
important parameters and to detect superfluous features. But before we can draw conclusions
from experiments we have to take care that the experimental results are correct. We have
to provide means to control the error, because we cannot ensure that our results are always
sound. Therefore the concept of the new experimentalism is regarded next.

The New Experimentalism

The new experimentalism is an influential trend in recent philosophy of science that provides
statistical methods to set up experiments, to test algorithms, and to learn from the resulting
errors and successes. The new experimentalists are seeking a relatively secure basis for science,
not in theory or observation but in experiment. To get the apparatus working for simulation
studies is an active task. Sometimes the recognition of an oddity leads to new knowledge.
Important representatives of the new experimentalism are Hacking (1983), Galison (1987),
Gooding (1989), Mayo (1996), and Franklin (2003). Deborah Mayo, whose work is in the
epistemology of science and the philosophy of statistical inference, proposes detailed way in
which scientific claims are validated by experiment. A scientific claim can only be said to
be supported by experiment if it passes a severe test. A claim would be unlikely to pass a
severe test if it were false. Mayo developed methods to set up experiments that enable the
experimenter, who has a detailed knowledge of the effects at work, to learn from error.

Overview

This thesis develops a solid statistical methodology, which we consider to be essential in per-
forming computer experiments. New concepts for an objective interpretation of experimental
results are introduced in this thesis. It consists of seven chapters (Experiments, Statistics,
Problems, Designs, Search, Comparison, and Understanding) and a concluding discussion.
Each chapter closes with a summary of the key points.
The first chapter introduces the concept of the new experimentalism for computer experiments

INTRODUCTION 7

Table 1: Relationship between experimental objects and experimental tools. Some combinations, for
example reality – computer, require some kind of reductionism. Others, for example algorithm – wind
tunnel, are useless.

object of experimentation experimental tool
reality computer
reality thought experiment
reality wind tunnel
airplane computer
airplane thought experiment
airplane wind tunnel
algorithm computer
algorithm thought experiment
algorithm wind tunnel

and discusses central elements of an understanding of science. It details the difference between
demonstrating and understanding, and between significant and meaningful. To incorporate
these differences, separate models are defined: Models of hypotheses, models of experimental
tests, and models of data. This leads to a re-interpretation of the Neyman-Pearson theory
of testing (NPT). Since hypothesis testing can be interpreted objectively, tests can be con-
sidered as learning tools. Analyzing the frequency relation between the acceptance (and the
rejection) of the null hypothesis and the difference in means enables the experimenter to
learn from errors. This concept of learning tools provides means to extend Popper’s widely
accepted claim that theories should be falsifiable.
Statistical definitions for Monte Carlo methods, classical design and analysis of experiments,
tree based regression methods and modern design and analysis of computer experiments tech-
niques are given in the second chapter. A bootstrap approach that enables the application of
learning tools if the sampling distribution is unknown is introduced. This chapter is rather
technical because it summarizes the relevant mathematical formulas.
Computer experiments as discussed in this thesis are conducted to improve and to understand
the algorithm’s performance. Chapter 3 presents optimization problems from evolutionary
computation that can be used to measure this performance. Before an elevator group control
problem is introduced as a model of a typical real-world optimization problem, some com-
monly used test functions are presented. Problems related to test suites are discussed as well.
Different approaches to set up experiments are discussed in Chapter 4. Classical and modern
designs for computer experiments are introduced. A sequential design based on DACE that
maximizes the expected improvement is proposed.
Search algorithms are presented in Chapter 5. Classical search techniques, for example the
Nelder Mead “simplex” algorithm, are presented as well as stochastic search algorithms. The
focus lies on particle swarm optimization algorithms, that build a special class of bio-inspired
algorithms.
The discussion of the concept of optimization provides the foundation to define performance
measures for algorithms in Chapter 6. A suitable measure reflects requirements of the op-
timization scenario or the experimental environment. The measures are categorized with
respect to effectivity and efficiency. Now, the necessary components according to the dis-
cussion in the previous chapters to perform computer experiments are available: A problem,

8 INTRODUCTION

an environment, an objective function, an algorithm, a quality criterion, and an experimen-
tal design. After summarizing a classical DOE approach of finding better suited exogenous
parameters (tuning), a sequential approach that comprehends methods from computational
statistics is presented. To demonstrate that our approach can be applied to any arbitrary
optimization algorithm, several variants of optimization algorithms are tuned. Tools from
error statistics are used to decide whether statistically significant results are scientifically
meaningful.
Chapter 7 closes the circle opened in Chapter 1 on the discussion of testing as an automatic
rule and as a learning tool. Provided with the background from Chapter 1, the aim of Chap-
ter 7 is to propose a method to learn from computer experiments and to understand how
algorithms work. Various schemes for selection under noise for direct search algorithms are
presented. Threshold selection is related to hypothesis testing. It serves as an example to
clarify the difference between tests as rules of inductive behavior and tests as learning tools.
A summary and discussion of important results concludes this thesis.

Introducing the new experimentalism in evolutionary computation provides tools for the
experimenter to understand algorithms and their interactions with optimization problems.
Experimentation is understood as a means for testing hypotheses, the experimenter can learn
from error and control the consequences of his decisions. The methodology presented here is
based on the statistical methods most widely used by today’s practicing scientists. It might
be able “to offer genuine hope for a recovery of some of the solid intuitions of the past about
the objectivity of science”(Ackermann, 1989).

Acknowledgments

Before we go into medias res, I would like to acknowledge the support of many people who
made this thesis possible.
First and foremost, Hans-Paul Schwefel, the head of the Chair of Systems Analysis for pro-
viding a cooperative and stimulating work atmosphere. His thoughtful guidance and constant
support in my research were very valuable and encouraging.
I am also thankful to Peter Buchholz for his kindness in being my second advisor.

Thomas Bäck supported my scientific research for many years, beginning at the time when
I was a student and working at the Chair of Systems Analysis and during the time I did work
for NuTech Solutions. He also established the contact to Sandor Markon which resulted in an
inspiring collaboration devoted to questions related to elevator group control and the concept
of threshold selection. Sandor Markon also provided guidance in Korea and Japan, which
made my time there very enjoyable.

I appreciated the discussions relating to threshold selection with Dirk Arnold very much.
They built the cornerstone for a productive research that is devoted to selection and decision
making under uncertainty.

The first official presentation of the ideas from this thesis during the CEC tutorial on
experimental research in evolutionary computation in 2004 was based on the collaboration and
the helpful discussions with Mike Preuss. Tom English’s support during the preparation and
presentation of this tutorial were very comforting. I also very much enjoyed the constructive
exchange of information with the people from the EC “task force”, Steffen Christensen, Gwenn
Volkers and Mark Wineberg.

My colleagues Boris Naujoks, Karlheinz Schmitt and Christian Lasarczyk shared their

INTRODUCTION 9

knowledge and resources, helped in many discussions to clarify my ideas and made the joint
work a very fortunate experience. Konstantinos E. Parsopoulos and Michael N. Vrahatis
aroused my interest in particle swarm optimization. Discussions with students, especially with
Christian Feist, Marcel deVegt and Daniel Blum have been a valuable source of inspiration
during this research.

Thomas Bartz-Beielstein
Dortmund, February 2005

Chapter 1
Experiments

The physicist George Darwin used to
say that every once in a while one
should do a completely crazy
experiment, like blowing the trumpet to
the tulips every morning for a month.
Probably nothing would happen, but
what if it did?

Ian Hacking

1.1 Introduction

This chapter presents an attempt to justify the role of experiments in evolutionary computa-
tion. First, problems related to experiments are presented. Objections stated by theoreticians
like “Algorithms are formal objects and should be treated formally” are discussed. After con-
sidering these objections, we present an experimental approach in evolutionary computation.
Important goals for scientific research in evolutionary computation are proposed. Experimen-
tal algorithmics is an influential discipline that provides widely accepted methods to tackle
these scientific goals. It is based on a popperian understanding of science. After introduc-
ing the concept of models in science, the new experimentalism is presented. It goes beyond
Popper’s concept that only results that are falsifiable should be treated as scientific. The
new experimentalists claim that the experimenter can learn from experiments. Mayo intro-
duced an approach based on the Neyman-Pearson theory of statistical testing that enables
the experimenter to perform experiments in an objective manner. It is important to note
that statistically significant results are not automatically meaningful. Therefore some space
must be left between the statistical result and its scientific import. Finally, the relationship
between theory and practice is reconsidered.

The modern theory of statistical testing presented in this chapter is based on Hacking
(1983) and Mayo (1996).

12 Experiments

1.2 The Gap between Demonstrating and Understanding

We first start with a comparison of two parameterizations of a stochastic global optimization
method. This comparison is based on real optimization data, but it is kept as simple as
possible for didactical purposes.

Example 1.1 (PSO swarm size)
Analyzing a particle swarm optimization algorithm (PSO), we are interested in testing whether
or not the swarm size has a significant influence on the performance of the algorithm. The
10 dimensional Rosenbrock function was chosen as a test function. Based on the parameteri-
zation in Shi and Eberhart (1999), the swarm size was set to 20 and 40. The corresponding
settings will be referred to as run PSO(20) and PSO(40) respectively. The question is whether
the increased swarm size improves the performance of the PSO. As in Shi and Eberhart (1999),
a random sample is drawn from each of the two populations. The average performance y1

of n = 50 runs of PSO(20) is 108.02, whereas the average performance y2 of n = 50 runs of
PSO(40) is 56.29. The same number of function evaluations was used in both settings. The
number of runs n is referred to as the sample size, and y denotes the sample mean. �

Example 1.1 demonstrates at first sight, that the hypothesis (H)

(H-1.1) PSO(40) outperforms PSO(20)

is correct. But can we really be sure that (H-1.1) is true? Is this result statistically significant?
Are the influences of other parameters on the algorithm’s performance negligible? Are 50
repeats sufficient? How does the run-length, that is the number of iterations, influence the
result? However, even if we assume that (H-1.1) is correct, what can we learn from this
conclusion?

As will be demonstrated later on and as some readers already know, choosing a suitable
parameterization enables the experimenter to demonstrate anything—algorithm A is better
than algorithm B or the other way round.

The remainder of this thesis deals with questions related to these problems and provides
a methodology to perform comparisons in a statistically sound manner.

1.2.1 Why Do We Need Experiments in Computer Science?

It is a difficult task to set up experiments correctly. Experimental results may be misleading.
So one may ask why to perform computer experiments at all.

There are theoretical and empirical approaches to study the performance of algorithms. In
contrast to some researchers who consider merely the former as scientific, many practitioners
are convinced that the theoretical approach alone is not well-suited to judge an algorithm’s
performance.

Why is the empirical work viewed as unscientific? One reason might be the lack of
standards for empirical methods. Empirical work is sometimes considered as “lowbrow or
unsophisticated”(Hooker, 1994). Additionally, the irreproducibility of the results discredits
empirical approaches (Eiben and Jelasity, 2002). But these are problems that can be mas-
tered, at least in principle. The main objection against empirical work lies deeper. Hooker
hits the nail on the head with the following characterization: The main objection against
empirical work is comparable to the uneasiness that arises when “verifying that opposite in-
terior angles are equal by measuring them with a protractor”(Hooker, 1994). This can be
formulated as

1.2 Demonstrating and Understanding 13

Statement 1
Algorithms are defined as formal systems and should be studied with formal methods.

Reasoning that many founders of modern science like Descartes, Leibniz, or Newton studied
formal systems with empirical methods does not give a completely satisfactory response to
this objection. After discussing the role of models in science we will reconsider this objection
and give a well founded answer that uses some fundamental concepts from the philosophy
of science. However, even under the assumption that Statement 1 is true, studying formal
systems is not as trivial as it might appear at first sight. Severe objections arise when
Statement 1 is considered in detail. The construction of a self-explanatory formal system
requires a huge complexity. These systems cannot be applied in real-life situations (Mertens,
1990). This may be one reason for the failure of the enthusiastically propagated set theoretical
approach to mathematics in primary schools in the 1960s. Nowadays it is widely accepted
that the Peano-axioms do not provide a suitable context to introduce the system of whole
numbers for primary schools (Athen and Bruhn, 1980).
But not only its complexity makes the formal approach difficult. As Statement 1 cannot be
proven, it is rather subjective. It is obvious that:

1. Algorithms treated as formal systems require some kind of reductionism.

2. Reductionism works in some cases, but fails in others.

Based on our subjective experience as experimenters we can claim that:

Statement 2
Reductionism often fails in algorithmic science.

Hooker gives an example that emphasizes the importance of the right level of reductionism
or abstraction that provides an understanding of the underlying phenomena: Investigating
the behavior of algorithms with formal methods is like applying quantum physics to geology
to understand plate tectonics. Even if one can in principle deduce what the algorithms are
going to do, we would not understand why they behave as they do (Hooker, 1994). As will
be seen in the following, the concept of model plays a central role in tackling these problems.

Comparing mathematical models and experiments, the following statements are true:

1. Results from mathematical models are more certain than results from experiments.

2. Results from mathematical models are less certain than results from experiments.

As the conclusions must follow from the premises, mathematical models are more certain. This
justifies the first statement. However, as these premises are more hypothetical and arbitrary,
the conclusions are less certain. This confirms the second statement. Both, mathematical
models and experiments, deliver only hypotheses. Or, as stated by Einstein: “As far as the
laws of mathematics refer to reality, they are not certain; and as far as they are certain, they
do not refer to reality” (Newman, 1956).

Summarizing, one can claim that a solely theoretically oriented approach is not completely
satisfactory. We would like to mention a few more reasons why experiments are useful:

• Theories may be incomplete, they may have holes. Consider the Nelder-Mead simplex
algorithm (Nelder and Mead, 1965), one of the most popular methods for nonlinear
unconstrained optimization. “At present there is no function in any dimension greater

14 Experiments

than 1 for which the original Nelder Mead algorithm has been proved to converge to a
minimizer” (Lagarias et al., 1998).

• Observations and experiments may suggest new theories. Existing theories can be tested
and refined by experiments. The 2004 NASA gravity probe B mission can be mentioned
here. Gravity probe B is the relativity gyroscope experiment being developed by NASA
and Stanford University to test two extraordinary, unverified predictions of Einstein’s
general theory of relativity.

• Experiments can bridge the gap between theory and practice: Experiences from the
collaborative research center “Design and Management of Complex Technical Processes
and Systems by Means of Computational Intelligence Methods” in Dortmund show that
the engineer’s view of complexity differs from the theoretician’s view (Schwefel et al.,
2003).

• Digital computers use a finite number of decimal places to store data. To check theoret-
ically derived convergence results, computer experiments that consider rounding errors,
have to be performed (Schwefel, 1995).

• Worst case �= average case: As worst case scenarios can theoretically easier be analyzed
than average case scenarios, many theoretical results are related to the former. But the
real world is “mostly” an average case scenario (Briest et al., 2004).

• To obtain average case results, it is necessary to define a probability distribution over
randomly generated problem instances. But, this distribution is “typically unreflective
of reality” (Hooker, 1994). Real-world optimization problems are not totally random,
they possess some kind of structure: To model this structure, Kan (1976) introduced job-
correlated processing times for scheduling problems. As a consequence, theoretical lower
bound calculations that perform very well for randomly generated problem instances,
provide “an extremely poor bound on job correlated problems” (Whitley et al., 2002).
We will come back to this problem in Chapter 3.

• And last, but not least: What is c in O(n) + c?

Many theoreticians would accept the point of view that experiments are useful—at least when
they support theories.
If experiments are elements of science—this point has not been clarified yet—an experimental
methodology to deal with important research questions is needed. Already ten years ago,
Hooker (1994), coming from the operations research community, postulated to “build an
empirical science of algorithms”. The key ingredients of his empirical science are statistical
methods and empirically based theories that can be submitted to rigorous testing. We claim
that the time is ripe to transfer these ideas to the field of evolutionary algorithms.
First, we will ask “what is the role of science?” Or to be more concrete: “Which are important
research topics especially in evolutionary computation?”

1.2.2 Important Research Questions

We claim that important elements of research in evolutionary computation comprise tasks
like:

1.3 Experimental Algorithmics 15

Investigation: Specifying optimization problems and analyzing algorithms. Which are im-
portant parameters, what should be optimized?

Comparison: Comparing the performance of competing search heuristics such as evolution-
ary algorithms, simulated annealing, and particle swarm optimization etc.

Conjecture: It might be good to demonstrate performance, but it is better to explain per-
formance. Understanding and further research, based on statistics and visualization
techniques, play important roles.

Quality: Improving the robustness of the results obtained in optimization or simulation runs.
Robustness includes insensitivity to exogenous factors that can affect the algorithms’
performance, and minimization of the variability around the solutions obtained (Mont-
gomery, 2001).

These four goals are also discussed in the discipline of experimental algorithmics. As it has
gained much attention in the last years, we will present this approach to establish experi-
ments as scientific means first. (Pre-)experimental planning is of importance in experimental
algorithmics.

1.3 Experimental Algorithmics

1.3.1 Pre-experimental Planning

Pre-experimental planning has a long tradition in other scientific disciplines. For instance,
Colemann and Montgomery (1993) present a checklist for the pre-experimental planning
phases of an industrial experiment. It covers the following topics: Objectives of the ex-
periment, a performance measure, relevant background on response and control variables, a
list of response variables and control variables, a list of factors to be “held constant”, known
interactions, proposed analysis techniques etc. The differences between analytical and empir-
ical studies are discussed in Anderson (1997). Good empirical work must pass the following
tests: “It must be both convincing and interesting” (Anderson, 1997). Moret (2002) gives a
suitable characterization of “interesting”: “Always look beyond the obvious measures!” In
this context, we recommend to include factors that should have no effect on the response such
as the random seed in the model. This is one example for blowing the trumpet to the tulips.

1.3.2 Guidelines from Experimental Algorithmics

As we have classified important parameters of the algorithm to be analyzed, and have defined
a measure for its performance, we can conduct experiments to assess the significance of single
parameters such as population size or selective pressure. Optimization runs are treated as
experiments. We begin by formulating a hypothesis, then set up experiments to gather data
that either verify or falsify this hypothesis. Guidelines (GL) from experimental algorithmics
to set up and to perform experiments read as follows (Moret, 2002):

(GL-1) Question: State a clear set of objectives. Formulate a question or a hypothesis.
Typical questions or hypotheses read: “Is the selective pressure ν = 5 a good choice for
the optimization problem under consideration?”, or “PSO works better when the swarm
size is ten times the dimension of the search space compared to a parameterization that
uses a fixed swarm size.”

16 Experiments

(GL-2) Data collection: After an experimental design is selected, simply gather data. Do
not modify the hypothesis until all data have been collected.

(GL-3) Analysis: Analyze the data to test the hypothesis stated above.

(GL-4) Next Cycle: In the next cycle of experimentation a new hypothesis can be tested,
i.e. “ν = 5 is a good choice, because. . .”

This procedure complies with Popper’s position that “knowledge results when we accept
statements describing experience that contradict and hence refute our hypotheses; thus a
deductive rather than an inductive relation holds between theoretical knowledge and experi-
ence. Experience teaches us by correcting our errors. Only hypotheses falsifiable by experience
should count as scientific” (Jarvie, 1998). Or, as Sanders introduces the related discipline of
algorithm engineering: “Algorithm engineering views design, analysis, implementation, and
experimental analysis of algorithms as an integrated process in the tradition of Popper’s
scientific method” (Sanders, 2004). Figure 1.1 depicts a commonly accepted view on the
relationship between theory and experiment. This position is nowadays broadly accepted in
the computer science community. However, it is intensely discussed in the philosophy of sci-
ence. Results from these discussions have a direct impact on the experimental methodology in
evolutionary computation. Therefore we will present the fundamental ideas in the following.
After introducing the framework of the new experimentalists in Section 1.6, Popper’s position
will be reconsidered.

To introduce the concept of models as a central element of science, we describe an inherent
problem of nearly any real-world situation: Noise.

1.4 Observational Data and Noise

Even if a scientific hypothesis or claim describes a phenomenon of investigation correctly,
observational data must not precisely agree with it. The accuracy and precision of such
data may be limited by measurement errors or inherent fluctuations of the response quantity,
for example turbulences. Another source of distortion may lie in the inherent probabilistic
nature of the scientific hypotheses. Moreover, the observational data are discrete in contrast
to scientific hypotheses that may refer to continuous values (Mayo, 1983).

Although computer programs are executed deterministically, evolutionary computation
has to cope with noise. Stochastic optimization uses pseudo-random numbers. Randomness
is replaced by pseudo-randomness.
As common or antithetic seeds can be used, the optimization practitioner has much more

Figure 1.1: A first approach to model the relation-
ship between theory and practice. Practice can ben-
efit from theory and vice versa. Demonstrating good
results is only the first step in the scientific process,
whereas nature’s reality can be seen as the judge of a
scientific theory. Source: Bartz-Beielstein (2003).

1.5 Models 17

control over the noise in the experiments and can control the source of variability (Kleijnen,
1997). The different optimization runs for one specific factor combination can be performed
under exactly the same conditions—at least in principle: Even under exactly the same condi-
tions different hardware can produce unexpected results. To compare different run configura-
tions under similar conditions variance-reduction techniques (VRT) such as common random
numbers (CRN) and antithetic variates can be applied (Law and Kelton, 2000).

Random error or noise can be classified as an unsystematic effect. Systematic errors, for
example the selection of a wrong regression model, are referred to as bias. Santner et al.
(2003) distinguish control, noise (or environmental) variables, and model variables. Control
variables can be set by the experimenter to control the output (response) of an experiment,
noise variables depend on the environment.

Statistical methods can be used to master problems due to noise. They require the
specification of models. In the following section, the model concept from mathematical logic
is complemented with a model concept that defines models as tools for representing and
understanding the world.

1.5 Models

Models are central elements of an understanding of science. Giere (1999) concludes that
“models play a much larger role in science than even the most ardent enthusiasts for models
have typically claimed”. Perhaps the most influential paper that describes the meaning
and use of models in mathematics (especially in mathematical logic) and empirical sciences
is Suppes (1969a). Based on Tarski’s definition: “A possible realization in which all valid
sentences of a theory T are satisfied is called a model of T” (Tarski, 1953), Suppes asserts “that
the meaning of the concept of model is the same in mathematics and the empirical science”,
although the concept of model is used in a different manner in these disciplines (Suppes,
1969b). The concept of model used by mathematical logicians is the basic and fundamental
concept of model needed for an exact statement of any branch of empirical science.

Logicians examine models that consist of abstract entities, i.e. geometrical objects. Sup-
pes’ proposition that there is no difference in the concept of a model in empirical science and
in mathematics is based on the consideration that these objects could be physical objects. Or
as David Hilbert has already stated decades ago: “Man muss jederzeit anstelle von Punkten,
Geraden und Ebenen Tische, Stühle und Bierseidel sagen können”.1 Suppes establishes a rela-
tionship between theories (sets of axioms) and models (sets of objects satisfying the axioms).
A model provides an interpretation of a set of uninterpretated axioms, called interpretative
models.

Introducing error terms, model descriptions such as mathematical formulas, can be inter-
preted as hypotheses about real-world systems. Hypotheses can be tested based on evidence
obtained by examining real-world objects, i.e. by performing experiments. Higher level models
are not compared directly with data, but with models of data that rank lower in the hierarchy
of models. In between must be a model of experiments (Suppes, 1969b). Giere summarizes
Suppes’ hierarchy of models as follows:

1This famous quotation cannot be found in Hilbert’s publications. Walter Felscher wrote: “I have looked
through Hilbert’s articles on geometry, as well as through those on the foundations of mathematics, but
nowhere did I find formulations mentioning Tische, Stuehle, Bierseidel. So the dictum seems indeed to be only
such, not a quotation documentable in Hilbert’s own publications”(Felscher, 1998).

18 Experiments

1. Theoretical principles.

2. Theoretical models.

3. Models of experiments.

4. Models of data.

5. Data.

Theoretical models describe how a substantive inquiry can be divided into local questions that
can be probed. Experimental models are used to relate questions to canonical questions about
the particular type of experiment and how to relate data to these experimental questions.
Models of data describe how raw data can be generated and modeled so as to put them into
a canonical form. In addition they describe how to check if the data generation satisfies
assumptions of the experimental models.

Following Suppes and Hilbert, models consist of abstract entities that could be in princi-
ple physical objects. But is this view of models adequate for physical objects? Giere (1999)
discusses maps, diagrams, and scale models (models of the solar system or model houses)
as representational models. He characterizes Suppes’ models as instantial in contrast to his
understanding that is representational . Representational means that models are tools for rep-
resenting the world for specific purposes, and not primarily providing means for interpreting
formal systems. The representational view is related to the systems analysis process that
requires a discussion of the context in which the need for a model arises before the subject of
models and modeling is introduced (Schmidt, 1986).

From the instantial view of models there is a direct relationship between linguistic expres-
sions and objects. A circle can be defined as the set of points that have a constant distance
(radius) from one specific point. The mathematical object “circle” can be linked to the lin-
guistic expression without loss. But physical objects that cannot be observed precisely, and
cannot be defined as exactly as theoretical objects, require a different conception.
Testing the fit of a model with the world, the model is compared with another model of
data. It is not compared to data. And, scientific reasoning is “models almost all the way up
and models almost all the way down” (Giere, 1999). A significant use of models appears in
mathematical statistics, where models are used to analyze the relation between theory and
experimental data (Suppes, 1969a). We will concentrate on the usage of models in mathemat-
ical statistics. The following section presents models of statistical testing in the framework of
the new experimentalism.

1.6 The New Experimentalism

A naive description of the popperian paradigm how scientific theories are constructed is based
on three assumptions (Chalmers, 1999):

1. Generalizations are based on a huge number of observations.

2. Observations have been repeated under a huge number of varying conditions.

3. No statement violates commonly accepted principles.

1.6 The New Experimentalism 19

The vagueness of the term “huge number” is not the only problem of this approach. Some-
times, only a small number of observations is necessary to understand an effect: The destruc-
tive power of the atomic bomb has fortunately been demonstrated only seldom in the last
decades.
The second assumption requires additional knowledge to differentiate between significant and
insignificant variations (the colors of the experimenter’s socks should have no significant im-
pact on the experimental outcome—ceteris paribus conditions of an experiment are usually
not incorporated in models). This additional knowledge can be concluded from well-known
facts. As these well-known facts have to be justified and depend on the specification of further
additional knowledge, this leads to an infinite regress.

Popper demands that theories should be falsifiable. “Good” theories survived many at-
tempts of falsification. However, it remains unclear whether it is the theory or the additional
assumptions, which are necessary to construct the theory, that are responsible for its falsifica-
tion. Also Popper does not provide positive characterizations that would allow the discovery
of survivable theories.

This is where the new experimentalism comes into play: The new experimentalists are
seeking for a scientific method, not through observation (passive), but through experimen-
tation (active). They claim that experiments have negative and positive functionality. The
experimenter can learn from mistakes because he has some knowledge of their causes.

Experiments live a life of their own, they do not necessarily require complex theories and
are theory-neutral. Faraday’s electric motor is one famous example to illustrate how exper-
iments can be performed successfully and independently from high-level theories: “Faraday
had no theory of what he had found” (Hacking, 1983, p. 211).

The new experimentalists are looking for scientific conclusions that can be validated inde-
pendently from complex abstract theories. Experiments can verify and falsify assertions and
identify formerly unknown effects. Experimental results are treated as samples from the set
of all possible results that can be drawn from experiments of this type. Error-statistics are
used to assign probabilities to sampling events. A theory is supported if predictions based on
this theory have been proven.

Science is seen as the growth of experimental knowledge. The new experimentalists provide
substantial means that enable experimenters to derive experimental knowledge independently
from theory. One example how learning from experiments can be carried out will be detailed
next.

1.6.1 Mayo’s Models of Statistical Testing

Mayo (1996) attempts to capture the implications of the use of models in mathematical statis-
tics in a rigorous way. A statistically modeled inquiry consists of three components (Mayo,
1983), see Figure 1.2:

(1) A scientific claim C can be modeled in terms of statistical hypotheses about a population.
Statistical models of hypotheses enable the translation of scientific claims into claims
about a certain population of objects. A random variable Y with probability distribution
P describes a quantity of interest. Statistical hypotheses are hypotheses about the value
of parameters of the probability distribution P , i.e. the mean µ of Y . A probability
model

M(µ) = {Pr(Y |µ), µ ∈ Ω} (1.1)

20 Experiments

describes Y , where Ω denotes the parameter space.

(2) Experimental testing rules can be used to model the observational analysis of the sta-
tistical hypotheses. The sample space Y is the set of possible experimental results
y = (y1, . . . , yn). Each yi is the realization of an independent random variable Yi that is
distributed according to M(µ). The probability of an experimental result Pr(y|µ) can
be determined. Based on a test statistic T , a testing rule RU maps outcomes in Y to
various claims about the model of hypotheses M(µ):

RU : Y →M(µ). (1.2)

A statistical model of experimental tests ET (Y) is the triple (Y, P r(x|µ), RU).

(3) The actual observation O can be modeled in terms of a statistical sample from the pop-
ulation. A statistical model of data models an empirical observation O as a particular
element of Y. It includes various sample properties of interest, for example the sample
average.

As we will see in the following, it is crucial to leave some room between statistical and
scientifical conclusions. A statistically significant conclusion is not automatically scientifically
meaningful.

1.6.2 Neyman-Pearson Philosophy

The classical Neyman-Pearson theory of testing (NPT) requires the determination of the
region of the parameter space Ω in the hypothesis model M(µ) that will be associated with
the null hypothesis H and the determination of the region that will be associated with an
alternative hypothesis J . Applications of the NPT testing rules lead to a rejection of H and
an acceptance of J or vice versa.

Before the sample is observed, the experimental testing model ET (Y) specifies which of
the outcomes in Y should be taken to reject H. These values form the critical region (CR). A
type I error occurs if a true H is rejected, a type II error, when a false H is accepted, α and
β denote the corresponding error probabilities. These error probabilities can be controlled by
specifying a test statistic T and a testing rule RU that defines which of the possible values of
T are mapped to the critical region. In general, a (test) statistic is a function of the observed
random variables obtained in a random sample. It can be used as a point estimate for a
population parameter, for example the mean, or as a test statistic in hypothesis testing. A
testing rule RU with Pr(T ∈ CR|µ ∈ ΩH) ≤ α and 1 − Pr(T ∈ CR|µ ∈ ΩJ) ≤ β can be
specified, because the probability that T ∈ CR can be determined under various values of µ.
The event {RU rejects H} can be identified with {T ∈ CR}. It follows

Pr(RU rejects H|H is true } = Pr(T ∈ CR |µ ∈ ΩH} ≤ α (1.3)
Pr(RU accepts H|J is true } = 1 − Pr(T ∈ CR |µ ∈ ΩJ} ≤ β. (1.4)

The simultaneous minimization of α and β is a conflicting goal. The two types of error are
inversely related to each other, it is impossible to minimize both of them simultaneously
without increasing the sample size. Usually, the significance level α of a test is selected first.
The significance level of a test can also be referred to as the size. In a second step a test with
a small β value is chosen. The best NPT test is the one that minimizes the probability of

1.6 The New Experimentalism 21

Scientific inquiry (or problem)

How to generate and analyze empirical
observation O and to evaluate claim C

Model of
data

Model of experimental
test

Model of
hypotheses

(3) (2) (1)

Statistical inquiry: Testing hypotheses

Figure 1.2: Models of statistical testing, from Mayo (1983). It is crucial to leave some room be-
tween statistical and scientifical conclusions. A statistically significant conclusion is not automatically
scientifically meaningful.

type II errors for all possible values of µ under the alternative J . NPT tests are objective,
because they control the error probabilities independently from the true value of µ.

It is fundamental to be aware of two different interpretations of statistical tests. In a
similar manner as Cox and Hinkley distinguish “the theory of statistical methods for the
interpretation of scientific and technological data” and statistical decision theory, “where
statistical data are used for more or less mechanical decision making”(Cox and Hinkley,
1974), Mayo distinguishes rules of inductive behavior and learning tools.

Rules of inductive behavior Statistical tests can be interpreted as rules of inductive be-
havior and provide an automatic rule for testing hypotheses (Mayo, 1996, p. 368).
“To accept a hypothesis H means only to decide to take action A rather than action
B”(Neyman, 1950, p. 258). These behavioristic models of tests and the related au-
tomatisms are adequate means “when circumstances force us to make a choice between
two courses of action”(Neyman, 1950, p. 258). Automatic test rules play an important
role for selection procedures of search algorithms under uncertainty, for example the
threshold selection scheme for direct search algorithms introduced later on.

Learning tools Mayo (1983) reformulates the Neyman-Pearson theory of testing and argues
that it provides an objective theory of statistics. The control of error probabilities
provides means to evaluate what has been learned from the results of a statistical test.
Mayo describes tests as learning tools: “A test teaches about a specific aspect of the
process that produces the data” (Mayo, 1996, p.382).

It might be useful to present an example that uses simplified assumptions, e.g. common
known variances, to explain the objective theory of statistical testing. The reader should be
acquainted with the basics of statistical testing. A short introduction is given in Chapter 2.

Example 1.2 (PSO swarm-size)
In Example 1.1 a random sample was drawn from each of the two populations to determine
whether or not the difference between the two population means is equal to δ. The two

22 Experiments

samples are independent, each population is assumed to be normally distributed with common
known standard deviation σ. The question is whether the increased swarm size improves the
performance of the PSO. This can be formulated as the scientific claim C1:

PSO(40) has a better (smaller) mean best fitness value than PSO(20).

(A) Statistical hypothesis: The model M(δ) is in the class of normal distribution, that is: It
is supposed that the standard deviation σ is known (σ = 160) and that the variability
of Y i, the mean best fitness value from n experiments, can be modeled by a normal
distribution, i = 1, 2. If PSO(40) does not improve the performance, the difference δ
between the two population means µ1 and µ2 would be zero. On the other hand, if C1

is true, δ will be greater than zero. The hypotheses read:

Null hypothesis H : δ = 0 in N (δ, σ2) (1.5)

Alternative hypothesis J : δ > 0 in N (δ, σ2).

(B) Specifying the components of an experimental test (ET1): The vector yi = (yi1, . . . , yin)
represents n observations from the i-th configuration, yi denotes the i-th sample mean,
i = 1, 2. The experimental test statistic is T = Y 12 = Y 1−Y 2, its distribution under H
is N (0, 2σ2/n). The upper α percentage point of the normal distribution is denoted as
zα, for example z0.05 = 1.64 or z0.01 = 2.33. As the number of observations was set to
n = 50, it follows that the value of the standard error is σd = σy1−y2

= 160
√

2/50 = 32.
The significance level of the test was α = 0.01, thus zα = z0.01 = 2.33. So the test rule
RU is

T : Reject H : δ = 0 if T = Y 1 − Y 2 ≥ 0 + zα · σd = 74.44.

(C) Sample data: The average performance y1 of n = 50 runs of PSO(20) is 108.02, whereas
the average performance y2 of n = 50 runs of PSO(40) is 56.29. The difference d =
y1 − y2 is 51.73. Since this value does not exceed 74.44, RU does not reject H. �

Example 1.2 shows a typical application of the Neyman-Pearson theory of testing. NPT has
been under attack for many years. We will discuss important objections against NPT in the
following and present an approach (NPT∗) developed by Mayo to avoid these difficulties.

1.6.3 The Objectivity of NPT: Attacks and Misunderstandings

The specification of a significance level α or error of the first kind is a crucial issue in statistical
hypothesis testing.

Hence, it is not surprising that attacks on the objectivity of NPT start with denying the
objectivity of the specification of α. Why do many textbooks recommend a value of 5%?

Statement 3
“In no case can the appropriate significance level be determined in an objective manner” (Ru-
bin, 1971).

Significance tests are tests of a null hypothesis. The significance level is often called the p-
value. Another question that attacks the Neyman-Pearson theory of statistical testing refers
to the p-value.

1.6 The New Experimentalism 23

Statement 4
In the context of a statistical test, does a given p-value convey stronger evidence about the
null hypothesis in a larger trial than in a smaller trial, or vice versa? (Gregoire, 2001).

Prima facie, one would answer that the p-value in a larger trial conveys stronger evidence.
But the chance of detecting a difference increases as the sample size grows.
Although whole books devoted to these questions have been written, for example “The Sig-
nificance Tests Controversy” (Morrison and Henkel, 1970), this controversy has not been
recognized outside the statistical community. Gigerenzer states that there are no textbooks
(written by and addressed to non-statisticians like psychologists) that explain differences in
opinion about the logic of inference: “Instead, readers are presented with an intellectually
incoherent mix of Fisherian and Neyman-Pearsonian ideas, but a mix presented as a seamless,
uncontroversial whole: the logic of scientific inference” (Gigerenzer, 2003).
The following section discusses the definition of the p-value to clarify these questions.

1.6.4 The Objectivity of NPT: Defense and Understanding

Significance and the p-Value

Sometimes scientists claim that their results are significant because of the small p-value. The
p-value is taken as an indicator that the null hypothesis is true (or false). This is as wrong
as claiming that the movement of the leaves in the trees causes windstorms in autumn. The
p-value is

p = Pr{ result from test-statistic, or greater | null model is true },
and not a measure of

p = Pr{ null model is true | test-statistic }.
Therefore, the p-value has “no information to impart about the verity of the null model
itself”(Gregoire, 2001). The p-value is not related to any probability whether the null hy-
pothesis is true or false. J. Neyman and E.S. Pearson2 proposed a framework of acceptance
and rejection of statistical hypothesis instead of a framework of significance. A significant
result is a beginning, not an end. “Eating beans and peas ‘significantly’ decreases the prob-
ability of getting lung cancer. But why on Earth?”(Hacking, 2001). The specification of a
p-value depends on the context in which the need for an experimental test arises. Researchers
can judge the possible consequences of a wrong decision. Mayo comments on Statement 3:

Statement 5
The fact that the same data leads to different conclusions depending on the specification of α is
entirely appropriate when such specifications are intended to reflect the researcher’s assessment
of the consequences of erroneous conclusions (Mayo, 1983, p.315).

The specifications, which are made in using NPT, are what allows tests to avoid being sterile
formal exercises.

The misconception is that NPT functions which test scientific claims directly, cf. arrow
(1) in Figure 1.2, and functions from which the statistical hypotheses are derived, arrow (2),
are collapsed. It is necessary to leave some room between the statistical and the scientific

2Egon Pearson should not be confused with his father Karl, who proposed a different philosophy.

24 Experiments

conclusion. Statistically significant conclusions are not automatically scientifically meaning-
ful (Cohen, 1995).

How can statistical tests in a scientific inquiry provide “means of learning”? Being able
to use the distribution of the test statistic T , error probabilities can be objectively controlled.
This provides objective scientific knowledge. Detecting discrepancies between the correct and
the hypothesized models enables learning about phenomena, for example ”Is the actual value
of δ positively discrepant from the hypothesized value δ0?”

Severity

From the distribution of the experimental test statistic T is known that it is possible for
an observed d to differ from a hypothesis δ0, when no discrepancy exists (between δ, the
true difference in means, and δ0) or vice versa. A suitable choice of T enables the variation
of the size of the observed differences, in a known manner, with the size of the underlying
discrepancies. A test can be specified so that it will not very often classify an observed
difference as significant (and hence reject H) when no discrepancy of scientific importance is
detected, and not very often fail to do so (and so accept H) when δ is importantly discrepant
from δ0. This principle can be expressed in terms of the severity requirement (SR). It leads
to NPT∗, an extension of NPT.

(SR) An experimental result e constitutes evidence in support of a hypothesis H just to the
extent that:

(SR-1) e fits H, and

(SR-2) H passes a severe test with e.

The requirement (SR-2) can be further specified by means of the severity criterion: A hy-
pothesis H passes a severe test T with outcome e just in case the probability of H passing T
with an outcome such as e (i.e., one that fits H as well as e does), given H is false, is very low.
Staley (2002) additionally formulates a severity question (SQ) as follows: The severity ques-
tion needs to be addressed to determine whether a given experimental outcome e is evidence
for a given hypothesis H:

(SQ) How often would a result like this occur, assuming that the hypothesis is false?

Note that the severity requirements are not related to the error of the second kind (β error).
Based on the severity requirements we attempt to show how NPT∗ can be used to objectively
interpret statistical conclusions from experimental tests.

An Objective Interpretation of Rejecting a Hypothesis

The question “Are the differences real or due to the experimental error?” is central for the
following considerations. The meta-statistical evaluation of the test results tries to determine
whether the scientific import is misconstrued. A positive difference between the true and
the observed value of less than one or two standard deviation units is quite often caused by
experimental error. Thus, small differences may often erroneously be confused with effects
due to real differences. This problem can be tackled by selecting a small α error, because only
observed differences as large as zασd are taken to reject H (see Figure 1.3). But choosing a
small α value alone is not sufficient, because the standard error σd depends on the sample

1.6 The New Experimentalism 25

0 0.1 0.2 0.3 0.4 0.5
0

100

200

300

400

500

600

700

α

D
iff

er
en

ce

 n=1
 n=2
 n=10
 n=50

Figure 1.3: Influence of the sample size n on the test result. Plot of the difference zα · σd versus
α, with σ = 160. The arrows point out the influence of the sample size for a given error of the first
kind (α = 0.01) on the difference: If n=1 the difference d = Y 1 − Y 2 must exceed 526.39 to reject
the null hypothesis. If more experiments are performed (n = 50), this difference must exceed only the
seventh part of this value: 74.44. To demonstrate that there is no difference in means, experimenters
can reduce the sample size n. Otherwise, increasing the sample size n may lead to a rejection of the
null hypothesis.

size n. A misconstrual is a wrong interpretation resulting from putting a wrong construction
on words or actions. Mayo (1983) describes the first misconstrual (MC) as follows:

(MC-1) A test can be specified that will almost give rise to an d = y1 − y2 that exceeds δ0
by the required difference zασd, even if the underlying δ exceeds δ0 by as little as one
likes.

This can be accomplished by selecting an appropriately large sample size n. If one is allowed
to go on sampling long enough (n → ∞), then even if the null hypothesis H is true, one is
assured of achieving a statistically significant difference from H. The likelihood that we can
detect a difference (power) in the test increases.

Example 1.3 (Sample size)
Consider Y1 ∼ N (100, 5) and Y2 ∼ N (110, 5). Choosing a test with n = 50 will almost give

rise to a Y 21 that exceeds δ0 by the required difference. Note that we wish to reject H if one
mean is larger than the other. Therefore we are interested in the difference Y 21 = Y 2 − Y 1.
Next, consider Y1 and Y3 ∼ N (100.1, 5). If the sample size is increased, say n = 5000, a
similar result can be obtained. �

26 Experiments

Summarizing, the product zασd can be modified by changing the sample size n or the error
α:

lim
α→0

zα = ∞ (1.6)

lim
n→∞σd = 0 (1.7)

NPT allows misconstruals of the scientific import if a rejection of H is automatically taken
to indicate that the scientific claim C is true. Even scientifically unimportant differences are
classified as important because the test is too sensitive or powerful. When A and B are
different treatments with associated means µA and µB, µA and µB are certain to differ in
some decimal place so that µA−µB = 0 is known in advance to be false (Cohen, 1990; Tukey,
1991).

The Observed Significance Level

The frequency relation between a rejection of the null hypothesis and values of the difference
in means, δ, is important for the interpretation of the rejection. To interpret the rejection of
H, Mayo introduces the observed significance level αd(δ)

αd(δ) = α(d, δ) = Pr(Y1 − Y2 ≥ d|δ). (1.8)

Hence, αd(δ) is the area under the normal curve to the right of the observed d as illustrated
in Figure 1.4. If we set δ0 = 0, then αd(δ0) is the frequency of an error of the first kind. If
αd(δ0) ≤ “the preset significance level of the test RU”, then RU rejects H with d. Rejecting H
with RU is a good indicator that δ > δ0 to the extent that such a rejection is not typical when
δ is as small as δ0. If any and all positive discrepancies from δ0 are regarded as scientifically
important, then a small αd(δ) value ensures that construing such a rejection as indicating a
scientifically important δ does not occur very often. Small αd(δ) value does not prevent a
RU rejection of H from often being misconstrued when relating it to the scientific claim C, if
some δ values in excess of δ0 are still not considered scientifically important.

Regard the values of αd(δ
′) for δ′ ∈ ΩJ . A RU rejection with d successfully indicates that

δ > δ′ if αd(δ
′) is small. If αd(δ

′) is fairly large, then such a rejection is the sort of event that
fairly frequently occurs when δ ≤ δ′.

To relate the statistical result to the scientific import, Mayo proposes to define δun

δun = the largest scientifically unimportant value in excess of δ0. (1.9)

If αd(δun) is large, then the statistical result is not a good indication that the scientific claim
is true. In addition to δun, we can define δα, the inversion of the observed significance level
function as

δα = the value of δ in Ω for which αd(δ) = α. (1.10)

Example 1.4
Consider a sample size of n = 50. If δun = 30, then rejecting H with RU cannot be taken as
an indication that the scientific claim “PSO(40) outperforms PSO(20)” is true. The arrow
in Figure 1.5 illustrates this situation. The observed significance level αd(30) = 0.25 is not a
strong indication that δ exceeds 30. However, if the sample size is increased (n = 500), then
αd(30) = 0.05 is small.

1.6 The New Experimentalism 27

0 10 20 30 40 50 60 70 80 90 100
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

Difference

D
en

si
ty

 δ=0
 δ=30
 δ=70x

Figure 1.4: Observed difference and three hypothetical differences. Difference in means for n = 50
samples and standard deviation σ = 160. The value from the test statistic d = 51.73 remains fixed
for varying means δi of different distributions associated with the null hypotheses Hi, i = 1, 2, 3. The
figure depicts the probability density functions of the associated normal distributions for three different
means: δ1 = 0, δ2 = 30, and δ3 = 70. To interpret the results, consider a hypothetical difference in
means of δ2 = 30: The observed significance level αd(δ2) is the area under the normal curve to the
right of d. The value α51.75(30) = 0.25 is quite large and therefore not a good indication that the true
difference in means is as large as δ2 = 30.

Consider Example 1.1 and an observed significance level α = 0.5. Then the value of the
inversion of the observed significance level function is δ0.5 = 51.73 . As δ0.027 = y−2σd = 31.49
(n = 500), hence a RU rejection is an indication of δ > δ0.027. �

But are these results good indications that one is observing a difference δ > 0, that is also
scientifically important? This problem is outside the domain of statistics. Its answer requires
the specification of a scientifically important difference, a reasonable sample size, and an ac-
ceptable error of the first kind, cf. Statement 5. The αd(δ) function provides a non-subjective
tool for understanding the δ values, a meta-statistical rule that enables learning on the basis of
a given RU rejection. As the examples demonstrate, NPT∗ tools enable the experimenter to
control error probabilities in an objective manner. The situation considered so far is depicted
in Figure 1.5.

An Objective Interpretation of Accepting a Hypothesis

In a similar manner as rejecting H with a test that is too sensitive may indicate scientifically
important δ’s have been found, accepting a hypothesis with a test that is too insensitive may
fail to indicate that no important δ’s have been found. This can be defined as the second
misconstrual:

28 Experiments

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Difference

O
bs

er
ve

d
si

gn
ifi

ca
nc

e
le

ve
l

n=10

n=50

n=500

α(30) = 0.25

Figure 1.5: Plot of the observed significance level αd(δ) as a function of δ, the possible true difference
in means. Lower αd(δ) values support the assumption that there is a difference as large as δ. The
measured difference is d = 51.73, the standard deviation is σ = 160, cf. Example 1.1. The arrow
points to the associated value of area under the normal curve to the right of the observed difference d
as shown in Figure 1.4. Each point of the three curves shown here represents one single curve from
Figure 1.4. The values can be interpreted as follows: Regard n = 50. If the true difference is a) 0, b)
51.73, or c) 100, then a) H : δ = 0, b) H : δ = 51.73, or c) H : δ = 100 is wrongly rejected a) 5%, b)
50%, or c) 95% of the time.

(MC-2) A test can be specified that will almost give rise to an d that does not exceed δ0
by the required difference zασd, even if the underlying δ exceeds δ0 by as much as one
likes.

To interpret the acceptance of H with RU , Mayo defines

βd(δ) = β(d, δ) = Pr(Y1 − Y2 ≤ d|δ), (1.11)

δβ = the value of δ in the parameter space Ω for which βd(δ) = β, (1.12)

and
δim = the smallest scientifically important δ in excess of δ0. (1.13)

Learning

NPT∗ accomplishes the task of objectively interpreting statistical results. The testing rule
RU requires assumptions on the distribution of the underlying empirical observations O. This
is seen as part of task (3), depicted as arrow (3) in Figure 1.2. For example, one has to verify
that the sample observation O can be modeled as the result of n independent observations
of a random variable distributed according to the probability model M(δ). The assumption

1.6 The New Experimentalism 29

of independence can be checked using various goodness-of-fit tests. The learning function
of tests may be accomplished even if the test assumptions are not satisfied precisely. NPT
methods are robust and NPT∗ makes this robustness explicit.

To present a comprehensive example, we assumed a population that follows a gaussian
distribution with known variance. Based on the bootstrap, that will be detailed in Section 2.3,
we are able to use our approach independently from any assumptions on the underlying
distribution.

Example 1.5 (Rejecting a hypothesis)
Consider the situation depicted in Figure 1.6. The experimental test statistic T = Y1 − Y2 is
based on samples Y1 ∼ N (110, 5) and Y2 ∼ N (100, 5). The plot of the observed significance
(Figure 1.6 on the left), indicates that one is observing a difference δ > 0, and that this
difference is not due to an increased sample size n alone. The values from Table 1.1 reflect
this assumption: The observed significance levels for 1 and 2 standard error units, αd(σd) and
αd(2σd), are small. This case will be referred to as RE-1 in the remainder of this thesis. �

Example 1.6 (Accepting a hypothesis)
The curves of the observed significance level αd change their shape significantly if the true
difference in means is very small, i.e. if Y1 ∼ N (100.1, 5) and Y2 ∼ N (100, 5). Figure 1.7
depicts this situation. Only a large sample size, i.e. n = 5000, is able to detect this difference,
smaller sample sizes, i.e. n = 10, or n = 50, do not indicate a difference in means. Note,
that in addition to the absolute αd-values, the slope (the rate of change) is of importance.
Figure 1.7 gives no reason to reject the null hypothesis. This case will be referred to as RE-2
in the remainder of this thesis.
The corresponding plot that gives reason to accept the null hypothesis is shown in Figure 1.8.
Consider a sample size of n = 5000: The corresponding curve shows that we can safely
state “there is no difference in means as large as δ = 0.4.” Figure 1.8 (right) shows a
similar situation with reduced noise levels (Y1 ∼ N (100.1, 1) and Y2 ∼ N (100, 1)). Regarding
n = 5000, we can safely state that “there is no difference in means as large as δ = 0.2.” This
case will be referred to as AC-1 in the remainder of this thesis. �

After discussing the objective interpretation of accepting or rejecting a hypothesis it is
important to note that experiments consists of several tests. We have described one ba-
sic procedure only. In general, the learning process requires numerous statistical tests, the
problem is broken up into smaller pieces. “One is led to break things down if one wants to
learn” (Mayo, 1997, p. 254).

1.6.5 Related Approaches

Selvin (1970, p. 100) states that there is a difficulty in the interpretation of “significance” and
“level of significance”. The level of significance is the probability of wrongly rejecting the null
hypothesis that there is no difference between two populations. The significance describes
the scientific meaning of this difference.

In addition to this, the observed significance level is closely related to consonance intervals
as introduced in Kempthorne and Folks (1971). Consonance intervals can be regarded as an
inversion of significance tests: We ask for the degree of agreement of the parameters of a
particular model with the data (Folks, 1981; Kempthorne and Folks, 1971). Given the data,

30 Experiments

80 90 100 110 120
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

µ

D
en

si
ty

µ=110

µ=100

0 2 4 6 8 10 12 14
0

0.2

0.4

0.6

0.8

1

Difference δ

O
bs

er
ve

d
si

gn
ifi

ca
nc

e
le

ve
l

α

n=10

n=50

n=5000

Figure 1.6: Case RE-1. Rejecting a hypothesis. Density and observed significance level plots.
Y1 ∼ N (110, 5), Y2 ∼ N (100, 5). This difference is meaningful and should be detected. These cases
correspond to the configurations R1-R3 from Table 1.1.

80 90 100 110 120
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

µ

D
en

si
ty

µ = 100

µ=100.1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Difference δ

O
bs

er
ve

d
si

gn
ifi

ca
nc

e
le

ve
l

α

n=10

n=50

n=5000

Figure 1.7: Case RE-2. Rejecting a hypothesis. Density and observed significance level plots.
Y1 ∼ N (100.1, 5), Y2 ∼ N (100, 5). This difference is not meaningful.These cases correspond to the
configurations R4-R6 from Table 1.1.

1.6 The New Experimentalism 31

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Difference δ

O
bs

er
ve

d
si

gn
ifi

ca
nc

e
le

ve
l β

n=10
n=50
n=5000

0 0.5 1 1.5
0

0.2

0.4

0.6

0.8

1

Difference δ

O
bs

er
ve

d
si

gn
ifi

ca
nc

e
le

ve
l β

n=10

n=50

n=5000

Figure 1.8: Case AC-1. Accepting a hypothesis. Observed significance level plots. Left: Y1 ∼
N (100.1, 5), Y2 ∼ N (100, 5). Probably, the differences are not meaningful, because only large sample
sizes produce small p-values. Right: Y1 ∼ N (100.1, 1), Y2 ∼ N (100, 1). These cases correspond to the
configurations A1-A6 from Table 1.1.

Table 1.1: Rejection and acceptance of hypotheses. The sample size, n, the standard error, σd, the
observed difference, d, the observed difference minus 1 and 2 σd’s, and the values of the observed
significance levels for 1 and 2 σd’s are shown.

Conf. n σd d d− σd d− 2σd αd(σd) αd(2σd)
R1 10 1.99 9.58 7.59 5.60 2.69 × 10−4 0
R2 50 0.94 10.66 9.72 8.79 0 0
R3 5000 0.1 9.89 9.79 9.69 0 0
R4 10 1.57 2.99 1.41 −0.16
R5 50 1.06 0.7 −0.36 −1.43
R6 5000 0.1 0.18 0.08 −0.02 0.29 0.67
Conf. n σd d d+ σd d+ 2σd αd(σd) αd(2σd)
A1 10 1.57 2.99 4.56 6.13
A2 50 1.06 0.7 1.76 2.83
A3 5000 0.1 0.18 0.28 0.38 0.71 0.33
A4 10 0.31 0.68 0.99 1.31 0.15 0.46
A5 50 0.21 0.22 0.43 0.65 0.48 0.14
A6 5000 0.02 0.12 0.14 0.16 1 1

32 Experiments

the parameters of the model are evaluated. I.e. observing 503 heads in 1000 coin tosses, the
model “heads and tails are equally probable” is consonant with the observation.

1.7 Popper and the New Experimentalists

In a similar manner as Gigerenzer (2003) presents his tools to theories approach, Mayo sus-
pects that Popper’s falsification theory is well accepted by many scientists since it reflects
the standard hypothesis testing principles of their daily practice. To clarify the difference be-
tween Mayo’s NPT∗ approach and popperian testing, the reader may consider the following
quotation:

Mere supporting instances are as a rule too cheap to be worth having: they
can always be had for the asking; thus they cannot carry any weight; and any
support capable of carrying weight can only rest upon ingenious tests, undertaken
with the aim of refuting our hypothesis, if it can be refuted (Popper, 1983).

Popper’s focus lies on the rejection of hypotheses, his concept of severity does not include tools
to support the acceptance of scientific hypotheses as introduced in Section 1.6. Popper states
that the theoretician will try to detect any false theories, he will “try to construct severe
tests and crucial test situations” (Popper, 1979). But Popper does not present objective
interpretations (as Mayo does) for accepting and rejecting hypotheses.

Mayo explicitly states that it is important to distinguish popperian severity from hers.
Also Popper stresses the importance of severe tests: Hypothesis H passes a severe test with
experimental result e if all alternatives to H that have been tested entail not-e. But there are
many not-yet-considered or not-yet-even-thought-of alternative hypotheses that also entail e.
Why is this alternative objection not relevant for NPT∗? Mayo comments:

Because for H to pass a severe test in my sense it must have passed a severe
test with high power at probing the ways H can err. And the test that alternative
hypothesis H ′ failed need not be probative in the least so far as H’s errors go.
So long as two different hypotheses can err in different ways, different tests are
needed to probe them severely (Mayo, 1997, p. 251).

Hypothesis H has passed a severe test if the hypothesis itself has been tested. It is not
sufficient—as claimed in the popperian paradigm—that all alternative hypotheses to H failed
and H was the only hypothesis that passed the test.

And What About Theory?

According to the new experimentalists, experiment can have a life of its own. An experiment
is independent of large-scale theory. This is an obvious contradiction to the popperian view
that theory precedes experiments and that there is no experiment without theory. While
discussing the relationship between theory and experiment, Hacking comments on Popper’s
statement: “Theory dominates the experimental work from its initial planning to the finishing
touches in the laboratory” (Popper, 1959) with a counterexample that mentions Humphry
Davy (1778–1829).

Davy’s noticing the bubble of air over the algae is one of these [obvious coun-
terexamples]. It was not an ‘interpretation in the light of theory’ for Davy had

1.8 Summarizing: Experiments 33

initially no theory. Nor was seeing the taper flare an interpretation. Perhaps
if he went on to say, ‘Ah, then it is oxygen’, he would have been making an
interpretation. He did not do that. (Hacking, 1983)

We note additionally that a great many examples from the history of science can be mentioned
as counterexamples to the popperian view that theory dominates the experimental work. Davy
experimented with gases by inhaling them and thus invented the laughing gas, nitrous oxide,
without any theory. And, in opposition to existing theories, Davy showed that hydrochloric
acid did not contain oxygen. One last example from Davy: Ice cubes melt when they are
rubbed together—in contradiction to the caloric theory. Summarizing the discussion about
theory from this chapter, we conclude: Theory can be described as wishful thinking. Moreover
it is defined though consulting a dictionary as:

1. The analysis of a set of facts in their relation to one another.

2. An abstract thought: speculation (Merriam-Webster Online Dictionary, 2004b).

The latter definition is consonant with Hacking’s suggestion not to differentiate only between
theory and experiment, but to use a tripartite division instead: Speculation, calculation and
experimentation (Hacking, 1996). We will not enforce the gap between theory and practice
any further, because we sympathize with the idea of this tripartite division that will be recon-
sidered in Chapter 8. The reader is also referred to Hacking’s “Representing and Intervening”
that details these ideas.

1.8 Summarizing: Experiments

The results from this chapter can be summarized as follows:

1. The goal of this thesis is to prepare good grounds for experimental research in evolu-
tionary computation.

2. Solely theoretical approaches to investigate, compare, and understand algorithms are
not satisfactory from an experimenter’s point of view.

3. Algorithm runs can be treated as experiments.

4. Guidelines from experimental algorithmics provide good starting points for experimental
studies.

5. Experimental algorithmics is based on the popperian paradigms:

(a) There is no experiment without high-level theories.

(b) Theories should be falsifiable.

6. We claim that:

(a) There are experiments without high-level theories (“experiment can have a life of
its own”).

(b) Popper’s falsification should be complemented with validation.

34 Experiments

7. The concept of the new experimentalism is transferred from philosophy to computer
science, especially to evolutionary computation.

8. Models are central elements of an understanding of science.

9. Mayo introduced models of statistical testing that leave room between scientific claims
and statistical hypotheses.

10. Hypothesis testing can be applied as an automatic rule (NPT) or as a learning tool
(NPT∗).

11. The approach presented here enables learning from experiments. Learning can be guided
by plots of the observed significance against the difference as shown in Figure 1.5.

Example 1.2 was based on the assumption of known variances and normally distributed data.
The following section introduces statistical tools that enable the application of NPT∗ methods
even if the underlying distribution is unknown.

Chapter 2
Statistics

Like dreams, statistics are a form of
wish fulfillment.

Jean Baudrillard

2.1 Introduction

This chapter discusses some methods from classical and modern statistics. Statistics can be
defined as a branch of mathematics dealing with the collection, analysis, interpretation, and
presentation of masses of data (Merriam-Webster Online Dictionary, 2004a). The term “com-
putational statistics” subsumes computationally intensive methods. They comprise methods
ranging from exploratory data analysis to Monte Carlo methods. Data should be enabled to
“tell their story”. Many methods from computational statistics do not require any assump-
tions on the underlying distribution. Computer based simulations facilitate the development
of statistical theories: 50 out of 61 articles in the theory and methods section of the Journal
of the American Statistical Association in 2002 used Monte Carlo simulations (Gentle et al.,
2004a).

The accuracy and precision of data may be limited due to noise. How can deterministic
systems like computers model this randomness? Stochastic computer experiments, as per-
formed in evolutionary computation, have to cope with a different concept of randomness
than agricultural or industrial experiments. The latter face inherent randomness, whereas
the former require methods to generate randomness. This is accomplished by generating se-
quences of pseudo-random numbers.
A sequence of infinite length is random, if the quantity of information it contains is infinite
too. If the sequence is finite, it is formally impossible to verify whether it is random or
not. This results in the concept of pseudo-randomness: Statistical features of the sequence in
question are tested, i.e. the equiprobability of all numbers (Knuth, 1981; Schneier, 1996). Fol-
lowing this rather pragmatic approach, randomness and pseudo-randomness will be treated
equivalently throughout the rest of this work.

First some basic definitions from hypothesis testing are introduced. Next, a bootstrap
method to generate significance plots as shown in Figure 1.5 is described. It provides an
effective method to use the raw data without making any additional assumptions on the

36 Statistics

underlying distribution. The bootstrap has been used to solve problems that would be too
complicated for classical statistical techniques.
Then some useful tools for the analysis of computer experiments are presented. Common to
all these methods is that they provide means to explain the variability in the data. Consider
an optimization algorithm with exogenous strategy parameters A and B. Varying these
parameters may cause a change in the algorithm’s performance Y . The goal of all methods
presented here is to find out:

1. Which factor has a relevant influence on the performance?

2. What are good factor settings that guarantee that the algorithm performs well?

Regression models provide means for a numerical analysis. Half-normal plots and interac-
tion plots can complement these results graphically. Scatter plots and regression trees are
distribution-free methods to visualize structure in data. This chapter concludes with an in-
troduction of the basic definitions for design and analysis of computer experiments (DACE)
models.

A comprehensive introduction into the statistical methods cannot be given here. This
chapter attempts to focus on the basic ideas. Montgomery (2001) presents an introduction
to the classical design of experiment, the bootstrap is introduced in Efron and Tibshirani
(1993), classification and regression trees are discussed in Breiman et al. (1984), and Santner
et al. (2003) describe the design and analysis of computer experiments. Further reading is
mentioned in the text.

2.2 Hypothesis Testing

The following subsections introduce the basic definitions used for statistical hypothesis testing.
Example 1.2 is reconsidered. Besides the three procedures presented here, many more test
procedures exist. These tests can be classified according to known or unknown variances,
equal or unequal sample sizes, and equal or unequal variances (Montgomery, 2001). The
z-test is presented first, because it has been used in Example 1.2. In contrast to the z-test,
where variances have to be known, in the t-test estimates of the variances are computed.

2.2.1 The Two-Sample z-Test

In Example 1.2 the performances of two algorithms, PSO(20) and PSO(40) respectively,
were compared. The vector yi = (yi1, . . . , yini) represents the ni observations from the i-th
algorithm, yi denotes the i-th sample mean and σ2

i the associated variances. The distribution
of the difference in means Y 12 = Y 1 − Y 2 is N (y1 − y2, σ

2(1/n1 + 1/n2)), if the samples were
drawn from independent normal distributions Ni(µi, σ

2
i) with common variance σ2 = σ2

i ,
i = 1, 2. If σ2 were known and

µ1 = µ2, (2.1)

then
Z0 =

y1 − y2

σ
√

1/n1 + 1/n2

∼ N (0, 1).

Equation 2.1 is a statement or a statistical hypothesis about the parameters of a probability
distribution, the null hypothesis: H : µ1 = µ2. The alternative hypothesis can be defined

2.2 Hypothesis Testing 37

as the statement J : µ1 �= µ2. The procedure of taking a random sample, computing a test
statistic, and the accepting (or failing to accept) of the null hypothesis H is called hypothesis
testing. The critical region contains the values that lead to a rejection of H. The one-sided
alternative hypothesis can be specified as J : µ1 > µ2. The significance level α is the
probability of a type I error for the test:

α = Pr(type I error) = Pr(reject H|H is true). (2.2)

The type II error is defined as

β = Pr(type II error) = Pr(fail to reject H|H is false). (2.3)

To determine whether to reject the null hypothesis H : µ1 = µ2, the value of the test statistic
T : d = y1 − y2 is compared to the normal distribution. If

d = y1 − y2 ≥ zασ
√

1/n1 + 1/n2,

where zα is the upper α percentage point of the normal distribution, the null hypothesis would
not be accepted in the classical two-sample test. When α = 0.01, then zα has the value 2.23.
With n1 = n2 = n and σ = 160 follows that zασ

√
1/n1 + 1/n2 = 2.23 · 160√2/50 = 74.44 as

in Example 1.2.
The definition of the upper α percentage point of the normal distribution can be gener-

alized to the case of more than one random variable. Let (W1, . . . ,Wk) have the k-variate
normal distribution with mean vector zero, unit variances, and common correlation ρ. Then

P

(
max
1≤i≤k

Wi ≤ Z
(α)
k,ρ

)
= 1 − α (2.4)

defines the upper-α equicoordinate critical point Z(α)
k,ρ of this distribution (Bechhofer et al.,

1995, p. 18).

2.2.2 The Two-Sample t-Test

If the variances of the populations are unknown, the sample variances

S2
i =

∑ni
k=1(yik − yi)2

ni − 1

can be used to estimate σ2
i , i = 1, 2. The related test procedure is called the two-sample

t-test. The upper α percentage point of the normal distribution is replaced by tα,n1+n2−2, the
upper α percentage point of the t-distribution with n1 + n2 − 2 degrees of freedom.

Let S2
p = ((n1 − 1)S2

1 +(n2− 1)S2
2)/(n1 +n2− 2), the pooled variance, denote an estimate

of the common variance σ2. Then

t0 =
y1 − y2

S2
p

√
1/n1 + 1/n2

. (2.5)

If H is true, t0 is distributed as tn1+n2−2, and 100(1−α) percent of the values of t0 lie in the
interval [−tα/2,n1+n2−2, tα/2,n1+n2−2], where tα,n denotes the upper α percentage point of the
t-distribution with n degrees of freedom.

38 Statistics

The t-distribution with n1 +n2 − 2 degrees of freedom is called the relevance distribution
for the test statistic t0. To reject H only if one mean is larger than the other (µ1 > µ2), the
criterion t0 > tα,n1+n2−2 is used. This is the one-sided t-test.

From Equation 2.5 follows

Pr(−tα/2,n1+n2−2 ≤ y1 − y2 − (µ1 − µ2)
Sp

√
1/n1 + 1/n2

≤ tα/2,n1+n2−2) = 1 − α,

and therefore

y1 − y2 − tα/2,n1+n2−2Sp

√
1/n1 + 1/n2

≤ µ1 − µ2

≤ y1 − y2 + tα/2,n1+n2−2Sp

√
1/n1 + 1/n2

is a 100(1 − α) percent confidence interval for µ1 − µ2.

2.2.3 The Paired t-Test

To compare different run configurations, variance reducing techniques such as common ran-
dom numbers have been used in our experiments. The jth paired difference

dj = y1j − y2j j = 1, . . . , n,

is used to define the test statistic

t0 =
d

Sd/
√
n
,

where d = 1
n

∑n
j=1 dj , and

Sd =

√√√√ n∑
j=1

(dj − d)2

n− 1
, (2.6)

is the sample standard deviation of the differences. The null hypothesis H : µ1 = µ2 , or
equivalently H : δ = 0, would be not accepted if t0 > tα,n−1. The paired t-test can be
advantageous compared to the two-sample t-test due to its noise reduction properties. The
confidence interval based on the paired test can be much narrower than the corresponding
interval from the two-sample test. The reader is referred to the discussion in Montgomery
(2001).

2.3 Monte Carlo Simulations

The statistical approach from Example 1.2 requires the following steps:

1. At first a sampling distribution for a statistic is derived.

2. Then the probability of a sample statistic is determined.

Many sampling distributions rely on statistical assumptions; consider for example the assump-
tion that samples are drawn from normal distributions like for the t-distribution. Furthermore

2.3 Monte Carlo Simulations 39

classical techniques often apply asymptotic results under the assumption that the size of the
available set of samples is sufficiently large.

Monte Carlo simulations can be applied for known population distributions from which
the samples are drawn and unknown sampling distributions of the test statistic, for example
the trimmed mean or the interquartile range.

As bootstrap methods treat the sample as the population, they can be applied if the
sampling distribution is unknown (Efron and Tibshirani, 1993). They require a representa-
tive sample of the population. Nowadays the bootstrap is considered a standard method in
statistics (Mammen and Nandi, 2004). It has been successfully applied to solve problems
that would be too complicated for classical statistical techniques and in situations where the
classical techniques are not valid (Zoubir and Boashash, 1998).

Bootstrap

The idea behind the bootstrap is similar to a method that is often applied in practice. Exper-
iments are repeated to improve the estimate of an unknown parameter. If a representative
sample is available, the bootstrap randomly reassigns the observations, and recomputes the
estimate. The bootstrap is a computational intensive technique. Let θ̂ be the estimate of an
unknown parameter θ that has been determined by calculating a statistic T from the sample:

θ̂ = T = t(y1, . . . , yn).

By sampling with replacement, nb bootstrap samples can be obtained. The bootstrap repli-
cates of θ̂

θ̂∗b = t(y∗b), b = 1, . . . , nb

provide an estimate of the distribution of θ̂. The bootstrap procedure is described in Fig-
ure 2.1.

How can the bootstrap be used to generate plots of the observed significance αd(δ)? Let
y1 = (y11, . . . , y1n)T and y2 = (y21, . . . , y2n)T denote the random samples, and d = y1 − y2 =
(y11 − y21, . . . , y1n − y2n)T their difference vector. The procedure to obtain an estimate of the
observed significance level αd(δ) for a difference δ = d0 under the null hypothesis H can be
implemented as shown in Figure 2.2.

Example 2.1 (Bootstrap)
Let y1 and y2 denote two vectors with representative samples from a population. If a ∈ R

and the vector y = (y1, . . . , yn)T ∈ Rn, the scalar-vector addition is defined as

a+ y = (y1 + a, . . . , yn + a)T .

The bootstrap approach that has been used to generate the plots of the observed significance
comprises the steps shown in Figure 2.2. They can be detailed as follows:

1. Determine d = y1 − y2.

2. Determine d = 1/n
∑n

j=1(y1j − y2j).

3. Determine d0 = d− d.

4. Specify the lower bound dl and the upper bound du for the plot.

40 Statistics

Algorithm 2.1 (Generic Bootstrap)
1. Calculate θ̂ from a representative sample y = (y1 . . . , yn).

2. To generate the bootstrap data sets y∗b = (y∗b1 , . . . , y
∗b
n) sample with replacement

from the original sample.

3. Use the bootstrap sample y∗b to determine θ̂∗b.

4. Repeat steps 2 and 3 nb times.

5. Use this estimate of the distribution of θ̂ to obtain the desired parameter, for example
the mean.

Figure 2.1: The generic bootstrap procedure.

Algorithm 2.2 (Bootstrap for the observed significance)
1. Determine the mean d from the two samples y1 and y2.

2. Generate nb bootstrap sample sets d∗b, b = 1, . . . , nb from d0 = d− d.

3. Determine the nb mean values d∗b.

4. Determine n, that is the number of times that d∗b > d.

5. The ratio r = n/nb gives the desired value.

Figure 2.2: Basic bootstrap procedure to determine the observed significance level αd(δ). It can be
applied to generate plots of the observed significance as shown in Figure 1.5. It requires only two paired
and representative samples y1 and y2.

2.4 DOE: Standard Definitions 41

5. Specify m, the number of points to be plotted in the interval [dl, du].

6. For i = 1 to m do:

(a) Determine di = dl + i · (du − dl)/m+ d0.

(b) Generate nb bootstrap sample sets d∗bi , b = 1, . . . , nb from di.

(c) Determine the nb mean values d
∗b
i .

(d) Determine ni, that is the number of times that d
∗b
i > d.

(e) Determine the ratio ri = ni/nb.

Finally, the m points (d
(i)
0 , r(i)) are plotted. The ratio ri corresponds to the observed signifi-

cance value αd(d
(i)
0). �

Histograms of the bootstrap replicates as shown in Figure 2.3 are appropriate tools for exam-
ining the distribution of θ̂. Figure 2.4 depicts the result based on the bootstrap. It represents
the same situation as shown in Figure 1.5, without making any assumption on the underlying
distribution. As the sample size is increased, i.e. from 50 to 500, the bootstrap and the true
curve start to look increasingly similar.

The following section presents standard definitions used in classical and modern statistics,
especially in the design and analysis of experiments.

2.4 DOE: Standard Definitions

The design of experiments (DOE) has a long tradition in statistics. It has been developed for
different areas of applications: Agriculture (Fisher, 1935), industrial optimization (Box et al.,
1978), computer simulation (Kleijnen, 1987), and deterministic computer experiments (Sacks
et al., 1989).

The following definitions are commonly used in DOE. The input parameters and structural
assumptions to be varied during the experiment are called factors or design variables. Other
names frequently used are predictor variables, input variables, regressors, or independent
variables. The vector of design variables is represented as x = (x1, . . . , xk)T . Different values
of parameters are called levels. The levels can be scaled to the range from −1 to +1. Levels
can be qualitative, i.e. selection scheme, or quantitative, i.e. population size. The design
space, the region of interest, or the experimental region is the k-dimensional space defined by
the lower and upper bounds of each design variable. A sample or a design point is a specific
instance of the vector of design variables. An experimental design is a procedure for choosing
a set of factor level combinations. Kleijnen defines DOE as “the selection of combinations
of factor levels that will be simulated in an experiment with the simulation model”(Kleijnen,
2001). One parameter design setting is run for different pseudo-random number settings,
resulting in replicated outputs. The output value y is called response, other names frequently
used are output variables or dependent variables.

The intuitive definition of a main effect of a factor A is the change in the response produced
by the change in the level of A averaged over the levels of the other factors. The average
difference between the effect of A at the high level of B and the effect of A at the low level
of B is called the interaction effect AB of factor A and factor B.

42 Statistics

−50 0 50 100
0

20

40

60

80

100

Difference

x

0 10 20 30 40 50 60
0

10

20

30

40

50

60

70

80

90

Difference

x

Figure 2.3: Histograms of the bootstrap samples. Left: 50 repeats, right: 500 samples. These figures
show histograms of the bootstrap samples that were generated at step 6b in Example 2.1. The difference
di has the value 30. The dash dotted curves show the superimposed normal density. The area to the
right of d = 51.73 under the curve corresponds approximately with the observed significance level αd(δ),
the ratio ri.

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Difference

S
ig

ni
fic

an
ce

 le
ve

l

n=10

n=50

n=500

r
i
(30)

Figure 2.4: This figure depicts the same situation as shown in Figure 1.5. But unlike in Figure 1.5,
no assumptions on the underlying distribution have been made. Samples of size n = 10, 50, and
500 respectively have been drawn from a normal distribution. The bootstrap procedure described in
Example 2.1 has been used to generate this plot. The curves look qualitatively similar to the curves
from Figure 1.5. As the number of samples increases, the differences between the exact and the bootstrap
curves becomes smaller. The measured difference is 51.73, σ = 160, cf. Example 1.1. Regard n = 50:
If the true difference is a) 0, b) 51.73, or c) 100, then a) H : δ = 0, b) H : δ = 51.73, or c) H : δ = 100
is (approximately) wrongly rejected a) 1%, b) 50%, or c) 99% of the time.

2.5 The Analysis of Variance 43

2.5 The Analysis of Variance

One of the most useful principles in inferential statistics, the (single) factor analysis of variance
(ANOVA) is introduced next (Montgomery, 2001). First, the dot subscript notation is defined:
Consider m different treatments. The sum of all observations under the ith treatment is

yi· =
n∑

j=1

yij

Then, yi· = yi·/n, i = 1, 2, . . . ,m, and

y·· =
m∑

i=1

n∑
j=1

yij, y·· = y··/N,

where N = nm is the total number of observations. The total corrected sum of squares

SST =
m∑

i=1

n∑
j=1

(yij − y··)
2 (2.7)

measures the total variability in the data. It can be partitioned into a sum of squares of
the difference between the treatment averages and the grand average SSTREAT plus a sum of
squares of the differences of observations within treatments from the treatment average SSE:

m∑
i=1

n∑
j=1

(yij − y··)
2 = n

m∑
i=1

(yi· − y··)
2 +

m∑
i=1

n∑
j=1

(yij − yi·)
2 (2.8)

This fundamental ANOVA principle can be written symbolically as:

SST = SSTREAT + SSE (2.9)

The term SSTREAT is called the sum of squares due to the treatments, and SSE is called the
sum of squares due to error.

2.6 Linear Regression Models

(Linear) regression models are central elements of the classical design of experiments approach.
In simulation and stochastic optimization, regression models can be represented as follows:

y = f1(z1, . . . , zk, r0), (2.10)

where f1 is a mathematical function, e.g. f1 : R
k+1 → R: Given the values of the argument

zi and at least one random number seed r0, the simulation program or the optimization
algorithm determine exactly one value. The Taylor series expansion yields the first order
approximation y = f2 =

∑k
i=1 βizi. The last equation is the basis for regression models based

on simulation or optimization data. Least square methods can be applied to estimate the
linear model

y = Xβ + ε, (2.11)

44 Statistics

where y denotes a column vector with the k responses, ε is the vector of k error terms, and
β denotes the vector with q parameters βj (k ≥ q). Usually, the normality assumption (the
error term ε is normal with expectation E(ε) = 0 and variance V (ε) = σ2) is made. X is
the (k× q) matrix of independent regression variables. The regression variables can represent
the design variables from Section 2.4. The variable x0 is the dummy variable equal to 1, the
remaining q − 1 variables may correspond to the simulation parameters zi. Therefore, we
obtain the (k × q) regression matrix

X =

1 x11 x12 · · · x1,q−1
...

...
1 xi1 xi2 · · · xi,q−1
...

...
1 xk1 xk2 · · · xk,q−1

. (2.12)

Experimental settings (designs), where the regression matrix X satisfies XXT = kI, are
called orthogonal. The ordinary least squares (OLS) estimator of the vector of regression
parameters β in Equation 2.11 reads:

β̂ = (XTX)−1XT y (2.13)

with covariance cov(β̂) = σ2(XTX)−1. An estimator α̂ is unbiased, if E(α̂) = α. If the errors
in Equation 2.11 are i.i.d., then β̂ is the best linear unbiased estimator (BLUE).

An example how to apply regression models to analyze the performance of evolutionary
algorithms is given in Bartz-Beielstein (2003).

Generalized Linear Models

Linear models are applicable to problems that have gaussian errors. In many situations the
optimization practitioner has to face response values that follow some skewed distribution
or have non-constant variance. To deal with non-normal responses, data transformations
are often recommended, although the choice of an adequate transformation can be difficult.
Draper and Smith (1998) discuss the need for transformation and present different transfor-
mation methods. Since the transformation may result in incorrect values for the response
value, i.e. log Y , if Y < 0, generalized linear models provide an alternative (McCullagh and
Nelder, 1989). François and Lavergne (2001) and Bartz-Beielstein (2003) use generalized lin-
ear models to analyze evolutionary algorithms. Bartz-Beielstein et al. (2005b) propose GLMs
to analyze and validate simulation models.

Logistic regression models that are based on the success ratio (SCR) can be used to
analyze the algorithm’s performance. Whether or not the optimization run has located a pre-
specified optimum can be used as a performance measure for algorithms. In this case, where
the outcome variable can take only two values, a linear regression model is not appropriate,
but a logistic regression model might be adequate. The number of successful runs can be
seen as a random variable having a binomial distribution. For an introduction into logistic
regression the reader is referred to Collett (1991). Myers and Hancock (2001) present an
example that uses a genetic algorithm to solve consistent labeling problems.

Standard textbooks on regression analysis such as Draper and Smith (1998) present meth-
ods of checking the fitted regression model. However, the fact that the regression model passes

2.7 Graphical Tools 45

some test does not mean that it is the correct model. Graphical tools should be used to guide
the analysis. Half-normal plots, scatter plots, interaction plots, and box plots that can be
applied to analyze computer experiments will be presented next.

2.7 Graphical Tools

This section presents graphical tools that support the analysis of factor effects and inter-
actions. Half-normal plots, interaction plots, and box plots can complement classical DOE
methods. They are based on factorial designs (designs will be introduced in Chapter 4). Scat-
ter plots can be used in combination with space filling designs. These designs are commonly
used in modern design and analysis of computer experiments (DACE).

2.7.1 Half-Normal Plots

Half-normal plots are comprehensive tools for analyzing experimental data. They possess
many features that can also be found in other statistical tools.

Least-squares estimation gives an estimate of the effect of a factor. The estimated ef-
fects minimize the sum of squared differences between raw data and the fitted values from
the estimates. An ordered list of the main effects (and of the interactions as well) can be
constructed. A half-normal plot is a plot of the absolute value of the effect estimates against
their cumulative normal probabilities.

If a 2k full or a fractional factorial design (these designs will be explained later on) was
chosen to generate the experimental data, all least squares estimates for main effects and
interactions have the following representation: ŷ = y+ − y−, where y+ and y− denote the
average value of all responses for which the factor was set to its high value or to its low value,
respectively.

For large sample sizes these difference-of-sums for the estimated effects tend to follow a
normal distribution. This follows from the central limit theorem under mild assumptions.
Since all estimates present a difference of averages, their standard deviations will be the same
(under the assumption of constant variances). Important factors will have a large difference,
whereas unimportant factors are those that have near-zero effects.
If the experiment were such that no factors were important, then the estimated effects would
behave like randomly drawn samples that follow a normal distribution and their normal prob-
ability plot is nearly linear. If some subset of factors were important, then these factors would
be well off the line. As signs of the estimates have been chosen arbitrarily, the effect magni-
tudes can be considered and not the signed effects. This leads to half-normal plots that give
a more compact presentation than normal plots.
Figure 2.5 depicts a typical half-normal plot that has been generated while optimizing an
evolution strategy. Schwefel et al. (1995) and Beyer and Schwefel (2002) provide a compre-
hensive introduction to this special class of evolutionary algorithms. The exogenous strategy
parameters of an evolution strategy such as µ, the population size or ν, the selective pressure,
are summarized later, see Table 5.3 (the multiplier τm

0 from Figure 2.5 is listed as cτ in this
table). Regarding the half-normal plot in Figure 2.5, τm

0 , the multiplier for the individual
and global mutation parameters, the population size µ, and the selection pressure have a
significant influence on the algorithm’s performance. In addition, the interactions between µ
and τm

0 , and µ and ν play a significant role.

46 Statistics

Figure 2.5: Half-normal plot. Optimizing the
exogenous strategy parameters of an evolution
strategy: τm

0 , the multiplier for the individual
and global mutation parameters, the population
size µ, and the selection pressure have a statisti-
cally significant influence on the algorithm’s per-
formance. In addition, the interactions between
µ and τm

0 , and µ and ν play a significant role.
Source: Mehnen et al. (2004a).

-2 -1 0 1 2

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

3
.0

quantiles

s
ta

n
d
a
rd

iz
e
d

e
f f
e
c
ts

��

� � ��
0

m
�

0

m

2.7.2 Scatter Plots

A scatter plot is a simple way to visualize data (Chambers et al., 1983; Croarkin and Tobias,
2004). It displays important information on how the data are distributed or the variables
are related: Are the design variables x1 and x2 related? Are variables x1 and x2 (non)
linearly related? Does the variation in x1 change depending on x2? Are there outliers? This
information should be taken into account before any statistical model is build.
Scatter plots have been used to detect factor settings that produced outliers and to determine
suitable variable ranges. Each panel in Figure 2.6 depicts a scatter plot of the response
against one factor. The relationship between the function values and different levels of social
parameter c2 of a particle swarm optimization is shown in the panel down to the right. Settings
with c2 < 2.5 produced many outliers. Reducing the region of interest for this variable from
[0, 4] to [2.5, 4] resulted in less outliers as can be seen in Figure 2.7. Similar results could have
been obtained with box plots, design plots or other tools from exploratory data analysis. No
high level statistical model assumptions are necessary to perform this analysis.

2.7.3 Interaction Plots

If the number of factor levels is low, e.g. in two factor experiments, interaction plots as shown
in Figure 2.8, can be used to check for interactions between the factors.

Interaction plots show how pairs of factors, i.e. selection method and population size in
evolution strategies, interact in influencing the response (Y). On the horizontal axis of the
plot levels of the first factor are shown: Comma selection (Comma), plus selection (Plus), and
threshold selection (TS). Lines are drawn for the mean of the response for the corresponding
level of the interaction between selection method and selective strength (left panel) and se-
lection method and population size (right panel). As the lines run in parallel in both panels,
no interactions, which might difficult the analysis, can be detected. These figures indicate
that the selection method TS improves the performance independently from the population
size or selective pressure. This example was taken from Beielstein and Markon (2001).

2.7 Graphical Tools 47

0 50 100
−5

0

5

10

15

20

P

lo
g(

Y
)

0.4 0.6 0.8 1
−5

0

5

10

15

20

WMax

0 1 2 3 4
−5

0

5

10

15

20

C1

lo
g(

Y
)

0 1 2 3 4
−5

0

5

10

15

20

C2

Figure 2.6: Scatter plots
of the response log(y)
against p, c1, c2, and
wmax. Latin hypercube
design. PSO. Rosenbrock
function. The first 4 plots
show the initial variable
settings. Modifying the
variable range of the
social parameter c2 from
[0, 4] to [2.5, 4] leads to
improved results (less
outliers). Changes due
to this modification are
shown in Figure 2.7.

0 50 100
−5

0

5

10

15

20

P

lo
g(

Y
)

0.4 0.6 0.8 1
−5

0

5

10

15

20

WMax

0 1 2 3 4
−5

0

5

10

15

20

C1

lo
g(

Y
)

2.5 3 3.5 4
−5

0

5

10

15

20

C2

Figure 2.7: Scatter plots
of the response log(y)
against p, c1, c2, and
wmax. The variable range
of the social parameter c2
was shrunk from [0, 4] to
[2.5, 4]. The number of
outliers was reduced.

48 Statistics

2.
39

0
2.

39
5

2.
40

0
2.

40
5

0 1 2

 B

4
6
9

Comma Plus TS

2.
38

2.
39

2.
40

2.
41

2.
42

0 1 2

 C

2
4
7

Comma Plus TS

Figure 2.8: Interaction plots. Plot of the means of the responses. The labels on the x-axis represent
different selection mechanism for an evolution strategy: Comma selection (0), plus selection (1), and
threshold selection (2). Selective strength (B) with levels 4, 6, and 9 and population size (C) with levels
2,4, 7 have been chosen for the comparison. Source: Beielstein and Markon (2001).

2.7.4 Box Plots

Box plots as shown in Figure 2.9 display the distribution of a sample. They are excellent
tools for detecting changes between different groups of data (Chambers et al., 1983). Let
the interquartile range (IQR) be defined as the difference between the first and the third
sample quartiles. Besides the three sample quartiles (the lower quartile, the median, and
upper quartile), the minimum, and the maximum value, two limits are used to generate the
box plots: yl = q.25 − 1.5IQR and yu = q.25 + 1.5IQR. Possible outliers may lie outside the
interval [yl, yu].

Figure 2.9: Five elements of a box plot.
This figure shows: Possible outlier A,
quartiles B, C, D, and adjacent value E.

1 2

5

10

15

20

25

30

35

F
un

ct
io

n
va

lu
e

Configuration

A

B

D

C

E

2.8 Tree-Based Methods 49

2.8 Tree-Based Methods

Van Breedam (1995) applied tree-based classification methods to analyze algorithms. He used
an automatic interaction detection (AID) technique developed by Morgan and Sonquist (1963)
to determine the significant parameter settings of genetic algorithms. Breiman et al. (1984)
introduced classification and regression trees (CART) as a “flexible non-parametric tool to
the data analyst’s arsenal.” Tree-based methods can be deployed for screening variables and
for checking the adequacy of regression models (Therneau and Atkinson, 1997). AID and
CART use different pruning and estimation techniques.

The construction of regression trees can be seen as a type of variable selection (Chambers
and Hastie, 1992; Hastie et al., 2001). Consider a set of design variables X = {x1, . . . , xk}
and a quantitative response variable Y . Design variables are called predictor variables in the
context of CART. A regression tree is a collection of rules such as “if x1 ≤ 5 and x4 ∈ {A,C},
then the predicted value of Y is 14.2”, that are arranged in a form of a binary tree (see, e.g.,
Figure 2.11). The binary tree is build up by recursively splitting the data in each node. The
tree can be read as follows: If the rule that is specified at the node is true, then take the
branch to the left, otherwise take the branch to the right. The partitioning algorithm stops
when the node is homogeneous or the node contains too few observations. If qualitative and
quantitative design variables are in the model, then tree-based models are easier to interpret
than linear models. The endpoint of a tree is a partition of the space of possible observations.

Tree construction (TC) comprises three phases (Martinez and Martinez, 2002):

(TC-1) In the first phase of the construction of a regression tree a large tree Tmax is grown.
The partitioning procedure requires the specification of four elements: A splitting cri-
terion, a summary statistic to describe a node, the error of a node, and the prediction
error (Therneau and Atkinson, 1997). The splitting process can be stopped when a
minimum node size is reached. Consider a node v. A leaf l is any node which has no
child nodes, and TL denotes the set of all leaves of a tree T . A subtree is the tree which
is a child of a node.

The summary statistic is given by the mean of the node y(v), that is defined as the
average response of the cases that fulfill the condition in the node:

y(v) =
1
nv

∑
xi∈v

yi,

where nv denotes the number of cases in this node. The squared error of a node is
related to the variance of y(v), it is defined as

R(v) =
1
n

∑
xi∈v

(yi − y(v))2 ,

where n denotes the size of the entire sample. The mean squared error for the tree T is
obtained by adding up all of the squared errors in all of the leaves:

R(T) =
∑
l∈L

R(l).

The mean squared error for the tree is also referred to as the total within-node-sum-of-
squares. As a splitting criterion, the change in the mean squared error for a split sv is

50 Statistics

used:
∆R(sv) = R(v) − (R(vL) +R(vR)),

where vL and vR denote the left and right subtrees with root node v, respectively. The
best split s∗v is the split that maximizes the change in the mean squared error ∆R(sv).

(TC-2) The large tree Tmax is pruned back in a second phase of the tree construction. The
pruning procedure uses a cost-complexity measure:

Rcp(T) = R(T) + cpnL, cp ≥ 0,

where nL is the number of leaves. As a large tree with leaves that contain only cases
from one class has a mean squared error R(T) = 0, the cp value represents the complexity
cost per leaf. Take the tree that minimizes Rcp(T) to be optimal for the given value of
cp. Note that the value of R(T) decreases as the size of the tree is increased, while cpnL

increases. By increasing cp, we can move from one optimum to the next. Each move
might require a reduced tree, because the optimal tree size decreases as cp increases.
The pruning procedure constructs a finite sequence of optimal subtrees such that

Tmax > T1 > T2 > . . . > Tk > . . . > TK = {v1},
where {v1} is the root node of the tree, and

0 = cp1 < . . . < cpk
< cpk+1

< . . . < cpK
.

(TC-3) Finally, the “best” tree is chosen in the selection phase from the sequence of subtrees
generated in Step (TC-2). To select the right tree the cross-validation estimate for the
prediction error RCV(Tk) for each tree in the sequence of pruned trees is determined.
An estimate of the standard error of the cross-validation estimate of the prediction error
sR(Tk) is determined next. Let T ′ denote the subtree that has the smallest estimated
prediction error. Its standard error is denoted as sR(T ′). The one-standard error rule
(1-SE rule) selects the smallest tree T ∗ with

RCV(T ∗) ≤ RCV(T ′) + sR(T ′). (2.14)

The tree selection procedure is depicted in Figure 2.10. The resubstitution error, that
is calculated from the whole data set, is also shown. It gives an optimistic assessment
of the relative error and should only be used to control the tree selection procedure.
Not the tree with the smallest error is chosen, but the smallest tree that reaches the
error-corridor of the smallest error plus one standard error (1-SE rule). The 1-SE rule
chooses the tree with six nodes, since its error lies in the 1-SE corridor of the tree with
seven nodes.

2.9 Design and Analysis of Computer Experiments

Matheron, the founder of Geostatistics, discovered the pioneering work of the South African
school on the gold deposits of the Witwatersrand (Krige, Sichel, and de Wijs). He built the
major concepts of the theory for estimating resources, i.e. Kriging (Isaaks and Srivastava,
1989). Kriging is an interpolation method to predict unknown values of a stochastic process
and can be applied to interpolate observations from computationally expensive simulations.
Our presentation follows concepts introduced in Sacks et al. (1989), Jones et al. (1998), and
Lophaven et al. (2002b).

2.9 Design and Analysis of Computer Experiments 51

0 2 4 6 8 10 12 14 16 18
0

5

10

15

20

25

Number of terminal nodes

R
es

id
ua

l v
ar

ia
nc

e

Resubstitution error
Cross−validation error
Estimated best tree T*

Figure 2.10: Visualization of the 1-SE (one-standard error) selection rule to determine the right
tree. The tree with the smallest cross-validation error RCV is not chosen. The 1-SE rule chooses the
tree with six nodes, because its error lies in the 1-SE corridor of the tree with the smallest error (the
tree with seven nodes). The pruned tree with six nodes is shown in Figure 2.11. The full tree has 17
nodes. In addition, the resubstitution error is plotted against the number of nodes in the tree. It is
monotonically decreasing, because it does not measure the costs for including additional nodes in the
tree.

 6.7868 17.2994

9.19525 14.2307 12.4149 17.6222

 rho < 1.4001

 psi < 0.470885 psi < 0.601164

 rho < 1.19801 rho < 1.90603

At this node:
rho < 1.4001
0.470885 < psi

Figure 2.11: Nelder-Mead. Pruned regression tree. The left subtree of a node contains the configura-
tions that fulfill the condition in the node. It is easy to see that smaller ρ and larger ψ values improve
the algorithm’s performance.

52 Statistics

2.9.1 The Stochastic Process Model

The regression model
y = Xβ + ε,

cf. Equation 2.11, requires that the response y and the error ε have the same variance. The
assumption of a constant variance is unrealistic in simulation and optimization. A variance
that varies with x appears to be more realistic. For example, Kleijnen (1987) reports that
the standard errors of the yi’s in simulation models differ greatly. Similar ideas are presented
in Jones et al. (1998), where stochastic process models as alternatives to regression models
are introduced.

Consider a set of m design points x = (x1, . . . , xm)T with xi ∈ R
k as in Section 2.6.

In the design and analysis of computer experiments (DACE) stochastic process model, a
deterministic function is evaluated at the m design points x. The vector of the m responses is
denoted as y = (y1, . . . , ym)T with yi ∈ R. The process model proposed in Sacks et al. (1989)
expresses the deterministic response y(xi) for a k-dimensional input xi as a realization of a
regression model F and a stochastic process Z,

Y (x) = F(β, x) + Z(x). (2.15)

2.9.2 Regression Models

We use q functions fj : R
k → R to define the regression model

F(β, x) =
q∑

j=1

βjfj(x) = f(x)Tβ.

Regression models with polynomials of orders 0, 1, and 2 have been used in our experiments.
The constant regression model with q = 1 reads f1(x) = 1, the linear model with q = k + 1
is f1(x) = 1, f2(x) = x1, . . . , fk+1(x) = xk, and the quadratic model: f1(x) = 1; f2(x) =
x1, . . . , fk+1(x) = xk; fk+2(x) = x1x1, . . . , f2k+1(x) = x1xk; . . .; fq(x) = xkxk.

2.9.3 Correlation Models

The random process Z(·) is assumed to have mean zero and covariance V (w, x) = σ2R(θ,w, x)
with process variance σ2 and correlation model R(θ,w, x). Correlations of the form

R(θ,w, x) =
k∏

j=1

Rj(θ,wj − xj)

will be used in our experiments. The correlation function should be chosen with respect to the
underlying process (Isaaks and Srivastava, 1989). Lophaven et al. (2002a) discuss 7 different
models. Well-known examples are

EXP : Rj(θ, hj) = exp(−θj|hj |),
EXPG : Rj(θ, hj) = exp(−θj|hj |θk+1), 0 < θk+1 ≤ 2, (2.16)

GAUSS : Rj(θ, hj) = exp(−θjh
2
j),

2.10 Comparison 53

with hj = wj − xj, and for θj > 0. The exponential correlation function EXP has a linear
behavior near the origin, the gaussian correlation function GAUSS has a parabolic behavior
near the origin, whereas the general exponential correlation function EXPG can have both
shapes. Large θj’s indicate that function values at points in the vicinity of a point are
correlated with Y at that point, whereas small θj’s indicate that also distant data points
influence the prediction at that point.

Maximum likelihood estimation (MLE) methods to estimate the parameters θj of the
correlation functions from Equation 2.16 are discussed in Lophaven et al. (2002a). DACE
methods provide an estimation of the prediction error on an untried point x, the mean squared
error (MSE) of the predictor

MSE(x) = E (ŷ(x) − y(x)) . (2.17)

2.9.4 Sensitivity Analysis

Santner et al. (2003) recommend to use a small design to determine important factor levels.
After running the optimization algorithm, scatterplots of each input versus the output can be
analyzed. Welch et al. (1992) advocate the use of sensitivity analysis. A screening algorithm
that is similar in spirit to forward selection in classical regression analysis is used to identify
important factors. Sacks et al. (1989) propose an ANOVA-type decomposition of the response
into an average, main effects for each factor, two-factor interactions and higher-order inter-
actions. A similar approach was proposed by Schonlau (1997) to plot the estimated effects of
a subset xeffect of the x variables. We prefer the three dimensional visualizations that can be
produced with the DACE toolbox (Lophaven et al., 2002b). They can be used to illustrate
the interaction between two design variables and the associated mean squared error of the
predictor.

2.10 Comparison

Comparing classical linear regression models and tree-based regression models, we can con-
clude that regression trees present results in an intuitively understandable form. The results
are immediately applicable, interactions are automatically included. Regression trees can
handle qualitative and quantitative factors. On the other hand, it is not guaranteed that the
overall tree is optimal. The splitting criteria are only locally optimal, it is only guaranteed
that each single split will be optimal. Trees can become quite large and can then make a poor
intuitive sense.

If only a small set of data is available, parametric models might be advantageous that are
based on strong assumptions regarding the underlying distribution or the form of the linear
model.

To compare different regression techniques the following criteria might be useful: Is the
technique flexible, that is can it cope with different types of variables (quantitative, qual-
itative) and does not require assumptions on the underlying distribution? Are the results
plausible, can even complex interactions be detected? Is the method able to model gathered
data and to predict new values? The availability of related literature and software packages
should be judged as well.

A combination of different techniques is useful. Tree-based techniques may produce differ-
ent insights than regression models. Regression trees can be used at the first stage to screen

54 Statistics

out the important factors. If only a few quantitative factors remain in the model, DACE
techniques can be applied to get an exact approximation of the functional relationship be-
tween parameter settings and algorithm’s performance. Sequential designs have been applied
successfully during our analysis (Bartz-Beielstein and Markon, 2004; Bartz-Beielstein et al.,
2004b).

2.11 Summary

The basic ideas from statistics presented in this chapter can be summarized as follows:

1. A statistical hypothesis H is a statement regarding the parameters of a distribution.

2. The procedure of taking a random sample, computing a test statistic, and rejecting (or
failing to reject) a null hypothesis H is called hypothesis testing.

3. Paired data can simplify the statistical analysis.

4. Computer intensive methods enable the estimation of unknown parameters.

(a) Monte Carlo simulations can be used to estimate unknown parameters of a known
distribution.

(b) The bootstrap requires a representative sample from the population only.

(c) It can be used to generate plots of the observed significance if the sample distri-
bution is unknown.

5. Standard definitions from DOE:

(a) Factors are input parameters to be varied during the experiment. Their different
values are called levels. Factors can be qualitative or quantitative.

(b) Upper and lower bounds of each factor specify the region of interest.

(c) Output values are called responses.

(d) The main effect of a factor is the change in the response produced by the change
in the level of this factor averaged over the levels of the other factors.

(e) An experimental design comprises a problem design and an algorithm design.

6. The total variability in the data can be partitioned into the variability between different
treatments and the variability within treatments.

SST = SSTREAT + SSE. (2.18)

This fundamental ANOVA principle is used in DOE, three-based regression, and DACE.

7. Linear regression models are based on the equation y = Xβ + ε, where X denotes a
regression matrix that represents the experimental design, ε is a vector of error terms,
y is a vector with responses, and β is a vector that represents the model parameters.

8. Half-normal plots, scatter plots, interaction plots, and box plots are tools from ex-
ploratory data analysis to visualize the distribution of the data and possible relations
between factors.

2.11 Summary 55

9. The three basic steps to construct a regression tree are 1. growing, 2. pruning, and
3. selecting. Tree-based methods cannot replace, but they should complement classical
methods.

10. The assumption of homogeneous variance in the regression model y = Xβ + ε (Equa-
tion 2.11) appears to be unrealistic. DACE models include this inhomogeneity in their
model specification.

11. The DACE stochastic process model expresses the deterministic response as a realiza-
tion of a regression model and a random process.

12. An ANOVA-like decomposition can be used in DACE to visualize the factor and inter-
action effects.

Chapter 3
Problems

Don’t get involved in partial problems,
but always take flight to where there is
a free view over the whole single great
problem, even if this view is still not a
clear one.

Ludwig Wittgenstein

3.1 Introduction

A well established experimental procedure in evolutionary computation and related scientific
disciplines like operations research or numerical analysis to judge the performance of algo-
rithms can be described as shown in Figure 3.1. This framework relies on the assumption
that the experimenter can find the best algorithm out of a set of potential candidate algo-
rithms. Test suites are commonly used to compare the performance of different optimization
algorithms. We assert that results from test suites provide useful means to validate whether
the implementation of an algorithm is correct (validation). They provide a starting point for
further investigations.

Problems related to test suites will be considered in this chapter. We will discuss aspects
related to

1. Test functions.

2. Real-world optimization problems.

3. Randomly generated test problems.

Solutions for unconstrained, global optimization problems are defined as follows. Consider a
real-valued function f : R

d → R. A local minimizer is a point x∗ such that there exists an ε
environment Uε(x∗) of x∗ (ε > 0) with

f(x∗) ≤ f(x) ∀ x ∈ Uε(x∗). (3.1)

58 Problems

Heuristic Comparing Algorithms

1. Define a set of test functions (and an associated testing environment to specify
starting points, termination criteria, etc.).

2. Perform tests.

3. Report the performances of the algorithms, for example the number of successfully
completed runs. Obviously, the algorithm with the highest (expected) performance
is considered best.

Figure 3.1: Heuristic for the comparison of two algorithms.

The related minimization problem is written as minx f(x). We will consider unconstrained
minimization problems only. If f(x∗) ≤ f(x) holds for all x ∈ R

d, x∗ is called a global
minimizer. The symbol f(x) denotes the (objective) function value at x.

Whitley et al. (1996) provide a good starting point for the discussion of test functions in
evolutionary computation. The following section presents problems related to test functions
discussed in the EC community.

3.2 Problems Related to Test Suites

Even in the well-structured world of mathematical optimization, a reasonable choice of test
functions to evaluate the effectiveness and the efficiency of optimization algorithms is not
trivial. However, even if the selection of a test problem is assumed to be unproblematic, the
choice of specific problem instances can cause additional problems (a problem instance is a
realization of a generic optimization problem). Hence, for a given problem many different
instances can be considered. For example, varying the dimension defines different instances
of the sphere function. Here we can mention two important difficulties:

• The distribution of instances might influence the algorithm’s performance significantly.
Although the result from Goldberg (1979) and Goldberg et al. (1982) suggested that the
propositional satisfiability problem (SAT) can be solved on average in O(n2), Franco
and Paull (1983) showed that this result was based on a distribution of instances “with
a preponderance of easy instances” (Mitchell et al., 1992). Neither was the algorithm
clever, nor was the problem easy: Goldberg sampled from the space of all problem
instances without producing any hard cases.

• Increasing the dimensionality of a problem can make a test function easier. This was
demonstrated for Griewangk’s function, because the number of local optima decreases
in number and complexity as the dimensionality increases (Whitley et al., 1996).

Whitley et al. (1996) discuss further aspects of test functions, i.e. symmetry and sep-
arability. A test function is separable if the global optimum can be located by optimizing
each variable independently. A two dimensional function is symmetric if f(x, y) = f(y, x)

3.3 Test Functions 59

∀x, y ∈ R
d. They state that “Surprisingly, almost all of the functions in current evolutionary

search test suites are separable.” Therefore, they propose new non-symmetric test functions.
One of these functions, the whit function, is listed in Table 3.1.

A generic test suite might lead to algorithms that perform well on this particular test suite
only. The recommendation of many authors to define heterogeneous test suites is merely an
apparent solution. To avoid useless and misleading results, it is important to understand why
an algorithm performs well or not so well.

It is common practice to finish an article with presenting tabularized result data. The raw
data from these tables require a correct interpretation and should not be seen as final results
but as starting points for interpretation.

It can be observed that the performance of optimization algorithms crucially depends
on the starting point x(0) and other start conditions. To put more emphasis on testing the
robustness (effectivity), Hillstrom (1977) proposed using random starting points. However,
random starting points may cause new difficulties, see the discussion in Section 4.6.

The no free lunch theorem (NFL) for search states that there does not exist any algorithm
that is better than an other over all possible instances of optimization problems. However,
this result does not imply that we should not compare different algorithms. Keeping in mind
that we are considering problems of practical interest, the reader may be referred to the
discussion in Whitley et al. (1995), Droste et al. (2000), and Whitley et al. (2002).

The problems presented in this subsection can be solved, for example by building better
test functions. But there are other, more severe objections against the concept of strategy
comparison stated in Figure 3.1 as will be seen in Chapter 6.

3.3 Test Functions

Some test functions have become very popular in the EC community. Table 3.1 lists some
common functions for global, unconstrained optimization. To differentiate between test func-
tions for efficiency and effectivity (robustness), Schwefel (1975) proposed three test scenarios:
The first tests were performed to analyze the rates of convergence for quadratic objective
functions, the second series to test the reliability of convergence for the general non-linear
case. In a third test, the dependency of the computational effort on the problem dimension
for non-quadratic problems has been studied. Therefore, problem dimensions from 3 to 1000
have been used. The problem dimensions of the second scenario were relatively small.

3.3.1 Test Functions for Schwefel’s Scenario 1 and 2

The following function has been used in test series one and two, see also Table 3.1:

(Sphere) Minimum x∗i = 0 for i = 1, . . . , d. Optimum f∗ = 0.

3.3.2 Test Functions for Schwefel’s Scenario 2

The Rosenbrock function and the Schwefel function have been used in the second test scenario.

(Rosenbrock) Minimum x∗i = (1, 1). Optimum f∗ = 0. Starting point x(0) = (−1.2, 1).
This is the famous two-dimensional ”banana valley” function (Rosenbrock, 1960). Some

60 Problems

Table 3.1: Common test functions. Based on Whitley et al. (1996). The reader is referred to Schwe-
fel (1995) for a more detailed discussion of test functions. Test problem instances from the S-ring
optimization problem are presented in Table 3.3.

Symbol Name Function

sphere: sphere
∑d

i=1 x
2
i

rosen: Rosenbrock 100(x2
1 − x2)2 + (1 − x1)2

step: step
∑d

i=1
xi�
quartic: quartic function with noise

(∑d
i ix

4
i

)
+ N (0, 1)

shekel: Shekel’s foxholes
(
0.002 +

∑25
j=1 1/(j +

∑2
i=1(xi − aij)6)

)−1

rast: Rastrigin 10d
(∑d

i=1

(
x2

i − 10 cos(2πxi)
))

schwe: Schwefel −x sin
(√|x|

)
grie: Griewangk 1 +

∑d
i=1 x

2
i /4000 − ∏d

i=1

(
cos(xi/

√
i)

)
whit: Whitley −x sin

(√|x− z|
)
− z sin

(√|z + x/2|
)
,

with z = y + 47

l1: L1–Norm
∑d

i |xi|
abs: absolute value function |x|
id: identity function x

boha: Bohachevsky x2 + 2y2 − 0.3 cos(3πx) − 0.4 cos(4πy) + 0.7

bilcos: bisecting line cosine x− cos(πx)

3.4 Elevator Group Control 61

authors use a “generalized” Rosenbrock function defined as

d−1∑
i=1

(
100(xi+1 − x2

i)
2 + (1 − xi)2

)
. (3.2)

(Schwefel) Starting point x(0) = 0. This function is Schwefel’s problem 2.26, a slightly
modified variant of Schwefel’s problem 2.3 (Schwefel, 1995). Both problems are one-
dimensional test functions. Besides infinitely many local optima, these functions have
a machine dependent apparent global optimizer x∗ap. Schwefel reported that most algo-
rithms located the first or highest local minimum left or right of x(0). A (10, 100) evolu-
tion strategy was able to reach the apparent global optimum x∗ap almost always. Obvi-
ously, one dimension is sufficient to demonstrate this effect. However, a d-dimensional
variant (d ≥ 1):

∑d
i=1 −xi sin

(√|xi|
)

can be found in the literature, i.e. Whitley et al.
(1996).

3.3.3 Test Functions for Schwefel’s Scenario 3

The L1-norm was used in the third scenario:

L1-Norm This function is Schwefel’s problem 3.4 (and problem 2.20).

These scenarios will be reconsidered in Chapter 6. Note that the experimenter’s skill is needed
to set up test functions for optimization scenarios as presented above.

3.4 Elevator Group Control as a Real-World Optimization
Problem

Computer simulations are a suitable means to optimize many actual real-world problems.
Consider e.g. a sequence of traffic signals along a certain route or elevators’ movements in high-
rise buildings. Optimization via simulation subsumes all problems in which the performance
of the system is determined by running a computer simulation. As the result of a simulation
run is a random variable, we cannot optimize the actual value of the simulation output, or a
singular performance of the system Y . One goal of optimization via simulation is to optimize
the expected performance E[Y (x1, x2, . . . , xn)], where the xi’s denote the controllable input
variables (Schwefel, 1979; Azadivar, 1999; Banks et al., 2001). The stochastic nature of the
simulation output forces the optimization practitioner to apply different methods than in the
deterministic counterparts. The stochastic output in optimization via simulation complicates
the selection process in direct search methods. The efficiency of the evaluation and selection
method is a crucial point, since the search algorithm may not be able to make much progress
if the selection procedure requires many function evaluations.

3.4.1 The Elevator Supervisory Group Controller Problem

The construction of elevators for high-rise buildings is a challenging task. Today’s urban life
cannot be imagined without elevators. The elevator group controller is a central part of an
elevator system. It assigns elevator cars to service calls in real-time while optimizing the

62 Problems

overall service quality, the traffic throughput, and/or the energy consumption. The elevator
supervisory group control (ESGC) problem can be classified as a combinatorial optimization
problem (Barney, 1986; So and Chan, 1999; Markon and Nishikawa, 2002). It reveals the same
complex behavior as many other stochastic traffic control problems such as materials handling
systems with automated guided vehicles (AGVs). Due to many difficulties in analysis, design,
simulation, and control, the elevator optimization problem has been studied for a long time.
First approaches were mainly based on analytical methods derived from queuing theory.
Today, computational intelligence (CI) methods and other heuristics are accepted as state of
the art (Crites and Barto, 1998; Schwefel et al., 2003).

The elevator group controller determines the floors where the cars should go to. Passengers
requesting for service can give hall calls. Since the group controller is responsible for the
allocation of elevators to hall calls, a control strategy to perform this task in an optimal
manner is required. The main goal in designing a better controller is to minimize the time
passengers have to wait until they can enter an elevator car after having requested service.
This time-span is called the waiting time.

During a day, different traffic patterns can be observed. For example, in office buildings,
an up-peak traffic is observed in the morning, when people start to work, and, symmetrically,
down-peak traffic is observed in the evening. Most of the day there is balanced traffic with
much lower intensity than at peak times. Lunchtime traffic consists of two (often overlapping)
phases where people first leave the building for lunch or head for a restaurant floor, and then
get back to work (Markon, 1995). The ESGC problem subsumes the following task:

How to assign elevators to passengers in real-time while optimizing different el-
evator configurations with respect to overall service quality, traffic throughput,
energy consumption etc.

Figure 3.2 illustrates the dynamics in an elevator system. Fujitec, one of the world’s leading
elevator manufacturers, developed a controller that uses a neural network (NN) and a set of
fuzzy controllers. The weights on the output layer of the neural network can be modified and
optimized. The associated optimization problem is quite complex, because it requires the
identification of globally optimal NN weights. A further analysis (not shown here) reveals
that the distribution of local optima in the ESGC search space is unstructured and there are
many flat plateaus. A plateau is a region of candidate solutions with identical function values.
It can be described as follows: For a given candidate solution x0 ∈ R

d exists an ε-environment
B(x0, ε) such that f(x0) = f(x) ∀x ∈ B(x0, ε).

The objective function values are stochastically disturbed due to the nondeterminism of
service calls, and dynamically changing with respect to traffic loads.

In general, ESGC-research results are incomparable, since the elevator group control per
se is not appropriate as a benchmark problem:

• Elevator systems have a very large number of parameters that differ widely among
buildings, elevator models, manufacturers etc.

• Elevator cars have complex rules of operation, and even slight differences, e.g. in door
operation or in the conditions for changing the traveling direction, can affect the system
performance significantly. Even small elevator systems have a very large state space,
making direct solution infeasible, thus no exact solutions are available for comparison.
The sophisticated ESGC rules are usually trade secrets of the manufacturers, and
cannot be made commonly available for research.

3.4 Elevator Group Control 63

Figure 3.2: Visualization of the dy-
namics in an elevator system. Fujitec’s
elevator simulator representing the fine
model. Six elevator cars are serving
15 floors. This model is computation-
ally expensive and has a high accuracy.
Source: Beielstein et al. (2003a).

In principle, the optimization practitioner can cope with the enormous complexity of the
ESGC problem in two different ways: (1) The problem can be simplified or (2) resources can
be used extensively. A parallel approach that makes extensive use of a batch-job processing
system is presented in Beielstein et al. (2003b). We will concentrate on the first strategy and
present a simplified ESGC model. Ideally, a simplified ESGC model should comply with
the following requirements: It should enable fast and reproducible simulations and should
be applicable to different building and traffic configurations. Furthermore it must be a valid
simplification of a real elevator group controller and thus enable the optimization of one
specific controller policy π and the comparison of different controller policies. The simplified
model should be scalable to enable the simulation of different numbers of floors or servers. It
should be extensible, so that new features (i.e. capacity constraints) can be added. Last but
not least, the model is expected to favor experimental and theoretical analyses. In the next
section we propose a model that conforms to all these requirements.

The approach presented here uses two models, an elevator simulator and the S-ring as a
simplified model. It is related to space mapping techniques. Space mapping techniques itera-
tively update and optimize surrogate models (Bandler et al., 2004). They use two models for
optimization, one fine model (Fujitec’s simulator, see Figure 3.2) that is computationally ex-
pensive and has a high accuracy and one coarse (surrogate) model (the S-ring, see Figure 3.3)
that is fast to solve, but less accurate. Their goal is to achieve an improved solution with a
minimal number of expensive function evaluations.

3.4.2 A Simplified Elevator Group Control Model: The S-ring

When passengers give a hall call, they simply press a button. Therefore, only a one bit
information for each floor is sent to the ESGC. It appears intuitively correct to map the
whole state of the system to a binary string. The system dynamics is represented by a state
transition table and can be controlled by a policy. The sequential-ring model (S-ring model)
has only a few parameters: The number of elevator cars (also called servers) m, the number
of sites n, and the passenger arrival rate p (Markon et al., 2001). A 2-bit state (si, ci) is
associated with each site. The si bit is set to 1 if a server is present on the ith floor, to
0 otherwise. Correspondingly, the ci bit is set to 0 or 1 if there is no waiting passenger

64 Problems

Figure 3.3: The S-ring as an eleva-
tor system. Three cars are serving six
floors (or 10 sites). The sites are num-
bered from 0 to n − 1. There are f =
n/2− 1 floors. This is a coarse (surro-
gate) model that is fast to solve, but less
accurate. Results obtained from this
model should be transferable to other
systems. Source: Markon et al. (2001). c

0
s

0

c
1

s
1

c
n-1

s
n-1

c
f-1

s
f-1

1st floor

2nd floor

f-th floor

Server #1

Server #2

Server #3Customer

Customer

Customer

Customer

respectively at least one waiting passenger. The state of the system at time t is given as

x(t) := (s0(t), c0(t), . . . , sn−1(t), cn−1(t)) ∈ B
2n, (3.3)

with B := {0, 1}.

Example 3.1 (State of the S-ring system)
The vector x(t) = (0, 1, 0, 0, . . . , 0, 1, 0, 0)T represents the state of the system that is shown in
Figure 3.3. For example, there is a customer waiting on the first floor (c0 = 1), but no server
present (s0 = 0). �

A state transition table (Table 3.2) is used to model the dynamics in the system. The
state evolution is sequential, scanning the sites from n− 1 down to 0, and then again around
from n− 1. The up and down elevator movements can be regarded as a loop. This motivates
the ring structure. At each time step, one of the sites (floor queues) is considered, where
passengers may arrive with probability p.

Example 3.2 (S-ring)
Consider the situation at the third site (the up direction on the third floor) in Figure 3.3. As
a customer is waiting, and a server is present, the controller has to make a decision. The car
can serve the customer (take decision), or it can ignore the customer (pass decision). The
former would change the values of the corresponding bits from (1, 1) to (1, 0), the latter from
(1, 1) to (0, 1). �

As the rules of operation are very simple this model is easily reproducible and suitable for
benchmark testing. Despite the model’s simplicity, it is hard to find the optimal policy π∗

even for a small S-ring; the real π∗ is not obvious, and its difference from heuristic suboptimal
policies is non-trivial.

3.4 Elevator Group Control 65

Table 3.2: The triple ξ(t) = (ci, si, si+1) in the first column represents the state of the current site:
Customer waiting, server present, and server present on the next floor. The probability of a state
change to the state ξ(t + 1) shown in the fourth column is given in the second column. Columns
three and five denote the decision and the change in the number of sites with waiting customers, see
Equation 3.4. I.e., the server has to make a decision π (to take or to pass the customer) if there is
a customer waiting (1xx), and if there is a server present on the same floor (11x) but no server on
the next floor (110). Columns representing configurations in which the policy affects the state of the
systems are shaded dark grey.

ξ(t) Prob π(x) ξ(t+ 1) Q(t+ 1) −Q(t)
000 1 − p {0, 1} 000 0
000 p {0, 1} 100 +1
001 1 − p {0, 1} 001 0
001 p {0, 1} 101 +1
010 1 − p {0, 1} 001 0
010 p 0 101 −1
010 p 1 010 0
011 1 {0, 1} 011 0
100 1 {0, 1} 100 0
101 1 {0, 1} 101 0
110 1 0 101 0
110 1 1 010 +1
111 1 {0, 1} 011 −1

So far, the S-ring has been described as a simulation model. To use it as an optimization
problem, it is equipped with an objective function. Consider the function that counts the
sites with waiting customers at time t

Q(t) = Q̂(x, t) =
n−1∑
i=0

ci(t). (3.4)

Then the steady-state time-average number of sites with waiting customers in the queue is

Q = lim
T→∞

∫ T
0 Q(t)dt
T

with probability one. (3.5)

The basic optimal control problem is to find a policy π∗ for a given S-ring configuration. The
optimal policy minimizes the expected number of sites with waiting passengers in the system,
that is the steady-state time-average as defined in Eq. 3.5. A 2n-dimensional vector, y ∈ R

2n,
can be used to represent the policy. Let θ : R → B define the Heaviside function:

θ(z) =
{

0, if z < 0
1, if z ≥ 0,

(3.6)

and x = x(t) be the state at time t (see Eq. 3.3). A linear discriminator, or perceptron,

π(x) = π(x, y) = θ〈y, x〉, (3.7)

66 Problems

can be used to present the policy in a compact manner. For a given vector y that represents
the policy, and a given vector x that represents the state of the system, a take decision occurs
if π(x, y) � 0, otherwise the elevator will ignore the customer.

The most obvious heuristic policy is the greedy one: When given the choice, always serve
the customer. The 2n-dimensional vector ygreedy = (1, 1, . . . , 1)T can be used to represent
the greedy policy. This vector guarantees that the product in Eq. 3.7 equals 1, which is
interpreted as a take decision. Rather counter-intuitively, this policy is not optimal, except in
the heavy traffic (p > 0.5) case. This means that a good policy must bypass some customers
occasionally to prevent a phenomenon that is known as bunching , which occurs in elevator
systems when nearly all elevator cars are positioned in close proximity to each other.

The perceptron S-ring problem can serve as a benchmark problem for many optimization
algorithms, since it relies on the fitness function

F : R
2n → R

(Markon et al., 2001; Beielstein and Markon, 2002). Figure 3.4 shows the correlation
between the noisy function values and the estimated function values.

Bartz-Beielstein et al. (2005b) describe the S-ring model as a partially-observable Markov
decision process in detail.

3.4.3 The S-Ring Model as a Test Generator

The S-ring model can be used to generate test problem instances. An S-ring problem in-
stance can be characterized by the number of sites, the number of elevator cars, the arrival
probability, and the simulation time, see Table 3.3. A problem design specifies one or more
instances of an optimization problem and related restrictions, i.e. the number of available re-
sources (function evaluations). In addition, a computer experiment requires the specification
of an algorithm design. As designs play an important role in experimentation, they will be
discussed in the following chapter.

Figure 3.4: S-ring. Estimated ver-
sus noisy function values. Test instance
sring24 as listed in Table 3.3. Estimated
values have been gained through reevalu-
ation, whereas noisy function values are
based on one evaluation only. Points repre-
senting values from functions without noise
would lie on the bisector.

5 6 7 8 9 10 11 12
5

6

7

8

9

10

11

12

Noisy function values

E
st

im
at

ed
 tr

ue
 fu

nc
tio

n
va

lu
es

3.5 Randomly Generated Test Problems 67

Table 3.3: Test instances for the S-ring model

Instance Dimension Number of
sites

Number of
elevator cars

Arrival
probability

Simulation
time

sring12 12 6 2 0.2 1000
sring24 24 12 4 0.2 1000
sring36 36 18 8 0.2 1000
sring48 48 24 16 0.3 1000
sring96 96 48 32 0.3 1000

3.5 Randomly Generated Test Problems

Although the S-ring model can be used to generate problem instances at random, these
instances have been generated deterministically. Three important objections (OB) against
randomly generated problem instances can be mentioned:

(OB-1) Rardin and Uzsoy (2001) illustrate subtle and insidious pitfalls that can arise from
the randomness of the instance generation procedure with a simple example: To generate
instances of the n-point traveling salesperson problem (TSP), (n×n) symmetric matrices
of point-to-point distances are generated as follows:

Fill the upper triangle of an n by n cost matrix with ci,j generated randomly
(independently and uniformly) between 0 and 20. Then complete the instance
by making cj,i = ci,j in the lower triangle and setting ci,i = 0 along the
diagonal.

The mean of the cell entries ci,j with i < j is 10 with standard deviation 5.77. If
n = 5000 points are generated, the average tour length will be 10 · 5000 = 50, 000 with
standard deviation 5.77

√
5000 = 408. Nearly every feasible tour will have a length

within ±3 ·408 of 50, 000. Hence, “almost any random guess will yield a good solution.”

(OB-2) Reeves and Yamada (1998) report that local optima of randomly generated permu-
tation flow-shop scheduling problem instances are distributed in a big-valley structure,
i.e. local optima are relatively close to other local optima. This big-valley structure
in the search space topology is well-suited for many optimization algorithms. But do
structured problem instances, that are assumed to be more realistic, possess a similar
distribution? Watson et al. (1999) showed for permutation flow-shop scheduling prob-
lems that local optima are generally distributed on large plateaus of equally-fit solutions.
Therefore, the assumption of big-valley structured local optima distributions does not
hold for this type of problem. Whitley et al. (2002) conclude that there are differences
in the performance of scheduling algorithms on random and structured instances.
The distribution of the S-ring local optima is not purely random. An analysis of the
search space shows that there are plateaus of equally good solutions.

(OB-3) To separate different sources of randomness is a basic principle in statistics. Equa-
tion 2.8 describes how the total variability can be partitioned into its components:

SST = SSTREAT + SSE.

68 Problems

If stochastic search algorithms are subject of the analysis, using randomly generated
test instances will add another source of randomness to the algorithm’s randomness
that might complicate the analysis.

3.6 Summary

The basic ideas from this chapter can be summarized as follows:

1. Specifying test functions, performing tests, measuring performances, and selecting the
algorithm with the best performance is a commonly used procedure.

2. Not only the set of test functions, but also the set of test instances has to be chosen
carefully.

3. Test functions can be distinguished from real-world optimization problems.

4. Test functions should be combined with an optimization scenario.

5. The S-ring model defines a simplified elevator group control problem. It

(a) enables fast and reproducible simulations,

(b) is applicable to different buildings and traffic patterns,

(c) is scalable and extensible, and

(d) can be used as a test problem generator.

6. A problem design specifies at least one problem instance plus related restrictions.

7. Randomly generated problem instances can complicate the analysis of stochastic search
algorithms.

Chapter 4
Designs

A common mistake people make when
trying to design something completely
foolproof is to underestimate the
ingenuity of complete fools.

Douglas Adams

4.1 Introduction

This chapter discusses designs for computer experiments. Before the optimization runs are
started, the experimenter has to choose the parameterizations of the optimization algorithm
and one or more problem instances.

Johnson (2002) suggests to explain the corresponding adjustment process in detail, and
therefore to include the time for the adjustment in all reported running-times to avoid a
serious underestimate. An important step to make this procedure more transparent and more
objective is to use design of experiments techniques. They provide an algorithmic procedure
to tune the exogenous parameter settings for the algorithms under consideration before the
complex real-world problem is optimized or two algorithms are compared. Experimental
design provides an excellent way of deciding which simulation runs should be performed so
that the desired information can be obtained with the least amount of experiments (Box et al.,
1978; Box and Draper, 1987; Kleijnen, 1987; Kleijnen and Van Groenendaal, 1992; Law and
Kelton, 2000).

We will develop experimental design techniques that are well suited for parameterizable
search algorithms such as evolution strategies, particle swarm optimization, or Nelder-Mead
simplex algorithms. The concept of splitting experimental designs into algorithm and problem
designs, which was introduced for evolution strategies in (Beielstein et al., 2001), is detailed
in the following. Algorithm tuning as introduced in Chapter 6 refers to the task of finding an
optimal (or improved) algorithm design for one specific problem design.

Generally speaking, two different design techniques can be distinguished: The samples can
be placed either (1) on the boundaries, or (2) in the interior of the design space. The former
technique is used in classical design of experiments (DOE), whereas design and analysis of
computer experiments (DACE) use the latter approach. An experiment is called sequential ,

70 Designs

if the experimental conduct at any stage depends on the results obtained so far. Sequential
approaches exist for both variants. We recommend to use factorial designs or space-filling
designs instead of the commonly used one-factor-at-a-time designs. Design decisions can
be based on geometric or on statistical criteria. It is still an open question, which design
characteristics are important: “. . . extensive empirical studies would be useful for better
understanding what sorts of designs perform well and for which models”(Santner et al., 2003,
p. 161).

Chapter 12 in Law and Kelton (2000) provides an introduction to the use of classical DOE
techniques for computer simulations, Box et al. (1978) is a classical text on experimental
design. Santner et al. (2003) give a survey of designs for modern DACE methods. Giunta
et al. (2003) and Simpson et al. (2004) discuss different design considerations.

4.2 Computer Experiments

Optimization runs will be treated as experiments. There are many degrees of freedom when
starting an optimization run. In many cases search algorithms require the determination of
parameters such as the population size in evolutionary algorithms before the optimization
run is performed. From the viewpoint of an experimenter, design variables (factors) are the
parameters that can be changed during an experiment. Generally, there are two different
types of factors that influence the behavior of an optimization algorithm:

1. Problem specific factors, i.e. the objective function.

2. Algorithm specific factors, i.e. the population size or other exogenous parameters.

We will consider experimental designs that comprise problem specific factors and exogenous
algorithm specific factors. Algorithm specific factors will be considered first. Endogenous
can be distinguished from exogenous parameters (Beyer and Schwefel, 2002). The former
are kept constant during the optimization run, whereas the latter, e.g. standard deviations,
are modified by the algorithms during the run. Standard deviations will be referred to as
step-widths or mutation strengths. Considering particle swarm optimization, step-widths and
their associated directions are frequently referred to as velocities.

An algorithm design DA is a set of vectors, each representing one specific setting of the
design variables of an algorithm. A design can be specified by defining ranges of values for the
design variables. Note that a design can contain none, one, several or even infinitely many
design points.

Example 4.1 (Algorithm design)
Consider the set of exogenous strategy parameters for particle swarm optimization algorithms
with the following values: Swarm size s = 10, cognitive parameter c1 ∈ [1.5, 2], social param-
eter c2 = 2, starting value of the inertia weight wmax = 0.9, final value of the inertia weight
wscale = 0, percentage of iterations for which wmax is reduced witerScale = 1, and maximum
value of the step size vmax = 100. This algorithm design contains infinitely many design
points. �

The optimal algorithm design is denoted as D∗
A. Optimization is interpreted in a very broad

sense—it can refer to the best design point x∗a as well as the most informative design points.
Problem designs DP provide information related to the optimization problem, such as the

available resources (number of function evaluations) or the problem’s dimension.

4.3 Classical Algorithm Designs 71

An experimental design D consists of a problem design DP and an algorithm design DA.
The run of a stochastic search algorithm can be treated as an experiment with a stochastic
output Y (xa, xp), with xa ∈ DA and xp ∈ DP . If the random seed is specified, the output
would be deterministic. This case will not be considered further, because it is not a common
practice to specify the seed that is used in an optimization run. Performance can be measured
in many ways, for example as the best or the average function value for n runs. One of our
goals is to find a design point x∗a ∈ DA that improves the performance of an optimization
algorithm for one problem design point xp ∈ DP . To test the robustness of an algorithm,
more than one design point can be considered.

Example 4.2 (Problem design)
Robustness can be defined as a good performance over a wide range of problem instances.

A very simple example is the function sphere:
∑d

i=1 x
2
i and a set of d-dimensional starting

points x
(0)
i =

(−i, i, . . . , (−i)d)T
, i = 1, 2, 3. �

The optimization of real-world problems requires algorithms with good initial parameters,
since many real-world problems are computationally expensive, e.g., optimization via simula-
tion (Schwefel, 1979; Banks et al., 2001). Therefore only a few optimization runs are possible,
that should be performed with good parameter settings. Optimization practitioners are in-
terested in obtaining a good parameter setting with a minimum amount of optimization runs.
The choice of an adequate parameter setting, or design, can be based on expert knowledge.
But in many cases there is no such knowledge available.

4.3 Classical Algorithm Designs

In this section we will consider the following task: Determine an improved algorithm design
x∗a ∈ DA for one fixed problem design point xp ∈ DP .

Consider the regression model y = Xβ + ε that was defined in Equation 2.11 with as-
sociated regression matrix X as introduced in Equation 2.12. The regression matrix X is
referred to as the design matrix in the context of experimental designs. The optimal design
can be understood as the set of input vectors X∗ ⊂ DA that generates output values y that
are as informative as possible with respect the exact functional relationship (Equation 2.10).
Hence, the optimal algorithm design provides more information than any other algorithm
design with respect to some optimality criterion. This information can be used to detect an
improved design point.

The classical criteria for optimality such asD-optimality have to cope with the dependence
on the model parameters. These so-called alphabetic optimal designs attempt to choose design
points so that some measure of error in prediction, which depends on the underlying assumed
model, is minimized (Federov, 1972; Box and Draper, 1987; Pukelsheim, 1993; Spall, 2003).

Example 4.3 (Optimality criteria)
1. A design is A-optimal if it minimizes the sum of the main diagonal elements of (XTX)−1.

Hence, A-optimal designs minimize the sum of the variances of the regression coeffi-
cients.

2. A design is said to be D-optimal if

det
(
(XTX)−1

)
(4.1)

72 Designs

is minimized, where X is the design matrix (Montgomery, 2001, p. 468). �

Often, it is not trivial to formulate the experimental goals in terms of these optimal design
criteria. And, “even if we can formulate the problem in this way, finding the optimal design
may be quite difficult”(Santner et al., 2003, p. 124). Despite of these problems, factorial
designs as one relevant and often applied type of D-optimal designs will be introduced in the
following section.

Factorial Designs

The commonly used one-factor-at-a-time method, where certain factors are varied one at a
time, while the remaining factors are held constant, provides an estimate of the influence of a
single parameter at selected fixed conditions of the other parameters. Such an estimate may
only have relevance under the assumption that the effect would be the same at other settings
of the other parameters. This requires that effects of variables behave additively on the
response over the ranges of current interest. Furthermore, interactions cannot be determined.
Therefore, we do not recommend to use this method.

Factorial designs are more efficient than one-factor-at-a-time designs (Kleijnen, 1987).
Box et al. (1978) give an instructive example that explains the weakness of the classical one-
factor-at-a-time design.
Orthogonal designs simplify the computations. They lead to uncorrelated regression coeffi-
cients (cov(βi, βj) = 0) and to a minimal variance of the predicted response in the design
space.

In the following, we use orthogonal designs with two levels for each factor: The corre-
sponding factorial design with k factors requires 2k experimental runs. Since interactions
that involve many factors can be neglected in some situations, fractional factorial designs
omit the corresponding run configurations and require only 2k−p runs. Adding center points
and axial points to 2k designs leads to central composite designs (CCD) with axial runs
(Figure 4.1). The values of factor levels can be scaled. A variable x is called scaled or
standardized, if x ranges between −1 and +1.

An important objection against 2k designs is that non-linear effects remain undiscovered.
Therefore, 2k designs are only used to get an overview over the effects and their interactions,
not to obtain the exact values. Furthermore, techniques to measure the goodness of the model
fit can be applied (Montgomery, 2001).

Hence, the entry −1 in the regression matrix X (Equation 2.12) denotes a factor at its
low level, and +1 a factor at its high level. Tab. 4.1 depicts a fractional factorial 29−5

III design.
In general, the following two purposes require different designs:

1. Factorial designs are used to determine which factors have a significant effect in the
screening phase of the DOE.

2. To fine-tune the algorithm in the modeling and optimization phase, CCDs, which extend
the factorial designs, can be used.

The number of samples in the CCD scales as 2k, where k is the number of factors in the
model. Therefore CCD should only be used in the final phase of the DOE procedure when
the number of factors is very low.

Factorial designs that are commonly used in classical DOE place samples on the bound-
aries of the design space. The interior remains unexplored. This is due to the following model

4.3 Classical Algorithm Designs 73

(−1,−1) (−1,1)

(−a,0) (0,0) (a,0)

(1,1)(−1,1)

(0,a)

(0,−a)

Figure 4.1: Central composite design with
axial runs for k = 2. The value of a =

√
k

gives a spherical CCD, that is: All factorial
and axial design points are on the surface of
a sphere of radius

√
k. Source: Montgomery

(2001).

Table 4.1: Fractional factorial 29−5
III design. This design is used for screening the ES parameters.

Concrete values are shown in Tab. 6.3

A B C D E=ABC F=BCD G=ACD H=ABD J=ABCD

1 − − − − − − − − +

2 + − − − + − + + −
3 − + − − + + − + −
4 + + − − − + + − +

5 − − + − + + + − −
6 + − + − − + − + +

7 − + + − − − + + +

8 + + + − + − − − −
9 − − − + − + + + −

10 + − − + + + − − +

11 − + − + + − + − +

12 + + − + − − − + −
13 − − + + + − − + +

14 + − + + − − + − −
15 − + + + − + − − −
16 + + + + + + + + +

74 Designs

assumptions: The underlying model in the classical DOE approach can be written as

ỹ = y + ε, (4.2)

where ỹ is the measured response, y the true value, and ε an error term. The errors are usually
assumed to be independent and identically distributed. Equation 4.2 is used to model the
assumption that ε is always present. Therefore the goal of classical DOE is to place samples
in the design space so as to minimize its influence. DOE employs an approximation model

ŷ = f(x, ỹ(x)), (4.3)

where f is usually a low-order polynomial, and x denotes a sample point. We can conclude
from these model assumptions that design points should be placed on the boundaries of
the design space. This can be seen in Figure 4.2: The random errors remain the same
in both design configurations, but the estimated linear model (dotted lines) gives a poor
approximation of the true model if the samples are located in the interior of the design space
(left figure). Moving the design points to the boundaries as shown in the right figure yields a
better approximation of the true relationship.

4.4 Modern Algorithm Designs

Replicate runs reduce the variance in the sample means and allow the estimation of the
random error ε in stochastic computer experiments, cf. Equation 4.2. Modern design and
analysis of computer experiments methods have been developed for deterministic computer
experiments that have no random error. DACE assumes that the interesting features of the
true model can be found in the whole sample space. Therefore, space filling or exploratory
designs, that place a set of samples in the interior of the design space, are commonly used.

Metropolis and Ulam (1949) introduced a pseudo-Monte Carlo (MC) sampling method
for computer simulations. As Monte Carlo sampling places samples randomly in the design
space, large regions may remain unexplored. Stratified MC-sampling divides the design space
into subintervals of equal probabilities and requires therefore at least 2d samples.

Latin hypercube sampling (LHS) was developed as an alternative to Monte Carlo sam-
pling (McKay et al., 1979). The resulting designs are called Latin hypercube designs (LHD).
LHS is superior under certain assumptions to MC-sampling and provides a greater flexibility
in choosing the number of samples. For a given design space I = [a, b] ⊆ R

d, a Latin hyper-
cube design with N design sites can be constructed as shown in Figure 4.3 (McKay et al.,

Figure 4.2: DOE approx-
imation error. The errors
and true models (solid lines)
are the same in both con-
figurations. Moving the de-
sign points to the boundaries
yields in a better approxi-
mation model (dotted lines).
Source: (Trosset and Padula,
2000). x

y

x

y

error

4.5 Sequential Algorithm Designs 75

Algorithm 4.1 (LHD)
1. Partition [ai, bi] into N subintervals of length (bi−ai)/N , (i = 1, . . . , d). The design

space I is partitioned into Nd rectangles R(j1, . . . , jd), the index ji denotes interval
j in [ai, bi].

2. Generate a random permutation Ji1 , . . . , JiN of {1, . . . , N}, (i = 1, . . . , d).

3. Draw N samples x0 ∼ U [R(J1n, . . . , Jdn)], (n = 1, . . . , N).

Figure 4.3: Latin hypercube design.

1979; Trosset and Padula, 2000). An algorithm design specifies the parameters for one specific
algorithm. Latin hypercube sampling can be used to generate design points. One instance
of a LHD with ten design points in two dimensions is shown in Figure 4.4. Note that LHS
might result in an ill-designed arrangement of sample points, for example if the samples are
placed along a diagonal as shown in Figure 4.4.

In addition, Santner et al. (2003) discuss several criteria that can be applied to generate
designs by distance-based criteria, for example maxmin distance designs, or measures of the
discrepancy between the empirical distribution of the set of sample points and the uniform
distribution.

4.5 Sequential Algorithm Designs

In some situations, it might be beneficial to generate the design points not at once, but
sequentially . The selection process for further design points can include knowledge from the
evaluation of previously generated design points.

Evolutionary operation (EVOP) was introduced already in the 1950s by Box (1957). The
basic idea is to replace the static operation of a process by a systematic scheme of modifica-
tions (mutations) in the control variables. The effect of these modifications is evaluated and
the process is shifted in the direction of improvement: The best survives. Box associated
this purely deterministic process with an organic mutation-selection process. Satterthwaite
(1959a,b) introduced a random evolutionary operation (REVOP) procedure. REVOP was
rejected by Box because of its randomness.

Sequential designs can be based on several criteria, for example on the D-optimal maxi-
mization criterion as presented in Example 4.3. We will present a sequential approach that
is based on a criterion developed for DACE, the expected improvement.

Sequential sampling approaches with adaptation have been proposed for DACE meta-
models. For example, Sacks et al. (1989) classified sequential sampling approaches with and
without adaptation to the existing metamodel. Jin et al. (2002) propose two sequential sam-
pling approaches with adaptation that are not limited to DACE models.

Santner et al. (2003, p. 178) present a heuristic algorithm for unconstrained problems of
global minimization. Let yn

min denote the smallest known minimum value after n runs of the

76 Designs

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Figure 4.4: Two LHD samples of ten points. Left: Typical instance of a LHD, right: Ill designed
arrangement.

algorithm. The improvement is defined as

improvement at x =
{
yn
min − y(x), yn

min − y(x) > 0
0, yn

min − y(x) ≤ 0
(4.4)

for x ∈ DA. As y(x) is the realization of a random variable, its exact value is unknown. The
goal is to optimize its expected value, the so-called expected improvement . The discussion
in Santner et al. (2003, p. 178ff.) leads to the conclusion, that new design points are attractive
“if either there is a high probability that their predicted output is below the current observed
minimum and/or there is a large uncertainty in the predicted output.” This result is in
accordance with the experimenters’ intention to avoid sites that guarantee worse results, and
constituted the motivation for the EXPIMP heuristic shown in Figure 4.5 (Bartz-Beielstein
and Markon, 2004; Bartz-Beielstein et al., 2004b). Next, we will discuss problem designs that
consider more than just one design point of one problem design.

4.6 Problem Designs

Different instances of one optimization problem can be used to compare algorithms. The prob-
lem design and the algorithm design to be compared can be arranged in matrix form (Rardin
and Uzsoy, 2001). This matrix form will be used to present performance measures that con-
sider more than one problem design point simultaneously. These performance measures will
be introduced in Section 6.3.3.

4.6.1 Initialization

It can be observed that the performance of optimization algorithms depends crucially on the
starting point x(0). There are mainly two different initialization methods: Deterministic and
random starts. To test the robustness of algorithms and not only their efficiency, Hillstrom
proposed to use a series of random starts. Twenty random starts are considered as “a compro-
mise between sample size and testing expense”(Hillstrom, 1977). This initialization method
is nowadays often used for stochastic search heuristics such as particle swarm optimization
algorithms.

4.6 Problem Designs 77

Heuristic EXPIMP

1. Choose an initial design Dn with n points.

2. Run the algorithm at xi ∈ Dn, i = 1, . . . , n, to obtain the vector of output values
y(x).

3. Check the termination criterion.

4. Select a new point xn+1 that maximizes the expected improvement, cf. Equation 4.4.

5. Run the algorithm at xn+1 to obtain the output y(xn+1).

6. Set Dn+1 = Dn ∪ {xn+1}, n = n+ 1, and go to 3.

Figure 4.5: Expected improvement heuristic.

More et al. (1981) state that the use of random starts affects the reproducibility of the
results. Furthermore, random starting points introduce an additional source of randomness.
Since some methods of our analysis try to explain as much randomness as possible by the
differences between the algorithms, this initialization method may cause unwanted side-effects
that complicate the statistical analysis. Better suited for our needs are deterministic routines.
We will present initialization and termination methods next.

To initialize the set of search points X(0) = {x(0)
1 , . . . , x

(0)
p }, the following methods can be

used:

(DETEQ) Deterministic: Each search point uses the same vector, which is selected deter-
ministically, i.e. xinit = 1T ∈ R

d. As this method uses only one starting point xinit, it
is not suitable to visualize the starting points for which the algorithm converged to the
optimum. This method will be referred to as initialization method DETEQ.

Example 4.4
Schwefel (1995) proposed the following initialization scheme for high dimensional non-
quadratic problems:

x
(0)
i = x∗ +

(−1)i√
d
, for i = 1, . . . , d. (4.5)

�

(DETMOD) Deterministically modified starting vectors: The algorithm can be tested with
starting vectors x(0), 10x(0), and 100x(0) (More et al., 1981), or any other scheme that
generates starting points deterministically. This method will be referred to as initial-
ization method DETMOD.

(UNIRND) Uniform random starts: Every search point (i = 1, . . . , p) uses the same vector
xinit ∈ R

d, where the d components are realizations of independent U [xl, xu] random

78 Designs

variables. This method introduces an additional source of randomness. It is suitable to
visualize the starting points for which the algorithm converged to the optimum. This
visualization technique is useful to get some insight into the behavior of the algorithm
and will be discussed later on. This method will be referred to as initialization method
UNIRND.

(NUNIRND) Non-uniform random starts: Every search point uses a different vector x(0)
i ,

(i = 1, . . . , p), that is X(0) = {x(0)
1 , . . . , x

(0)
p }, with x

(0)
i �= x

(0)
j ∀ i �= j. Each of the p

vectors xinit ∈ R
d consists of d components that are realizations of independent U [xl, xu]

random variables. This initialization method is used by many authors. It introduces an
additional source of randomness, and it is not suitable to visualize the starting points
for which the algorithm converged to the optimum. This method will be referred to as
initialization method NUNIRND.

Since variance reducing techniques are considered in our analysis, and we are trying to explain
the variance in the results based on the fundamental ANOVA principle (Equation 2.9), we
prefer a deterministic initialization scheme.

4.6.2 Termination

An algorithm run terminates, if it (or its budget) is:

(XSOL/FSOL) Solved: The problem was solved.

1. A domain convergence test becomes true when the x′is are close enough in some
sense. This method will be referred to as termination criterion XSOL.

2. A function value convergence test becomes true when the function value is close
enough in some sense. This method will be referred to as termination criterion
FSOL.

(STAL) Stalled: The algorithm has stalled. A step size test becomes true when the step
sizes are sufficiently small. This method will be referred to as termination criterion
STAL.

(EXH) Exhausted: The resources are exhausted.

1. An iteration test becomes true if the maximum number of function values is ex-
hausted.

2. A no-convergence-in-time test becomes true. This includes domain convergence
and function value convergence.

This method will be referred to as termination criterion EXH.

Tests specified for the cases in which the algorithm is stalled or its budget is exhausted are
called fail tests. Termination is as important as initialization. Even if the algorithm converges
in theory, rounding errors may prevent convergence in practice. Thus, fail tests are necessary
for every algorithm. Singer and Singer (2004) demonstrate the impact of the termination
tests on the performance of a Nelder-Mead or simplex algorithm: “A fairly simple efficiency
analysis of each iteration step reveals a potential computational bottleneck in the domain
convergence test.”

4.7 Discussion: Designs for Computer Experiments 79

4.7 Discussion: Designs for Computer Experiments

The assumption of a linear model for the analysis of computer algorithms is highly specula-
tive. As can be seen from Figure 4.2, besides the selection of a correct regression model, the
choice of design points is crucial for the whole procedure. On the other hand, DACE was in-
troduced for deterministic computer experiments and not for the analysis of stochastic search
algorithms. Performing repeated runs and taking the mean value at the design points enables
the application of these techniques even for non-deterministic experiments. Determinism is
“introduced through the backdoor.”

Another problem that arises from DACE designs is the treatment of qualitative factors.
Moreover, as Santner et al. (2003, p. 149) note:

It has not been demonstrated that LHDs are superior to any designs other than
simple random sampling (and they are only superior to simple random sampling
in some cases).

Based on our experience, we can give the following recommendation: If only a few qualitative
factors are relevant, then for each setting a separate LHD could be used. Otherwise, factorial
design could be used to screen out those qualitative factors that have the largest effect. Latin
hypercube designs can be used in the second step of the experimentation.

Despite the recommendations given in this chapter, the most frequently used strategy in
practice will be the best-guess strategy. It works reasonably well in many situations, because
it benefits from the experimenter’s feeling or skill.

In England it is still not uncommon to find in a lab a youngish technician, with no
formal education past 16 or 17, who is not only extraordinarily skilful with the ap-
paratus, but also the quickest at noting an oddity on for example the photographic
plates he has prepared from the electron microscope(Hacking, 1983).

Relying upon high level experimental design theories may sometimes “help” the experimenter
to miss the point.

4.8 Summary

The results from this chapter can be summarized as follows:

1. An experimental design consists of a problem design and an algorithm design.

2. Algorithm designs consider only exogenous strategy parameters.

3. Endogenous strategy parameters are modified during the run of an algorithm.

4. The objective function, its dimension, and related constraints are specified in the prob-
lem design DP .

5. The algorithm design DA defines the set of exogenous strategy parameters of the al-
gorithm, for example the swarm (population) size of a particle swarm optimization
(PSO).

6. The task of searching for an optimized algorithm design for a given problem design is
called algorithm tuning.

80 Designs

7. We do not recommend to use one-factor-at-a-time designs, because they fail to discover
any possible interaction between the factors.

8. Factorial designs are widely used designs from classical DOE. Design points are placed
on the boundaries of the design space.

9. Latin hypercube designs are popular designs for modern DACE. These designs are space
filling: Design points are placed in the interior of the design space.

10. Sequential designs can be constructed for both, classical and modern designs.

11. Designs of test problems specify one specific problem instance. This specification com-
prises the starting conditions and the termination criteria.

12. LHDs are widely spread not because they are superior, but because they are easy to
implement and the underlying design principles are comprehensible. Only seven words
are necessary to explain the design principle: “Place eight non-attacking castles on a
chess-board.”

Chapter 5
Search

The alchemists in their search for gold
discovered many other things of greater
value.

Arthur Schopenhauer

5.1 Introduction

This chapter describes search algorithms for unconstrained optimization. The focus lies on
the determination of their exogenous strategy parameters (design variables) to define the
associated algorithm design. A short description of these algorithms is given, too.

We distinguish deterministic from stochastic search algorithms. Methods that can be
found in standard books on continuous optimization such as Noceda and Wright (1999) are
characterized here as deterministic optimization algorithms. Stochastic or random strategies
can be defined as methods “in which the parameters are varied according to probabilistic
instead of deterministic rule”(Schwefel, 1995, p. 87). If the function is continuous in its first
derivative, gradient methods are usually more efficient than direct methods. Direct methods
use only function evaluations. There are deterministic, for example the simplex search of
Nelder and Mead, and stochastic direct search algorithms, for example evolution strategies.

5.2 Deterministic Optimization Algorithms

5.2.1 Nelder and Mead

The Nelder-Mead simplex (NMS) algorithm was motivated by the observation that (d + 1)
points are adequate to identify a downhill direction in a d-dimensional landscape (Nelder and
Mead, 1965). However, (d + 1) points define also a non-degenerated simplex in R

d. Thus,
it seemed a good idea to exploit a simplex for probing the search space, using only function
values (Lewis et al., 2000).

Nelder and Mead incorporated a set of moves that enhance the algorithm’s performance,
namely reflection, expansion, contraction, and shrinkage. A new point is generated at each
iteration. Its function value is compared to the function values at the vertices of the simplex.

82 Search

One of the vertices is replaced by the new point. Reflection reflects a vertex of the simplex
through the centroid of the opposite face. Expansion allows the algorithm to take a longer step
from the reflection point (centroid) towards the reflected vertex, while contraction halves the
length of the step, thereby resulting in a more conservative search. Finally, shrinkage reduces
the length of all edges that are adjacent to the best vertex, i.e., the vertex with the smallest
function value. Thus, there are four design variables to be specified, namely the coefficients of
reflection ρ, expansion χ, contraction γ, and shrinkage σ. Default settings of these parameters
are reported in Table 5.1. NMS is considered to be quite a robust but relatively slow algorithm
that works reasonably well even for non-differentiable functions (Lagarias et al., 1998).

The MATLAB function fminsearch has been used to perform the experiments. It uses
the following values for the design variables: ρ = 1; χ = 2; γ = 0.5; σ = 0.5.

5.2.2 Variable Metric

The variable metric method is a quasi-Newton method. Quasi-Newton methods build up
curvature information. Let H denote the hessian, c a constant vector, and b a constant, then
a quadratic model problem formulation of the form

min
x

1
2
xTHx+ cT + b

is constructed. If the partial derivatives of x go to zero, that is

∇f(x∗) = Hx∗ + c = 0

the optimal solution for the quadratic problem occurs. Hence

x∗ = −H−1c.

Quasi-Newton methods avoid the numerical computation of the inverse hessian H−1 by using
information from function values f(x) and gradients ∇f(x) to build up a picture of the surface
to be optimized. The MATLAB function fminunc uses the formula of Broyden, Fletcher,
Goldfarb, and Shanno (BFGS) to approximate H−1. The gradient information is derived
by partial derivatives using a numerical differentiation via finite differences. A line search is
performed at each iteration in the direction

−H−1
k · ∇f(xk).

Figure 5.1 illustrates the solution path of the BFGS method on Rosenbrock’s function. The
method converges to the minimum after 140 function evaluations.

Table 5.1: Default settings (algo-
rithm design) of the exogenous param-
eters of the NMS algorithm. This de-
sign is used in the MATLAB optimiza-
tion toolbox (Lagarias et al., 1998).

Symbol Parameter Range Default

ρ reflection ρ > 0 1.0
χ expansion χ > max{1, ρ} 2.0
γ contraction 0 < γ < 1 0.5
σ shrinkage 0 < σ < 1 0.5

5.3 Stochastic Search Algorithms 83

Figure 5.1: BFGS method on
Rosenbrock’s function. Source:
Coleman and Zhang (2004).

5.3 Stochastic Search Algorithms

5.3.1 The Two Membered Evolution Strategy

The two membered evolution strategy, or (1 + 1) ES, is included in our overview for three
reasons.

1. It is easy to implement.

2. It requires only a few exogenous parameters.

3. It defines a standard for comparisons. Why use more complex algorithms if the (1 + 1)
ES can solve the problem effectively and efficiently?

Therefore many optimization practitioners apply the (1+1) ES to their optimization problem.
Schwefel (1995) describes this algorithm as “the minimal concept for an imitation of organic
evolution”. Let f denote an objective function f : R

d → R to be minimized. The rules of an
(1 + 1) ES can be described as shown in Figure 5.2. The standard deviation σ is interpreted
as the mean step length. The ratio of the number of the successes to the total number of
mutations, the so-called success rate sr, might be modified as well as the factor by which
the variance is reduced or increased, the so-called step size adjustment factor sa. A related
algorithm design is shown in Table 5.2.

Figure 5.3 shows the 1/5 success rule derived by Rechenberg while analyzing the (1+1) ES
on two basically different objective functions for selecting appropriate step lengths (Rechen-
berg, 1973).

A more precise formulation is required to implement the 1/5 success rule. “From time
to time during the optimization run” can be interpreted as “after every sn mutations.” We
analyze the following two variants to implement the 1/5 rule:

(INTV) A success counter c ∈ N is initialized at iteration t = 1. If a successful mutation
occurs, c is increased. Every sn iterations, the success rate is determined as c/sn and c
is set to zero. This variant will be referred to as the interval 1/5 update rule (INTV).

84 Search

Procedure (1 + 1)-ES.

Initialization: Initialize the generation counter: g = 0. Determine a point X(g)
1 and a

standard deviation σ(g) with associated position vector x(g)
1 ∈ R

d. Determine the
function value y1 = f(x(g)

1).

repeat

Mutation: Generate a new point X(g)
2 with associated position vector x(g)

2 as fol-
lows:

x
(g)
2 = x

(g)
1 + z, (5.1)

where z is a d-dimensional vector. Each component of z is the realization of a
normal random variable Z with mean zero and standard deviation σ(g).

Evaluation: Determine the function value y2 = f(x(g)
2).

Selection: Accept X(g)
2 as X(g+1)

1 if its function value does not exceed that of X(g)
1 :

y2 < y1, (5.2)

otherwise retain X
(g)
1 as X(g+1)

1 .

Adaptation: Update σ(g). Increment g.

until some stopping criterion is satisfied.

Figure 5.2: The two membered evolution strategy or (1 + 1)-ES.

1/5 Success Rule From time to time during the optimization obtain the frequency of
successes, i.e., the ratio of the number of the successes to the total number of trials
(mutations). If the ratio is greater than 1/5, increase the variance, if it is less than 1/5,
decrease the variance.

Figure 5.3: Heuristic Rule: 1/5 Success Rule.

5.3 Stochastic Search Algorithms 85

(CONT) A success vector v ∈ B
sn is initialized at iteration t = 1. If a successful mutation

occurs at iteration t mod sn, the t-th bit is set to 1. After an initialization phase of sn

iterations, the success rate is determined in every generation as
sn∑

k=1

vk/sn.

This variant will be referred to as the continuous 1/5 update rule (CONT).

A coding of the two membered evolution strategy and an in-depth discussion of evolution
strategies and other direct search methods can be found in Schwefel’s seminal book “Evolution
and Optimum Seeking” from 1995. This book is a slightly extended version of Schwefel’s PhD
thesis from 1975 that was published under the title “Numerische Optimierung von Computer-
Modellen mittels der Evolutionsstrategie”(Schwefel, 1977), and translated into English four
years later (Schwefel, 1981).

5.3.2 Multimembered Evolution Strategies

An ES-algorithm run can be described briefly as follows: The parental population is initial-
ized at time (generation) g = 0. Then λ offspring individuals are generated in the following
manner: A parent family of size ρ is selected randomly from the parent population. Re-
combination is applied to the object variables and the strategy parameters. The mutation
operator is applied to the resulting offspring vector. After evaluation, a selection procedure
is performed to determine the next parent population. The populations created in the itera-
tions of the algorithm are called generations or reproduction cycles. A termination criterion
is tested. If this criterion is not fulfilled, the generation counter (g) is incremented and the
process continues with the generation of the next offspring.

We consider the parameters or control variables from Table 5.3. This table shows typi-
cal parameter settings. Bäck (1996) presents a kind of default hierarchy that includes four
parameterizations for simple and complex algorithms and suggests to perform experiments.
Hence, our approach can be seen as an extension of Bäck’s methods.

The reader is referred to Bartz-Beielstein (2003) for a detailed description of these pa-
rameters. Schwefel et al. (1995) and Beyer and Schwefel (2002) provide a comprehensive
introduction to this special class of EA.

5.3.3 Particle Swarm Optimization

The main inspiration, which led to the development of particle swarm optimization (PSO)
algorithms, was the flocking behavior of swarms and fish shoals (Kennedy and Eberhart,

Table 5.2: Algorithm design, AD, for the two membered evolution strategy.

Symbol Parameter Range Default
sn adaptation interval N 100
sr 1/success rate R+ 5
sa step size adjustment factor R+ 0.85
σ(0) starting value of the step size σ, see Figure 5.2 R+ 1
s1/5 step size update rule {INTV, CONT } CONT

86 Search

Table 5.3: Default settings of exogenous parameters of a “standard” evolution strategy. Source: Bäck
(1996). Bäck does not recommend to use this “standard” without reflection. Problems may occur,
when these “standards” are blindly adopted and not adjusted to the specific optimization problem.

Symbol Parameter Range Default
µ Number of parent individuals N 15
ν = λ/µ Offspring-parent ratio R+ 7
σ

(0)
i Initial standard deviations R+ 3
nσ Number of standard deviations. d denotes the prob-

lem dimension
{1, d} 1

cτ Multiplier for individual and global mutation param-
eters

R+ 1

ρ Mixing number {1, µ} 2
rx Recombination operator for object variables {i, d} d (discrete)
rσ Recombination operator for strategy variables {i, d} i (intermediary)
κ Maximum age R+ 1

1995). PSO has been applied to numerous simulation and optimization problems in science
and engineering (Kennedy and Eberhart, 2001; Parsopoulos and Vrahatis, 2002, 2004). PSO’s
convergence is controlled by a set of design variables that are usually either determined
empirically or set equal to widely used default values.

PSO belongs to the class of stochastic, population-based optimization algorithms (Kennedy
and Eberhart, 2001). It exploits a population of individuals to probe the search space. In
this context, the population is called a swarm and the individuals are called particles. Each
particle moves with an adaptable velocity within the search space, and it retains in a memory
the best position it has ever visited.

There are two main variants of PSO with respect to the information exchange scheme
among the particles. In the global variant, the best position ever attained by all individuals
of the swarm is communicated to all the particles at each iteration. In the local variant, each
particle is assigned to a neighborhood consisting of prespecified particles. In this case, the best
position ever attained by the particles that comprise a neighborhood is communicated among
them. Neighboring particles are determined rather based on their indices than their actual
distance in the search space. Clearly, the global variant can be considered as a generalization
of the local variant, where the whole swarm is considered as the neighborhood for each particle.
In the current work we look at the global variant only.

Assume a d-dimensional search space, S ⊂ R
d, and a swarm consisting of s particles. The

i-th particle is a d-dimensional vector,

xi = (xi1, xi2, . . . , xid)T ∈ S.

The velocity of this particle is also a d-dimensional vector,

vi = (vi1, vi2, . . . , vid)T .

The best previous position encountered by the i-th particle (i.e., its memory) in S is denoted
by

p∗i = (p∗i1, p
∗
i2, . . . , p

∗
id)

T ∈ S.

5.3 Stochastic Search Algorithms 87

Assume b to be the index of the particle that attained the best previous position among all
the particles in the swarm, and t to be the iteration counter.

Particle Swarm Optimization with Inertia Weights

Then, the resulting equations for the manipulation of the swarm are (Eberhart and Shi, 1998),

vi(t+ 1) = wvi(t) + c1r1 (p∗i (t) − xi(t)) + c2r2 (p∗b(t) − xi(t)) , (5.3)
xi(t+ 1) = xi(t) + vi(t+ 1), (5.4)

where i = 1, 2, . . . , s; w is a parameter called the inertia weight ; c1 and c2 are positive con-
stants, called the cognitive and social parameter, respectively; and r1, r2 are vectors with
components uniformly distributed in [0, 1]. All vector operations are performed component-
wise.

Usually, the components of xi and vi are bounded as follows,

xmin � xij � xmax, −vmax � vij � vmax, j = 1, . . . , n, (5.5)

where xmin and xmax define the bounds of the search space, and vmax is a parameter that was
introduced in early PSO versions to avoid swarm explosion that was caused by the lack of
a mechanism for controlling the velocity’s magnitude. Although the inertia weight is such a
mechanism, empirical results have shown that using vmax can further enhance the algorithm’s
performance. Table 5.4 summarizes the design variables of particle swarm optimization algo-
rithms.

Experimental results indicate that it is preferable to initialize the inertia weight with a
large value, in order to promote global exploration of the search space, and gradually decrease
it to get more refined solutions. Thus, an initial value around 1 and a gradual decline towards
0 is considered a proper choice for w. This scaling procedure requires the specification of
the maximum number of iterations tmax. Bartz-Beielstein et al. (2004a) illustrate a typical
implementation of this scaling procedure.

Proper fine-tuning of the parameters may result in faster convergence and alleviation of
local minima (Bartz-Beielstein et al., 2004a; Eberhart and Shi, 1998; Beielstein et al., 2002b;
Bartz-Beielstein et al., 2004b). Different PSO versions, such as PSO with constriction factor,
have been proposed (Clerc and Kennedy, 2002).

Table 5.4: Default algorithm design x
(0)
PSO of the PSO algorithm. Similar designs have been used

in Shi and Eberhart (1999) to optimize well-known benchmark functions.

Symbol Parameter Range Default Constriction
s swarm size N 40 40
c1 cognitive parameter R+ 2 1.494
c2 social parameter R+ 2 1.494
wmax starting value of the inertia weight w R+ 0.9 0.729
wscale final value of w in percentage of wmax R+ 0.4 1.0
witerScale percentage of iterations, for which wmax is re-

duced
R+ 1.0 0.0

vmax maximum value of the step size (velocity) R+ 100 100

88 Search

Particle Swarm Optimization with Constriction Coefficient

In the constriction factor variant, Equation (5.3) reads,

vi(t+ 1) = χ [vi(t) + c1r1 (p∗i (t) − xi(t)) + c2r2 (p∗b(t) − xi(t))] , (5.6)

where χ is the constriction factor (Kennedy, 2003).
Equations (5.3) and (5.6) are algebraically equivalent. In our experiments, the so-called

canonical PSO variant proposed in Kennedy (2003), which is the constriction variant defined
by Equation (5.6) with c1 = c2, has been used. The corresponding parameter setting for the
constriction factor variant of PSO is reported in the last column (denoted as “Constriction”) of
Table 5.4, where χ is reported in terms of its equivalent inertia weight notation, for uniformity
reason. Shi (2004) gives an overview of current PSO variants.

5.4 Summary

The ideas presented in this chapter can be summarized as follows:

1. An algorithm design consists of one or more parameterizations of an algorithm. It de-
scribes exogenous strategy parameters that have to be determined before the algorithm
is executed.

2. The MATLAB function fminunc, which implements a quasi-Newton method, has been
presented as an algorithm that can be run without specifying exogenous strategy pa-
rameters.

3. Exogenous strategy parameters have been introduced for the following stochastic and
deterministic optimization algorithms:

(a) Nelder-Mead.

(b) Evolution strategies.

(c) Two particle swarm optimization variants have been introduced: The inertia weight
version (PSO) and the constriction factor version (PSOC).

Table 5.5: Default settings
of the exogenous parame-
ters of PSO with constriction
factor. Recommendations
from Clerc and Kennedy
(2002).

Symbol Parameter Range Default

s swarm size N 40
χ constriction coefficient R+ 0.729
ϕ multiplier for random numbers R+ 4.1
vmax maximum value of the step size

(velocity)
R+ 100

Chapter 6
Comparison

What is man in nature? A nothing in
comparison with the infinite, an all in
comparison with the nothing—a mean
between nothing and everything.

Blaise Pascal

6.1 Introduction

Algorithms have endogenous and exogenous parameters. Exogenous parameters must be
specified before the algorithm is started, endogenous parameters can evolve during the opti-
mization process, i.e. in self-adaptive evolution strategies (Beyer and Schwefel, 2002). Usually,
the adaptation of endogenous parameters depends on exogenous parameters. By varying the
values of the exogenous parameters the experimenter can get some insight into the behavior
of an algorithm.

Exogenous parameters will be referred to as design variables in the context of statistical
design and analysis of experiments. The parameter values chosen for the experiments consti-
tute an algorithm design DA as introduced in Section 4.2. A design point xa ∈ DA represents
one specific parameter setting.

Algorithm tuning can be understood as the process of finding the optimal design
point x∗a ∈ DA for a given problem design DP .

The tuning procedure leads to results, that are tailored for one specific algorithm-optimization
problem combination. In a similar manner as Naudts and Kallel (2000) mention “the non-
sense of speaking of a problem complexity without considering the parameterization of the
optimization algorithm”, we cannot discuss the behavior of an algorithm without taking the
underlying problem into account. A problem being PSO easy may be ES hard, and vice versa.

Tuning enables a fair comparison of two or more algorithms that should be performed
prior to their comparison. This should provide an equivalent budget—for example a number
of function evaluations or an overall runtime—for each algorithm.

90 Comparison

It is crucial to formulate the goal of the tuning experiments precisely. Tuning was intro-
duced as an optimization process. However, in many real-world situations, it is not possible or
not desired to find the optimum. Assumptions, or boundary conditions, that are necessary for
optimization have been analyzed in operations research (OR). These assumptions comprise
conditions such as (1) well defined goals, (2) stable situations and decision maker’s values, or
(3) an exhaustive number of alternatives. The review of these conditions demonstrates that
“outside the limited-context problems presented in laboratory studies” (Klein, 2002, p.113)
only very few decision problems permit optimization. The so-called fiction of optimization is
discussed in Section 6.2. Progressive deepening, a strategy used by chess grandmasters that is
described in de Groot (1978), can be used as a “vehicle for learning”, whereas decision analysis
is a vehicle for calculating. This classification resembles Mayo’s differentiation between NPT
and NPT∗. The final decision whether a solution is optimal is similar to the final decision in a
statistical test. Conditions required to make an optimal choice are considered in Section 6.3.
This discussion is also relevant for the specification of performance measures in evolutionary
computation. There are many different measures for the goodness of an algorithm, i.e. the
quality of the best solution, the percentage of runs terminated successfully, or the number of
iterations required to obtain the results.

Section 6.4 demonstrates how the classical design of experiments (DOE) approach can
be used to tune algorithms. It consists of three steps: (1) Screening, (2) modeling, and (3)
optimization.

In Section 6.5, a stochastic approach from design and analysis of computer experiments
(DACE) is presented. This approach assumes that the correlation between errors is related
to the distance between the sampling points, whereas linear regression used in DOE assumes
that the errors are independent (Jones et al., 1998). Both approaches require different designs
and pose different questions. In classical DOE, it is assumed that the data come from sources
that are disturbed by random error. Designs with two or three levels only for each factor are
used to build the corresponding regression models. DACE methods employ designs that vary
each factor over many levels.

The tuning approach presented in this chapter has been successfully applied to several
optimization tasks, for example in evolutionary optimization of mould temperature control
strategies (Mehnen et al., 2004a), digital circuit design using evolutionary algorithms (Beiel-
stein et al., 2002a), or elevator group control (Beielstein et al., 2003a; Bartz-Beielstein et al.,
2005b). Bartz-Beielstein (2003) uses the classical DOE approach to compare a variant of
simulated annealing (Belisle, 1992) to an evolution strategy. An approach that combines
classical DOE techniques, regression trees and DACE was shown in Bartz-Beielstein and
Markon (2004). In Section 6.5.2 we develop a related process, the so-called sequential param-
eter optimization (Bartz-Beielstein et al., 2004c).

We have also applied the tuning procedure to multi-criteria optimization problems (Bartz-
Beielstein et al., 2003a; Mehnen et al., 2004a,b; Weinert et al., 2004; Bartz-Beielstein and
Naujoks, 2004; Bartz-Beielstein et al., 2004d). But if not mentioned explicitly, we will consider
single criteria optimization problems as defined in Equation 3.1.

Klein’s viewpoint is based on the approach of bounded rationality (Simon, 1955; Rubin-
stein, 1998; Klein, 2002). Montgomery (2001) discusses classical DOE techniques, whereas
Santner et al. (2003) give an introduction to DACE.

6.2 The Fiction of Optimization 91

6.2 The Fiction of Optimization

Tuning is an optimization problem. Many researchers describe optimization as the attempt
to select the option with the highest expected utility (maximization). Optimization relies
on a number of very restrictive assumptions. No serious researcher would claim that these
assumptions will be met in any setting, “with the possible exception of the laboratory or
casino”(Klein, 2002). Uncertainty, limited time, and restricted financial resources, are only
some of the reasons that prevent the determination of an optimal solution.

But why does, despite of these obvious problems, the dream of optimization linger as a
gold standard for many researchers? Klein notes that the agenda for researchers is dictated
by the mathematical formulation of expected utility: “. . . to find ways to translate decisions
into the appropriate formalism.” Deviations from this concept of maximization are seen as
defects, that can be eliminated. “Because maximization is based on mathematical proofs,
these theorems act as a bedrock.”

Klein questions the value of expected utility for understanding decision making. Instead of
presenting a definition of optimization, he mentions important objections against commonly
used ideas related to optimizations that are also relevant for comparing algorithms.

1. Optimization does not only refer to the outcome. It is important to “provide accurate
and reliable inputs to the analysis”. The optimization process plays an important role.

2. It is not obvious whether the optimization refers either to the absolute best, the best
solution given the data provided, or the best solution given all data that can be provided.

3. Stopping rule: “If we try to consider every relevant factor, we may not finish the analysis
in a finite amount of time.”

4. Suboptimal strategies are sometimes preferred in the engineering community, they are
more robust than the optimal solution.

To define a measure that judges the performance of an algorithm, certain assumptions (bound-
ary conditions) have to be fulfilled. Following Klein (2002), we will discuss some boundary
conditions that have been compiled by decision researchers.

Boundary Conditions

The first assumption requires the goals to be well defined and specified in quantitative terms.
This assumption appears to be unproblematic, because a performance measure can easily be
defined. It is not a problem to find some performance measure—but it is a problem to find
an appropriate one. Many performance measures can be defined, for example the average
function value from n optimization runs, the minimum value from these runs, or the median.

Other criteria demand that the decision maker’s values as well as the optimization situ-
ation must be stable. However, the decision maker might gain new insight into the problem
during the optimization. The optimization goal might be redefined due to this enhanced
knowledge.

An other criterion demands that the decision maker is restricted to selections between op-
tions. But a typical decision maker is not only passively executing the experiments. Learning,
even by accident, may occur. New ideas for improved algorithms can come up.

92 Comparison

One criterion requires that the number of alternatives generated must be exhaustive and
that the options must be properly compared to each other. We cannot test every single
algorithm configuration and every possible problem instance. Even worse, results from this
overarching test would be worthless due to the NFL theorem. However, experimental design
techniques such as DOE or DACE can be applied to setup experiments efficiently.

Furthermore, it is important that the optimal choice can be selected without wasting
disproportional time and effort. This criterion is related to Fredkin’s paradox, that will be
discussed in Chapter 7. Yet, it is not obvious how many instances of problem P are necessary
to demonstrate that algorithm A performs better than algorithm B. Is a test suite with 500
functions more convincing than one with 5 functions?

6.3 Performance Measures

As tuning and comparison of search algorithms can be conducted for many reasons, different
performance measures are necessary. Often, the average response value from an algorithm
run is optimized. But there are circumstances under which it is desirable to optimize the
maximum value and not the average. For example, to guarantee good service for all waiting
customers in an elevator system, the maximum waiting time has to be minimized. Otherwise,
for some systems, it is more important to minimize the variance in the response than it is to
minimize the average value.

Example 6.1 (Mean, median, maximum, and minimum)
Considering the mean function values in Figure 6.1 one might conclude that threshold selection
(TS) improves the performance of the (1+1)-ES especially for high noise levels. Comparing the
median values leads to a similar conclusion. And, the comparison of the maximum function
values shows that threshold rejection might improve the performance, too.
However, the situation changes completely if the minimum function values are compared.
Surprisingly, no clear difference between the two algorithms can be detected. �

Obviously, it is not trivial to find adequate performance measures. The performance measure
under consideration should lead to a comparison that is well-defined, algorithmic, repro-
ducible, and fair (Johnson, 2002). Dolan and More (2001) discuss several shortcomings of
commonly used approaches, i.e. the subjectivity related to the choice of a penalty value that
is assigned to algorithms that failed to solve a problem.
We will consider three optimization scenarios before we present measures that refer to effi-
ciency and those that refer to effectivity.

6.3.1 Scenarios

Research testing of new algorithms for existing problems can be distinguished from the devel-
opment of the most efficient solution procedure for one problem instance (Rardin and Uzsoy,
2001). Eiben and Smith (2003) differentiate between three types of optimization problems:
(1) Design problems (create one excellent solution at least once), (2) repetitive problems (find
good solutions for different problem instances), and (3) on-line control problems (repetitive
problems that have to be solved in real-time).

Following Schwefel (1975, 1995), we will use a classification scheme that distinguishes be-
tween effectivity and efficiency. Effectivity is related to robustness and deals with the question

6.3 Performance Measures 93

0 10 20 30 40 50
0

50

100

150

Noise

F
un

ct
io

n
va

lu
e

 1+1 ES

 1+1 TS

0 10 20 30 40 50
0

5

10

15

20

25

Noise

F
un

ct
io

n
va

lu
e

 1+1 ES

 1+1 TS

0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Noise

F
un

ct
io

n
va

lu
e

 1+1 ES

 1+1 TS

0 10 20 30 40 50
0

200

400

600

800

1000

1200

1400

1600

Noise

F
un

ct
io

n
va

lu
e

 1+1 ES

 1+1 TS

Figure 6.1: Mean, median, maximum, and minimum function values. An (1 + 1)-ES compared to
threshold selection (TS). From left to right: Mean and median (first row), and minimum and maximum
function values (second row) from 500 runs for different noise levels.

94 Comparison

whether the algorithm produces the desired effect. On the other hand, the measurement can
be based on efficiency : Does the algorithm produce the desired effects without waste? The
rate of convergence is one typical measure to judge the efficiency of evolutionary algorithms.
More et al. (1981) note that many tests do not place enough emphasis on testing the robust-
ness of optimization programs. Most of the testing procedures are focused on their efficiency
only. A notable exception in this context is Schwefel (1995), who performed three test series:
The first to analyze numerically the rates of convergence for quadratic objective functions,
the second to test the reliability of convergence for the general non-linear case, and the third
one to investigate the computational effort required for non-quadratic problems.

6.3.2 Effectivity

Robustness can be defined in many ways, i.e. as a good performance over a wide range of
instances of one test problem or even over a wide range of different test problems. Criteria
based on robustness mainly consider the best result. Robustness refers to the hardness or
complexity of the problem. Therefore, the analysis can be based on low dimensional prob-
lems. Due to the lack of computing resources, Schwefel (1975) considered 50 problems with
dimensions from one to six only.

Machine precision demands the specification of a border fborder to distinguish solutions
that have found a function value sufficiently close to the optimum value from solutions that
failed to obtain this value. The machine precision ε is the largest positive number that
1 + ε = 1. For a computer that supports the IEEE standard 754, double-precision ε is
2−52 ≈ 2.224 · 10−16. A simplified variant of the border determination in Schwefel (1995,
p. 206), reads as follows: Let ε ∈ R+ be a real valued positive constant, for example the
machine precision ε. Determine

fborder =
{

max{f(x∗ + εx∗), f(x∗ − εx∗)} if x∗ �= 0,
max{f(ε1), f(−ε1)} otherwise,

where 1 denotes the vector of ones: 1 = (1, 1, . . . , 1)T . We will list some commonly used
performance measures (PM) to analyze the effectivity of an algorithm in the following.

(PM-1) If the optimal solution is known, the percentage of run configurations terminated
successfully, the success ratio (SCR), can be used to measure the performance of an
algorithm. The success ratio has already been mentioned in Section 2.6 in the context
of logistic regression models. Two variants of this measure can be defined, it can be
based on the distance of the obtained best objective function value f̃ to the best known
function value f∗, or on the distance of the position with the obtained best objective
function value x̂ to the position of best known function value x∗. Unless otherwise
explicitly stated, we will use the variant that measures the distance between f̃ and f∗.

To measure the algorithm’s progress towards a solution, one can specify a budget, i.e. the
number of function evaluations available to an algorithm. If the starting points were chosen
randomly, or if stochastic search algorithms were analyzed, several solutions are obtained for
one algorithm configuration. We list only three possible ways to evaluate the results. Other
measures, i.e. based on the median, are possible.

(PM-2) Schwefel (1995, p. 211) selects out of n tests the one with the best end result.

6.3 Performance Measures 95

(PM-3) The mean best function value can be defined as the average value of the best func-
tion values found at termination for one specific run configuration. This performance
measure will be referred to as MBST.

(PM-4) The best function value found by algorithm A is recorded. By starting A from a
number of randomly generated initial points, a sample is obtained. Trosset and Padula
(2000) state that the construction of a non-parametric estimate of the probability density
function from which the sample was drawn has an “enormous diagnostic value” to study
the convergence of iterative algorithms to local solutions.

6.3.3 Efficiency

The methods presented in Section 6.3.2 specify the available resources in advance and ask how
close to the optimum an algorithm could come. Diametrically opposed to these methods are
those that measure the required resources. They measure the efficiency of an algorithm, for
example the number of function evaluations or the timing of the algorithm. This difference
is depicted in Figure 6.2.

(PM-5) Considering the quality of the best solution, it is a common practice to show a graph
of the solution quality versus time.

(PM-6) To measure the algorithm speed, the average number of evaluations to a solution
can be used. The maximum number of evaluations can be used for runs finding no
solutions.

(PM-7) The run length distribution (RLD) as introduced in Hoos (1998) provides suitable
means to measure performance and to describe the qualitative behavior of optimization
algorithms.
A typical run length distribution is shown in Figure 6.3. The algorithm to be analyzed
is run n times with different seeds on a given problem instance. The maximum number
of function evaluations tmax is set to a relatively high value. For each successful run the
number of required function evaluations, trun, is recorded. If the run fails, trun is set
to infinity. The empirical cumulative distribution (CDF) is the cumulative distribution
that represents these results. Let trun(j) be the run length for the j-th successful run.
Then, the empirical CDF is defined as

Pr (trun(j) � t) =
{#j | trun(j) � t}

n
, (6.1)

where {#j | trun(j) � t} denotes the number of indices j, such that trun(j) � t. RLDs are
based on methods proposed in Parkes and Walser (1996). Exponential RLD can be used
to determine whether a restart is advantageous. The exponential RLD is memoryless,
because the probability of finding a solution within an interval [t, t+k] does not depend
on the actual iteration i. If the RLD is exponential, the number of random restarts does
not affect the probability of finding a solution with a given interval. Otherwise, if the
RLD is not exponential, there may exist some iteration for which a restart is beneficial.
The reader is referred to the discussion in Chiarandini and Stützle (2002).

(PM-8) Efficiency rates measure progress from the starting point x(0) as opposed to conver-
gence rates that use a point in the vicinity of the optimum x∗. Hillstrom (1977) defines

96 Comparison

1 2 3 4 5 6 7 8 9 10

0.4

0.5

0.6

0.7

0.8

0.9

1

Function evaluations

F
un

ct
io

n
va

lu
e

f
opt

t
max

(A)

(B)

Figure 6.2: Two diametrically opposed methods to determine the performance of an algorithm. (A)
measures the required resources to reach a given goal, (B) measures the obtained function value that
can be reached with a prespecified budget.

the following efficiency measure:

MTER = ln(|f (0) − f∗|/|f̂ − f∗|)/T, (6.2)

where T is an estimate of the elapsed time in centiseconds, and where f (0), f∗, and f̂ are
the initial, known, and final minimum values of the objective function. The difference
|f̂ − f∗| is bounded by the machine precision (Hillstrom, 1977). Thus, Hillstrom’s
definition is not machine independent.

(PM-9) A measure to compute the quality-effort relationship can be defined as the ratio
r0.05 = t0.05/tbest, where t0.05 denotes the time to produce a solution within 5 % of the
best function value found, and tbest is the time to produce that best value (Barr et al.,
1995). Run length distributions provide a graphical presentation of this relationship.

Example 6.2
If an algorithm A requires t∗(A) = 30, 000 function evaluations to produce the best solution
f∗(A) = 10 and t0.05(A) = 10, 000 evaluations to produce a solution that is smaller than
f0.05(A) = 10.5, than its quality-effort relationship is 30000/10000 = 3. �

Several measures have been defined for evolutionary algorithms. These measures have been
introduced to measure the search progress, and not the convergence properties of an algorithm.
For example, the corridor model with objective function

f(x) = −
d∑

i=1

xi (6.3)

6.3 Performance Measures 97

0 0.5 1 1.5 2

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Empirical CDF

Function evaluations

F
(X

)

 default

 tuned

 tuned +
 rescaled

Figure 6.3: PSO. Run length distributions of the default, the tuned and the tuned and rescaled inertia
variant of the particle swarm optimization. The arrow indicates that seventy percent of the runs of the
tuned algorithm can detect the optimum with less than 5000 function evaluations. After 15,000 function
evaluations nearly every run is able to detect the optimum. The witerScale scheme is modified in the
tuned and rescaled variant. It outperforms the other algorithms if the number of function evaluations
is low. However, increasing the number of function evaluations from 5000 to 15,000 does not improve
the success ratio of the tuned and rescaled PSO. The default configuration was able to complete only
80 percent of the runs after 20,000 function evaluations. RLDs provide good means to determine the
maximum number of function evaluations for a comparison.

and constraints as defined in Schwefel’s Problem 3.8 (Schwefel, 1995, p. 364) has its minimum
at infinity. It was used to analyze “the cost, not of reaching a given approximation to an
objective, but of covering a given distance along the corridor axis” (Schwefel, 1995, p. 365).
Especially dynamic environments require algorithms that can follow the moving optimum,
convergence is ipso facto impossible. Additionally, these measures consider that the best
solution found during the complete run may not belong to the final population, for example
in comma-strategies:

(PM-10) Schwefel (1988) defines the convergence velocity c as a progress measure of a single
run as the logarithmic square root of the ratio of the best function value in the beginning
f (0) and after g generations f (g):

c(g) = log(
√
f (0)/f (g)).

This measure is related to the efficiency measure MTER defined above in Equation 6.2.
Kursawe (1999) uses the normalized convergence velocity:

dc(g)/g,

where d denotes the problem dimension.

98 Comparison

(PM-11) Rudolph (1997) analyzes the first hitting time of an ε-environment of the global
optimum of the objective function f∗.

(PM-12) Arnold and Beyer (2003) define the efficiency of a search algorithm as the ratio of
the expected one-generation gain to the average number of objective function evaluations
per generation.

Furthermore, we present three performance measures that are commonly used for evolutionary
algorithms:

(PM-13) The quality gain Q measures the expected change of the function value from gen-
eration g to g + 1. It is defined as

Q = E

[
1/s

s∑
i=1

f
(g+1)
i − 1/s

s∑
i=1

f
(g)
i

]
, (6.4)

where s denotes the population size.

(PM-14) The progress rate ϕ is a distance measure in the parameter space to measure
the expected change in the distance of the parent population to the optimum x∗ from
generation g to g + 1. This measure will be referred to as PRATE.

(PM-15) The success rate sr is the ratio of the number of the successes to the total number
of trials, i.e. mutations. It can be used as local performance measure from generation g
to g+ 1. Note, the success rate was introduced in Chapter 5.3 to define the 1/5 success
rule for evolution strategies.

The reader is referred to Beyer (2001) for a comprehensive discussion of these measures.
The performance measures considered so far are based on one problem instance only. The

following measures compare i different problem instances on j different algorithm instances.

(PM-16) For the i-th problem instance and the j-th algorithm, we can define

ti,j = time required to solve problem i by algorithm j. (6.5)

The distribution function of a performance metric, the performance profile, shows im-
portant performance characteristics. It can be used to determine the computational
effort (Dolan and More, 2001; Bussieck et al., 2003). The performance ratio is defined
as

ri,j =
ti,j

min{ti,j : 1 ≤ j ≤ nj} , (6.6)

where nj denotes the number of algorithms and ti,j is defined as in Equation 6.5. The
performance ratio ri,j compares the performance on problem i by algorithm j with the
best performance by any algorithm on this problem. We can define

ρj(t) =
1
nj

#{i : ri,j ≤ t}, (6.7)

the cumulative distribution function for the performance ratio. The situation from
Table 6.2 is depicted in Figure 6.4.

6.3 Performance Measures 99

Table 6.1: Test instances and algorithms. The entries in the ith row and jth column present ti,j, the
number of function evaluations in units of 103 required to solve problem instance i with algorithm j as
defined in Equation 6.5.

Algorithm 1 Algorithm 2 Algorithm 3
Instance 1 10 12 5
Instance 2 10 13 30
Instance 3 20 40 100

Table 6.2: Performance ratios ρij for the values from Table 6.1

Algorithm 1 Algorithm 2 Algorithm 3
Instance 1 2 2.4 1
Instance 2 1 1.3 3
Instance 3 1 2 5

1 2 3
0

0.25

0.5

0.75

1

t

ρ(
t)

 A

 B

 C

Figure 6.4: Cumulative distribution function for the performance ratio ρj(t). Values taken from
Table 6.2. Larger values are better. Algorithm A performs best, whereas the performances of B and C
cannot be distinguished.

100 Comparison

(PM-17) A common practice to compare global optimization algorithms (solvers) is to sort
the problem instances by the time taken by a reference solver j0: ti := ti,(j0). Then for
every solver i the time taken ti,j is plotted against this ordered sequence of problem
instances. Instances, for which the optimum was not found by the solver within the
allotted time tmax get a dummy time above the timeout value. The successful completion
of the optimization task can be assessed directly. How the performance of a solver scales
with the problem dimension can only be seen indirectly, since the values refer to the
ordering of the problem instances induced by the reference solver (Neumaier et al.,
2004).

(PM-18) Schwefel (1995, p. 180) suggests the following procedure to test the theoretical pre-
dictions of convergence rates: Test after each generation g, if the interval of uncertainty
of the variables has been reduced by at least 90 %:

|x(g)
i − x∗i | ≤

1
10

|x(0)
i − x∗i |, for i = 1, . . . , d, (6.8)

where x∗ denotes the optimum and the values xi were initialized as in Equation 4.5
in Example 4.4. The number of function calls can be displayed as a function of the
numbers of parameters (dimension) on a log-log scale as shown in Figure 6.5.

Since run times depend on the computer system, measures for computational effort might
be advantageous: Counting operations, especially for major subtasks such as function calls
can explicitly be mentioned in this context. Finally, we can annotate that Barr and Hickman
(1993) discuss performance measures for parallel algorithms.

6.3.4 How to Determine the Maximum Number of Iterations

Measures based on effectivity often require the specification of tmax the maximum number
of iterations before the run is started. A wrong specification of the tmax value may lead
to a bad experimental design. Test problems that are too easy may cause ceiling effects.
If algorithms A and B achieve the maximum level of performance (or close to it), the hy-
pothesis “performance(A) ≥ performance(B)” should not be confirmed (Cohen, 1995). Floor

Figure 6.5: Average run length (av-
gRunLength) vs. problem dimension. The
number of function calls is displayed as
a function of the numbers of parameters
(dimension) on a log-log scale. A sim-
ilar presentation was chosen in Schwe-
fel (1995) to test convergence rates for a
quadratic test function. The figure depicts
data from an analysis of a particle swarm
optimization on the sphere function.

10
0

10
1

10
2

10
2

10
3

10
4

10
5

Dimension

A
ve

ra
ge

 r
un

 le
ng

th

6.4 The Classical DOE Approach 101

effects describe the same phenomenon on the opposite side of the performance scale: The test
problem is too hard, nearly no algorithm can solve it correctly.

Example 6.3 (Floor effects)
If the number of function evaluations is chosen too small, floor effects can occur. Consider

Rosenbrock’s function, the starting point x
(0)
i = (106, 106)T , and a budget of 10 function

evaluations only. �

Example 6.4 (Ceiling effects)
The randomly generated instances of the TSP as described in objection (OB-1) in Section 3.5
can produce ceiling effects, because any random guess produces a good solution. �

Run length distributions as presented in Section 6.3.3 can be used to determine an appropriate
value for tmax.
Schaffer et al. (1989) propose a technique to determine the total number of iterations tmax

and to prevent ceiling effects: The number k belongs to the set N , if at least 10% of the
algorithm design configurations xa ∈ DA located the known best objective function value f∗

at least on average every second time after k iterations. The number of function evaluations
at which to compare different algorithm designs is chosen as Ntot = min{N}.

Example 6.5
Based on the data from Table 6.1, we can see that algorithm 1 was able to locate the optimum
at least every second time after 10, 000 function evaluations, algorithms 2 and 3 required
13, 000 and 30, 000 evaluations respectively and N = {10, 000; 13, 000; 30, 000}. A choice
of k = 10, 000 as the minimum number of function evaluations guarantees that at least 10
percent of the algorithms locate the optimum after k iterations. At least 10 percent is in our
case one algorithm only, because three algorithms are considered. �

6.4 The Classical DOE Approach

Rather than detail the classical DOE procedure here, since it is fully outlined in Bartz-
Beielstein (2003), we give an overview and make some comments that reflect further experi-
ences that we have observed in the meantime.

6.4.1 A Three-Stage Approach

In classical DOE the following three-stage approach is proposed:

Screening

Consider an algorithm with k exogenous strategy parameters, for example an evolution strat-
egy with k = 9 parameters. Screening analyzes the main effects only. Possible interactions
will be investigated later. Therefore, we recommend to use fractional-factorial 2k−p designs
with 1 ≤ p < k. These are orthogonal designs that require a moderate number of experiments.
Due to the orthogonality of these designs, the regression coefficients can be determined inde-
pendently. If we cannot differentiate between two effects, these effects are called confounded .
A 2k−p design is of resolution R if no q-factor effect is confounded with another effect that
has less than R − q factors (Box et al., 1978). Roman numerals denote the corresponding

102 Comparison

design resolution. Our first experiments are based on resolution III designs. These designs
ensure that no main effect is confounded with any other main effect, but main effects can be
confounded with two-factor interactions. Fractional-factorial 2k−p designs provide unbiased
estimators of the regression coefficients of a first-order model and can easily be augmented
to designs that enable the estimation of a second-order regression model that will be used
during optimization, the third stage of the classical DOE approach.

Modeling

First or second order interactions can be taken into account, because only the important
factors that have been detected during the screening phase will be analyzed further. At this
stage, resolution IV or resolution V designs are recommended. Half-normal plots can be used
to display the main effects and interactions. A linear approximation may be valid in a sub-
domain of the full experimental area. Response surface methodology (RSM) is a collection
of mathematical and statistical tools to model, analyze and optimize problems where the
response of interest is influenced by several variables (Montgomery, 2001). In RSM, we
determine the direction of improvement using the “path of the steepest descent” (minimization
problem) based on the estimated first-order model (Kleijnen and Van Groenendaal, 1992). If
no further improvement along the path of the steepest descent is possible, we can explore the
area by fitting a local first-order model and obtain a new direction for the steepest descent.
We can repeat this step until the expected optimum area is found (if the the response surface
is unimodal). There the linear model is inadequate and shows significant lack-of-fit. We
cannot determine a direction of improved response in this case.

Optimization

Central composite designs that can be complemented with additional axial runs are often used
at this experimental stage. They can be combined with response surface methods and require
a relatively high number of runs. We apply the standard techniques from regression analysis
for meta-model validation (Draper and Smith, 1998). A second-order model can be fitted in
the expected optimum area. The optimal values are estimated by taking the derivatives of
the second-order regression model. We combine in our approach DOE and RSM techniques
that are adapted to the special needs and restrictions of the optimization task.

Example 6.6 (23−1 designs)
Consider a design for three factors A, B, and C with two levels each. One-half fraction of
the full factorial 23 design is called a 23−1 fractional-factorial design. Plus and minus signs
can be used to denote high and low factor levels respectively. If we define the multiplication
of two factors by their associated levels as ++ = −− =: + and +− = −+ =: −, then one-
half fraction of the design is given by selecting only those combinations with ABC = +, for
example: A = −, B = −, and C = +. This design is a resolution III design. �

6.4.2 Tuning an Evolution Strategy

Bartz-Beielstein (2003) describes a situation in which only a few preliminary experiments
can be performed to find a suitable ES parameter setting. To start, an experimental region
(design space) has to be determined. The design space is defined as

I := [a1, b1] × . . .× [ad, bd] ⊆ R
d, (6.9)

6.4 The Classical DOE Approach 103

with the center point zi = (ai + bi)/2, i, . . . , d, as depicted in Figure 4.1. The optimization
response is approximated in the experimental region by the first-order regression model,
cf. Equation 2.11. The range of a coded or standardized variable x is bounded by [−1, 1].
The range [a, b] of the corresponding original (natural) variable z can be mapped by a linear
transformation to [−1, 1].

An ES as presented in Beyer and Schwefel (2002) has at least 9 different exogenous pa-
rameters. To model the ES performance, five quantitative variables (µ, ν, σ(0), cτ) and four
qualitative variables (nσ, rx, rσ, κ) have to be considered. The number of offspring λ can be
determined from the size of the population µ and value of the selective pressure ν = λ/µ. The
inputs µ and ν are treated as quantitative factors, their values are rounded to the nearest
whole number to get a set of working parameters. The maximum life span κ is treated as a
qualitative factor, because only comma and plus selection schemes have been analyzed.

Instead of using a full factorial 2k design that would require 512 optimization runs, a 29−5
III

fractional-factorial design, that requires only 16 optimization runs, was chosen. Box et al.
(1978) give rules for constructing fractional-factorial designs for the ES factors and levels from
Table 5.3. Table 6.3 shows the 16 run configurations.

The interval [−1Level, + 1Level] from Table 6.4 contains values that have been proposed
in Bäck (1996). For example, we have chosen the experimental region I1 = [10, 20] for µ,
because it includes the recommended value µ = 15.

A First Look at the Data

Histograms or scatterplots can be used to detect outliers easily. As randomness is replaced
by pseudo-randomness, we do not recommend to simply exclude outliers from the analysis.
Removing potential outliers may destroy valuable information. Instead, we recommend to
look at the raw data that are tabulated and sorted. Specifying a better suited experimental
region for factors that arouse suspicion might prevent outliers.

Example 6.7 (Outliers and Experimental Region)
We can conclude from Table 6.5 that the choice of a value of 20 as the second level for factor
A should be reconsidered. �

Regression Analysis

Regression analysis and stepwise model selection by Akaike’s information criterion (AIC)
have been performed for the coded variables xi. To perform the experiments, these values
have be re-transformed to the natural variables zi. Before we start the search along the
path of the steepest descent, the adequacy of the regression model is tested, and a check for
interactions is performed. Regression analysis reveals that only three of the nine factors are
important: (1) The initial sigma value σ(0), (2) the population size µ, (3) and the selective
pressure ν. Plus and comma strategies are tested in parallel, because they perform similar at
this stage of experimentation.

Starting from the center point we perform a line search in the direction of the steepest
descent that is given by

−(β̂1, . . . , β̂k).

To determine the step-sizes ∆xi for the line search, we select the variable xj that has the
largest absolute regression coefficient: j = arg maxi |β̂i|. The increment in the other variables

104 Comparison

Table 6.3: Fractional-factorial design for evolution strategies.

µ ν σ(0) nσ cτ ρ rx rσ κ

1 10 5 1 1 1 2 i i 1
2 20 5 1 1 2 2 d d -1
3 10 10 1 1 2 10 i d -1
4 20 10 1 1 1 20 d i 1
5 10 5 5 1 2 10 d i -1
6 20 5 5 1 1 20 i d 1
7 10 10 5 1 1 2 d d 1
8 20 10 5 1 2 2 i i -1
9 10 5 1 12 1 10 d d -1

10 20 5 1 12 2 20 i i 1
11 10 10 1 12 2 2 d i 1
12 20 10 1 12 1 2 i d -1
13 10 5 5 12 2 2 d d 1
14 20 5 5 12 1 2 i i -1
15 10 10 5 12 1 10 d i -1
16 20 10 5 12 2 20 i d 1

Table 6.4: Evolution strategy: Symbols and levels. Values chosen with respect to the default settings
from Table 5.3.

Symbol Parameter Variable −1 +1 Type
µ Number of parent individuals x1 10 20 quant.
ν Offspring-parent ratio x2 5 10 quant.
σ(0) Initial standard deviations x3 1 5 quant.
nσ Number of standard deviations x4 1 12 qual.
cτ Multiplier for mutation parameters x5 1 2 quant.
ρ Mixing number x6 b m qual.
rx Recombination operator for object variables x7 i d qual.
rσ Recombination operator for strategy variables x8 i d qual.
κ Maximum life span x9 −1 1 qual.

6.4 The Classical DOE Approach 105

Table 6.5: Tabulated raw data. The function value y is shown in the first column. Factor A produces
outliers, if its high level is chosen.

y Factor A Factor B Factor C . . .

0.5 5 5 1 . . .
0.6 5 10 1 . . .

0.61 5 5 5 . . .
0.9 5 10 5 . . .

...
...

...
... . . .

259.2 20 10 1 . . .
277.1 20 5 5 . . .
297.3 20 5 1 . . .
433.6 20 10 5 . . .

is

∆xi = −β̂i/(|β̂j |/∆xj), i = 1, 2, . . . , k; i �= j.

The corresponding numerical values are shown in Table 6.6. The qualitative factors have to
be treated separately, because a line search cannot be performed for qualitative factors such
as the recombination operator. For qualitative factors with significant effects the “better”
levels were chosen. The values of qualitative factors with small effects on the response were
chosen rather subjectively. Before the initial sigma value σ(0) reaches the boundaries of the
feasible region, the search is stopped. This value may lie outside the experimental region, but
has to be a feasible value for the algorithm. A second algorithm design based on the improved
setting from the line search was created. The regression analysis shows that the plus selection
scheme is advantageous in this case. Therefore, the experiments with the comma strategy,
which have been run in parallel, are stopped. Effects caused by the parameters µ, ν, and
σ(0) are statistically significant and have to be considered further. As only three of the nine
parameters remain, a more complex design has been chosen.

Table 6.6: Steepest descent. 12 dimensional sphere function. The line search is stopped after 7 steps
to avoid negative σ(0) values. Source: Bartz-Beielstein (2003).

σ(0) ν µ σ(0) ν µ Mean Median
Steps Coded Coded Coded Original Original Original Response Response
∆ x1 x2 x3 z1 z2 z3 log(y) log(y)

0 0 0 3.0 8 15 −1.784 −1.856
∆ −0.2 −0.15 −0.1 2.6 7 14 −3.169 −3.577
2∆ −0.4 −0.3 −0.2 2.2 7 14 −3.184 −3.531
3∆ −0.6 −0.45 −0.3 1.8 6 14 −4.231 −4.435
4∆ −0.8 −0.6 −0.4 1.4 6 13 −5.018 −5.339
5∆ −1.0 −0.75 −0.5 1.0 6 12 −6.445 −6.497
6∆ −1.2 −0.9 −0.6 0.6 5 12 −7.451 −8.298
7∆ −1.35 −1.05 −0.7 0.2 5 12 −8.359 −8.915

106 Comparison

Central Composite Designs

A central composite design combines a 2k factorial design with nF runs, nC center runs, and
2k axial runs. The distance a of the axial run points from the design center was set to

√
2.

As all the factorial and axial design points are on the surface of a sphere of radius
√

2, this
design is called a spherical CCD, see Figure 4.1. We can conclude from the regression analysis
that was based on a 23 central composite design that a further decrease of the population size
and of the selective pressure might be beneficial. The initial step-size σ(0) has no significant
effect any more. This result corresponds with the conclusions that might be drawn from
the tree based regression analysis (not shown here). Instead of performing a second line
search, we use response surface methods to visualize the region of the local optimum. Data
generated from a CCD with axial runs can be used to generate a surface plot. A numerical
comparison of the function values obtained from the first and the improved algorithm design
reveals a significant improvement, see Table 6.7. We have found a better algorithm design,
x∗ES, that improves the performance of the “standard” ES presented in Bäck (1996) for this
specific problem. This result is not surprising, since this standard was chosen as a “good”
parameterization on average for many problems and not especially for the sphere model. The
result found so far does not justify the conclusion that this design is optimal. Our intention is
to give the optimization practitioner a framework on how to set up algorithms with working
parameter configurations. Further optimization of this setting is possible, but this is beyond
the intention of this study. As already noted in Section 4.7 the assumption of a linear model
for the analysis of computer algorithms is highly speculative. The applicability of methods
from computational statistics, that are not restricted to this assumption, is analyzed in the
following section.

6.5 Design and Analysis of Computer Experiments

The term computational statistics subsumes computationally intensive methods (Gentle et al.,
2004b). Statistical methods, such as experimental design techniques and regression analysis
can be used to analyze the experimental setting of algorithms on specific test problems. One
important goal in the analysis of search algorithms is to find variables that have a significant
influence on the algorithm’s performance. Performance measures have been discussed in
Section 6.3, i.e. performance can be quantitatively defined as the average obtained function
value in a number (e.g. 50) of independent experiments. This measure was also used in Shi
and Eberhart (1999). Questions like “How does a variation of the swarm size influence the
algorithm’s performance?” or “Are there any interactions between swarm size and the value
of the inertia weight?” are important research questions that provide an understanding of
the fundamental principles of stochastic search algorithms such as PSO.

The approach presented in this section combines classical techniques from statistical de-

Table 6.7: Evolution strategy. Comparison of the function values from the first and the improved
algorithm design.

Min. 1st Qu. Median Mean 3rd Qu. Max.

x
(0)
ES 0.01 0.04 0.05 0.07 0.09 0.20
x∗ES 5.32e− 64 1.16e− 59 1.25e− 57 6.47e− 51 7.54e− 56 5.17e− 49

6.5 Design and Analysis of Computer Experiments 107

sign of experiments (DOE), classification and regression trees (CART), and modern design
and analysis of computer experiments (DACE) techniques. Standard text books for DOE,
CART, and DACE are Montgomery (2001), Breiman et al. (1984), and Santner et al. (2003)
respectively. Bartz-Beielstein and Markon (2004) provide a comparison of DOE, CART and
DACE for direct search algorithms.

Since DACE was introduced for deterministic computer experiments, repeated runs are
necessary to apply this technique to stochastic search algorithms.

In the following, the specification of the DACE process model that will be used later to
analyze our experiments is described. This specification is similar to the selection of a linear
or quadratic regression model in classical regression. DACE provides methods to predict
unknown values of a stochastic process and it can be applied to interpolate observations
from computationally expensive simulations. Furthermore it enables the estimation of the
prediction error of an untried point, or the mean squared error (MSE) of the predictor.

6.5.1 Sequential Designs Based on DACE

Prior to the execution of experiments with an algorithm, the experimenter has to specify
suitable parameter settings for the algorithm, i.e., a design point xa from an algorithm design
DA.

Often, designs that use sequential sampling are more efficient than designs with fixed
sample sizes. First, an initial design D(0)

A is specified. Information obtained in the first runs
can be used for the determination of the second design D(1)

A in order to choose new design
points more efficiently.

Sequential sampling approaches with adaptation have been proposed for DACE. For ex-
ample, in Sacks et al. (1989) sequential sampling approaches with and without adaptation
were classified to the existing meta-model. We will present a sequential approach that is
based on the expected improvement, see Equation 4.4 and Figure 4.5. In Santner et al. (2003,
p. 178) a heuristic algorithm for unconstrained global minimization problems is presented.
Consider one problem design DP . Let yk

min denote the smallest known minimum value after k
runs of the algorithm, y(x) be the algorithm’s response, i.e. the realization of Y (x) in Equa-
tion (2.15), and let xa represent a specific design point from the algorithm design DA. Then
the improvement is defined as in Equation 4.4

improvement at xa = yk
min − y(xa), if yk

min − y(xa) > 0, and 0, otherwise.

6.5.2 Sequential Parameter Optimization

The sequential parameter optimization (SPO) method, which is developed in this section,
describes an implementable but heuristic method. It consists of the twelve steps that are
reported in Table 6.8. During the pre-experimental planning phase (S-1) the experimenter
defines exactly what is to be studied and how the data are to be collected. The recognition
and statement of the problem seems to be a rather obvious task. However, in practice, it is
not simple to formulate a generally accepted goal. Discovery, confirmation, and robustness
are only three possible scientific goals of an experiment. Discovery asks what happens if new
operators are implemented. Confirmation analyzes how the algorithm behaves on different
problems, and robustness asks for conditions that decrease the algorithm’s performance. Fur-
thermore, the experimenter should take the boundary conditions discussed in Section 6.2 into

108 Comparison

Table 6.8: Sequential parameter optimization (SPO). This approach combines methods from com-
putational statistics and exploratory data analysis to improve (tune) the performance of direct search
algorithms. It can be seen as an extension of the guidelines from experimental algorithmics presented
in Chapter 1.

Step Action

(S-1) Pre–experimental planning

(S-2) Scientific claim

(S-3) Statistical hypothesis

(S-4) Specification of the

(a) optimization problem

(b) constraints

(c) initialization method

(d) termination method

(e) algorithm (important factors)

(f) initial experimental design

(g) performance measure

(S-5) Experimentation

(S-6) Statistical modeling of data and prediction

(S-7) Evaluation and visualization

(S-8) Optimization

(S-9) Termination: If the obtained solution is good enough, or the maximum number of
iterations has been reached, go to step (S-11)

(S-10) Design update and go to step (S-5)

(S-11) Rejection/acceptance of the statistical hypothesis

(S-12) Objective interpretation of the results from step (S-11)

6.5 Design and Analysis of Computer Experiments 109

account. Statistical methods like run length distributions provide suitable means to measure
the performance and describe the qualitative behavior of optimization algorithms.

In step (S-2), the experimental goal should be formulated as a scientific claim, e.g. “Al-
gorithm A, which uses a swarmsize s, which is proportional to the problem dimension d
outperforms algorithms that use a constant swarmsize.”

A statistical hypothesis, such as “There is no difference in means comparing the perfor-
mance of the two competing algorithms”, is formulated in the step (S-3) that follows.

Step (S-4) requires at least the specification of

(a) an optimization problem,

(b) constraints (for example the maximum number of function evaluations),

(c) an initialization method,

(d) a termination method,

(e) an algorithm, and its important factors,

(f) an initial experimental design, and

(g) a measure to judge the performance.

Regarding (c), several methods have been used for the initialization of the population in
population-based algorithms, or the determination of an initial point, x(0), in algorithms that
use a single search point. For example, an asymmetric initialization scheme was used in Shi
and Eberhart (1999), where the initial positions of the particles, x(0)

i , i = 1, . . . , s, were
chosen uniformly distributed in the range [15, 30]d. Initialization method DETMOD, that
uses deterministically modified starting values, was proposed in More et al. (1981).
An algorithm terminates if the problem was solved (XSOL), the algorithm has stalled (STAL),
or the resources, e.g. the maximum number of function evaluations, tmax, are exhausted
(EXH). Note that initialization and termination methods have been discussed in Section 4.6.

The corresponding problem design, DP , that summarizes the information from (a) to (d)
for our experiments with PSO is reported in Table 6.9, while the algorithm design DA, which
represents (e), is reported in Table 6.10 . The experimental goal of the sequential approach
presented here can be characterized as the determination of an optimal (improved) algorithm
design, x∗PSO for a given problem design x(0)

PSO.
At each stage, Latin Hypercube Designs are used. Aslett et al. (1998) report that experi-

ence with the stochastic process model had indicated that 10 times the expected number of
algorithm design variables is often an adequate number of runs for the initial LHD.

Table 6.9: Problem design (DP) for the experiments performed in this chapter. The experiment’s
name, the number of runs n, the maximum number of function evaluations tmax, the problem’s dimen-
sion d, the initialization method, the termination criterion, the lower and upper bounds, xl and xu

respectively, for the initialization of the object variables x(0)
i , as well as the optimization problem and

the performance measure (PM) are reported.

Design n tmax d Init. Term. xl xu PM

x
(1)
rosen 50 2500 10 NUNIRNDEXH 15 30 MBST

110 Comparison

Table 6.10: PSO: Algorithm designs (DA) for the inertia weight PSO variant. They correspond to
the experiment x(1)

rosen of Table 6.9, that optimizes the 10 dimensional Rosenbrock function. x(l)
PSO and

x
(u)
PSO denote the lower and upper bounds to generate the LHD, respectively, and x∗PSO denotes the

parameter settings of the improved design that was found by the sequential approach.

Design s c1 c2 wmax wscale witerScale vmax

x
(l)
PSO 5 1.0 1.0 0.7 0.2 0.5 10
x

(u)
PSO 100 2.5 2.5 0.99 0.5 1 750
x∗PSO 21 2.25413 1.74587 0.788797 0.282645 0.937293 11.0496

Example 6.8 (LHD for the PSO constriction variant)
The constriction factor variant of PSO requires the determination of four exogenous strategy
parameters, namely the swarm size s, constriction factor χ, parameter ϕ = c1 + c2, and the
maximum velocity vmax. Thus, an LHD with at least m = 15 design points was chosen.
This is the minimum number of design points to fit a DACE model that consists of a second
order polynomial regression model and a gaussian correlation function. The former requires
1 +

∑4
i=1 i = 11 design points, while the latter requires 4 design points. Note that for

m = 15 there are no degrees of freedom left to estimate the mean squared error of the
predictor (Santner et al., 2003). �

After that, the experiment is run (S-5). Preliminary (pilot) runs can give a rough estimate
of the experimental error, run times, and the consistency of the experimental design. Again,
RLDs can be very useful. Since we consider probabilistic search algorithms in our investiga-
tion, design points must be evaluated several times.

The experimental results provide the base for modeling and prediction in step (S-6). The
model is fitted and a predictor is obtained for each response.

The model is evaluated in step (S-7). Several visualization techniques can be applied.
Simple graphical methods from exploratory data analysis are often helpful. Histograms and
scatterplots can be used to detect outliers. If the initial ranges for the designs were chosen
improperly (e.g., very wide initial ranges), visualization of the predictor can guide the choice
of more suitable (narrower) ranges in the next stage. Several techniques to assess the validity
of the model have been proposed.

Additional graphical methods can be used to visualize the effects of factors and their
interactions on the predictors. The 3-dimensional visualizations depicted in Figure 6.7, pro-
duced with the DACE toolbox (Lophaven et al., 2002b), have proved to be very useful. The
predicted values can be plotted to support the numerical analysis, and the MSE of prediction
is used to asses its accuracy. We explicitly note here, that statistical models can provide only
guidelines for further experiments. They do not prove that a factor has a particular effect.

If the predicted values are not accurate, the experimental setup has to be reconsidered.
This comprehends especially the specification of the scientific goal and the ranges of the design
variables. Otherwise, new design points in promising subregions of the search space can be
determined (S-8) if further experiments are necessary.

Thus, a termination criterion has to be tested (S-9). If it is not fulfilled, based on the
expected improvement defined in Equation 4.4 new candidate design points can be generated
(S-10). A new design point is selected if there is a high probability that the predicted output
is below the current observed minimum and/or there is a large uncertainty in the predicted

6.5 Design and Analysis of Computer Experiments 111

output. Otherwise, if the termination criterion is true, and the obtained solution is good
enough, the final statistical evaluation (S-11) that summarizes the results is performed. A
comparison between the first and the improved configuration should be performed. Tech-
niques from exploratory data analysis can complement the analysis at this stage. Besides
an investigation of the numerical values, such as mean, median, minimum, maximum, and
standard deviation, graphical presentations such as boxplots, histograms, and RLDs can be
used to support the final statistical decision (e.g. see Figure 6.9).

Finally, we have to decide whether the result is scientifically important (S-12), since the
difference, although statistically significant, can be scientifically meaningless. As discussed
in Section 1.6, an objective interpretation of rejecting or accepting the hypothesis from (S-2)
should be presented here. Consequences that arise from this decision are discussed as well.
The experimenter’s skill plays an important role at this stage. The experimental setup should
be reconsidered at this stage and questions like “Have suitable test functions or performance
measures been chosen?” or “Did floor or ceiling effects occur?” must be answered. Test
problems that are too easy may cause such ceiling effects, cf. the discussion in Section 6.3.4.

6.5.3 Experimental Results

Initially, we investigated Rosenbrock’s function. This is a simple and well-known test function
to gain an intuition regarding the functioning of the proposed technique. In the next step of
our analysis, the S-ring model was considered. We provide a demonstration of the sequential
approach by conducting a brief investigation for the Rosenbrock function, using the two
variants of PSO as well as the Nelder-Mead simplex algorithm.

Experimental designs and results of PSO or evolutionary algorithms presented in empirical
studies are sometimes based on a huge number of function evaluations (tmax > 105), even for
simple test functions. Our goal is to demonstrate how statistical design methods, e.g. DACE,
can reduce this number significantly. The proposed approach is thoroughly analyzed for the
inertia weight variant of PSO.

6.5.4 Example: Optimizing the Inertia Weight Variant of PSO

This example describes in detail how to tune the exogenous parameters of PSO. It extends
the approach presented in Bartz-Beielstein et al. (2004b). Experimental designs and results
presented in Shi and Eberhart (1999) have been chosen as a starting point for our analysis.

(S-1) Pre-experimental planning: Pre-experimental tests to explore the optimization potential
supported the assumption that tuning might improve the algorithm’s performance. RLD
revealed that there exists a configuration that was able to complete the run successfully
using less than 8000 function evaluations, for nearly 80% of the cases. This was less
than half the number of function evaluations used in the reference study, justifying the
usefulness of the analysis.

(S-2) Scientific claim: There exists a parameterization (design point x∗PSO ∈ DA) of PSO that
improves its performance significantly for one given optimization problem xp ∈ DP .

(S-3) Statistical hypothesis: PSO with the parameterization x∗PSO outperforms PSO with the
default parameterization x

(0)
PSO, which is used in Shi and Eberhart (1999).

112 Comparison

(S-4) Specification: The generalized 10-dimensional Rosenbrock function, as defined in Equa-
tion 3.2, was used for our experiments.

Following the experimental design in Shi and Eberhart (1999), we recorded f̃ (50), the
mean function value of the best particle of the swarm at each one of the 50 runs. For the
generation of RLD plots, a threshold value to distinguish successful from unsuccessful
runs was specified. A run configuration was classified as successful, if f̃ (50) < f̃ (Shi),
where f̃ (Shi) = 96.1715 is the value reported in Shi and Eberhart (1999). The problem
design is shown in Table 6.9. The corresponding setting for the algorithm design is
reported in Table 6.10. An algorithm design that covers a wide range of interesting
parameter settings (design space) was chosen, and no problem-specific knowledge for the
Rosenbrock function was used to perform the experiments, expecting that the sequential
approach will guide the search into successful regions.

(S-5) Experimentation: Table 6.11 presents numerical results from the optimization process.
Each line in Table 6.11 corresponds to one optimization step in the sequential approach.
At each step, two new design points are generated and the best one is re-evaluated.
This is similar to the selection procedure in (1 + 2)-Evolution Strategies. The number
of repeat runs n of the algorithm design points is increased (doubled), if a design has
performed best two or more times. A starting value of n = 2 was chosen. For example,
design point 14 performs best at iteration 1 and iteration 3. It has been evaluated 4
times, therefore the number of evaluations is set to 4 for every newly generated design.
This provides a fair comparison and reduces the risk of incorrectly selecting a worse
design.

(S-6) Statistical modeling and prediction: Following Santner et al. (2003), the response is
modeled as a realization of a regression model and a random process as described in
Equation (2.15). A gaussian correlation function as defined in Equation (2.16) and a
regression model with polynomial of order 2 have been used. Hence, the model reads

Y (x) =
p∑

j=1

βjfj(x) + Z(x), (6.10)

where Z(·) is a random process with mean zero and covariance V (ω, x) = σ2R(θ, ω, x).
The correlation function was chosen as

R(θ, ω, z)
d∏

j=1

exp
(−θj(ωj − xj)2

)
. (6.11)

Additionally, at certain stages a tree-based regression model as shown in Figure 6.6 was
constructed to determine parameter settings that produce outliers.

(S-7) Evaluation and visualization: The MSE and the predicted values can be plotted to
support the numerical analysis (we produced all 3-dimensional visualizations with the
DACE toolbox (Lophaven et al., 2002b)). For example, the interaction between c1 and
c2 is shown in Figure 6.7. Values of c1 and c2 with c1 + c2 > 4 generated outliers that
might disturb the analysis. To reduce the effects of these outliers, a design correction
method has been implemented, namely c1 = c2 − 4, if, c1 + c2 > 4. The right part of
Figure 6.7 illustrates the estimated MSE. Since no design point has been placed in the

6.5 Design and Analysis of Computer Experiments 113

Table 6.11: Problem design x
(1)
rosen. Inertia weight PSO optimizing the 10-dimensional Rosenbrock

function. Each row represents the best algorithm design at the corresponding tuning stage. Note, that
function values (reported in the first column) can worsen (increase) although the design is improved.
This happens due to the noise in the results, y. The probability that a seemingly good function value
that is in fact worse, might occur, decreases during the sequential procedure, because the number of
re-evaluations is increased. The number of repeats, n, is doubled if a configuration performs best twice.
The corresponding configurations are marked with an asterisk.

y s c1 c2 wmax wScale wIterScale vmax Config
6.61557 26 1.45747 1.98825 0.712714 0.481718 0.683856 477.874 14
18.0596 39 1.30243 1.84294 0.871251 0.273433 0.830638 289.922 19
71.4024 26 1.45747 1.98825 0.712714 0.481718 0.683856 477.874 14∗

78.0477 30 2.21960 1.26311 0.944276 0.289710 0.893788 237.343 3
75.6154 30 2.21960 1.26311 0.944276 0.289710 0.893788 237.343 3∗

91.0935 18 1.84229 1.69903 0.958500 0.256979 0.849372 95.1392 35
91.5438 21 1.05527 1.25077 0.937259 0.498268 0.592607 681.092 43
93.7541 11 1.58098 2.41902 0.728502 0.469607 0.545451 98.9274 52
93.9967 93 1.71206 1.02081 0.966302 0.378612 0.972556 11.7651 20
99.4085 39 1.30243 1.84294 0.871251 0.273433 0.830638 289.922 19∗

117.595 11 1.13995 2.31611 0.785223 0.236658 0.962161 56.9096 57
146.047 12 1.51468 2.48532 0.876156 0.392995 0.991074 261.561 1
147.410 22 1.72657 2.27343 0.710925 0.235521 0.574491 50.5121 54
98.3663 22 1.72657 2.27343 0.710925 0.235521 0.574491 50.5121 54∗

41.3997 21 2.25413 1.74587 0.788797 0.282645 0.937293 11.0496 67∗

43.2249 21 2.25413 1.74587 0.788797 0.282645 0.937293 11.0496 67∗

53.3545 21 2.25413 1.74587 0.788797 0.282645 0.937293 11.0496 67∗

114 Comparison

ranges 1 < c1 < 1.25 and 2.25 < c2 < 2.5, the MSE is relatively high. This might be
an interesting region where a new design point will be placed during the next iteration.
Figure 6.8 depicts the same situation as Figure 6.7 after the determination of the design
correction. In this case, a high MSE is associated with the region c1 + c2 > 4, but no
design point will be placed there.

(S-8) Optimization: Termination or design update. Based on the expected improvement
defined in Equation (4.4), two new design points x(1)

PSO and x
(2)
PSO are generated. These

two designs are evaluated and their performances are compared to the performance of
the current best design. The best design found so far is re-evaluated. The iteration
terminates, if a design was evaluated for n = 50 times and the solution is obtained. The
values in the final model read s = 21, c1 = 2.25, c2 = 1.75, wmax = 0.79, wscale = 0.28,
witerScale = 0.94, and vmax = 11.05. This result is shown in the last row of Table 6.11.

(S-11) Rejection or acceptance: Finally, we compare the configuration from Shi and Eberhart
(1999) to the optimized configuration. The final (tuned) and the first configurations are
repeated 50 times. Note, Shi and Eberhart (1999) coupled xmax with vmax as described
in Equation 5.5. The mean function value was reduced from 1.84 × 103 to 39.70, the
median from 592.13 to 9.44, the standard deviation decreases from 3.10 × 103 to 55.38.
Minimum and maximum function values from 50 runs are smaller (64.64 to 0.79 and
18519 to 254.19, respectively). Histograms and boxplots are illustrated in Figure 6.9
for both variants of PSO. The tuned design of the inertia weight PSO variant clearly
improves the performance of the PSO algorithm. The statistical analysis from this
and from further experiments is reported in Table 6.13. Performing a classical t-test
indicates that the null hypothesis “There is no difference in the mean performances of
the two algorithms” can be rejected at the 5% level.

(S-12) Objective interpretation: The classical tools from exploratory data analysis such as
boxplots or histograms indicate that the tuned PSO version performs better than the
default PSO, cf. Step (S-11). An NPT t-test comes to the same conclusion. So far we
have applied methods from classical and modern statistics to test statistical hypotheses.
The results indicate that the null hypothesis H should be rejected. The next step of
our analysis describes how we can interpret this rejection in an objective manner and
how the relationship between statistical significance and scientific import as depicted
in Figure 1.2 can be made more understandable. But before a statistical analysis is
performed, we recommend to look at the raw data. Is the obtained result plausible?
A comparison of the default design x

(0)
PSO to the improved design x∗PSO reveals that

smaller swarm size s and vmax values improve the algorithm’s performance for the
problem design under consideration. The value of the cognitive parameter, c1, should
be increased, whereas the value of the social parameter, c2, should be reduced. The
parameters related to the scaling of the inertia weight, w, should be reduced, too. The
improved design does not contain any exceptional parameter settings. It appears to be
a reasonable choice. Methods that answer the question “Why does an increased value
of c1 lead to a better performance?” will be discussed in Chapter 7. Here, we are
interested in the question “Does algorithm A outperform algorithm B?”
But how can we be sure that the related PSO performance is better than the performance
of the default PSO? To tackle this problem error statistical tools can be used. How do

6.5 Design and Analysis of Computer Experiments 115

 2923620

 651016.115

338609.38017

3149.2420955 201650.65

 C2 < 2.45842

 s < 8

 C2 < 2.34197

 C1 < 2.46837
At this node:
8 < s
C1 < 2.46837
C2 < 2.34197

Figure 6.6: Regression tree. Values at the nodes show the average function values for the associated
node. The value in the root node is the overall mean. The left son of each node contains the configu-
rations that fulfill the condition in the node. c1 + c2 > 4 produce outliers that complicate the analysis.
In addition, this analysis shows that the swarm size s should be larger than 8.

1
1.5

2
2.5

1

1.5

2

2.5

0

1

2

3

x 10
6

C1C2

F
itn

es
s

1
1.5

2
2.5

1

1.5

2

2.5
0

1

2

3

x 10
11

C1C2

M
S

E

Figure 6.7: Predicted values (left) and MSE (right). As can be seen in the left figure, c1 + c2 > 4
produce outliers that complicate the analysis. The plots present results from the same data as the
regression tree in Figure 6.6.

116 Comparison

1
1.5

2
2.5

1

1.5

2

2.5
−1

0

1

2

x 10
5

C1C2

F
itn

es
s

1
1.5

2
2.5

1

1.5

2

2.5
0

1

2

3

x 10
10

C1C2

M
S

E

Figure 6.8: Predicted values (left) and MSE (right). The design correction avoids settings with
c1 + c2 > 4 that produce outliers (left). Therefore, a high mean squared error exists in the excluded
region (right).

−2 0 2 4 6 8 10 12
0

5

10

15

20

25

log(function value)
1 2

0

2

4

6

8

10

lo
g(

fu
nc

tio
n

va
lu

e)

Configuration

Figure 6.9: Histogram and boxplot. Left: Solid lines and light bars represent the improved design.
Right: The default configuration is denoted as 1, whereas 2 denotes the improved variant. Both plots
indicate that the tuned inertia weight PSO version performs better than the default version.

6.5 Design and Analysis of Computer Experiments 117

NPT∗ interpretations go beyond the results found with NPT tools? This question is
closely related to the problem stated in Example 1.1 at the beginning of this thesis.

We claim that statistical tests are means of learning. We are interested in detecting
discrepancies between the correct model and a hypothesized one. Experiments provide
means to observe the difference between a sample statistic and a hypothesized popu-
lation parameter. The distribution of the test statistic S can be used to control error
probabilities. A rejection of a statistical hypothesis H can be misconstrued if it is er-
roneously taken as an indication that a discrepancy of scientific importance has been
detected. Plots of the observed significance as introduced in Section 1.6 are valuable
tools that can be used to detect whether this misconstrual occurs and to evaluate the
scientific meaning.

We will consider the case of rejecting a hypothesis H first. An NPT∗ interpretation of
accepting a hypothesis will be discussed later on.

The relationship between the observed significance level αd(δ), the difference in means
δ = µ1 − µ2 of the default PSO, and the tuned PSO version is illustrated in Figure
6.10. First consider the values of the observed significance level (αd(δ)) for a sample
size of n = 50, where d denotes the observed difference in means and δ the hypothesized
difference as introduced in Section 1.6. The observed difference in means is d = 1798.6,
one standard deviation unit has the value σx̂ = 410.84. A t-test indicates that the
null hypothesis can be rejected at the 5% level. Occurs the observed difference in
means due to the experimental error only and is the rejection of the null hypothesis H
misconstrued? A difference in means of less than 1 or 2 standard error units might be
caused by experimental errors. Observe the values of α(1798.6, δ) = α1798.6(δ). How
often does a rejection arise when various populations are observed? Since an observed
significance level α1798.6(410.84) = 0.01 is small, it is a good indication that we are
observing two populations with a difference in means δ > 410.84. If one observes a
difference d when the true difference in means δ was no greater than 410.84, only 1%
of the observed differences would be this large. This gives good reasons to reject the
associated null hypothesis H : δ ≤ 410.84. And, we can learn even more from this
result: It also is an indication that δ > 822, since α1798.6(828) ≈ 0.05. The situation
depicted in Figure 6.10 is similar to the situation discussed in Example 1.5. Low αd(δ)
values are not due to large sample sizes only. Therefore the statistical results indicate
that there is a difference in means and this difference is also scientifically meaningful.

6.5.5 Optimizing the PSO Constriction Factor Variant

The design of the PSO constriction factor variant was tuned in a similar manner as the inertia
weight variant. The initial LHD is reported in Table 6.12, where x(l)

PSOC and x(u)
PSOC denote the

lower and upper bounds of the experimental region, respectively x∗PSOC is the improved design
that was found by the sequential procedure, and x

(0)
PSOC is the default design recommended

in Clerc and Kennedy (2002). The run length distributions shown in Figure 6.12 do not
clearly indicate which configuration performs better. Although the curve of the tuned version
(constriction∗) is above the curve of the default variant (constriction), it is not obvious whether
this difference is significant. The numerical values indicate that the tuned version performs
slightly better than the default one (106.56 versus 162.02 as can be seen in Table 6.13), but
the corresponding graphical representations (histograms and boxplots, not shown here) give

118 Comparison

0 1000 2000 3000 4000 5000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Difference δ

O
bs

er
ve

d
si

gn
ifi

ca
nc

e
le

ve
l α

n=10
n=50
n=500

Figure 6.10: Observed significance level. The particle swarm optimization with the default parameters
is compared to the tuned version. The observed differences are 1933, 1799, and 2077 for n = 10,
50, and 500 experiments respectively (function value while optimizing the 10-dimensional Rosenbrock
function with a budget of 2500 function evaluations). Consider n = 50: A difference as small as 1100,
that would occur frequently, has an observed significance level smaller than 0.05. This is a strong
indication for the assumption that there is a difference as large as 1000. This is case RE-1 as defined
in Section 1.6.

no hints that there is a significant difference between the performance of the tuned x∗PSOC and
x

(0)
PSOC (Clerc and Kennedy, 2002). This result is not very convincing. Further investigations

are recommended.

However, a t-test would accept the null hypothesis that there is no difference in means.
But, is this result independent of the sample size? If the sample size is increased, for example
if 2000 experiments were performed, a t-test would reject the null hypothesis at the 5 % level.
This example demonstrates how the experimenter can influence the outcome of the classical
t-test by varying the sample size n. Figure 6.11 illustrates the situation with tools from the
arsenal of an error statistician. The result presented in Figure 6.11 is a good indication that
we are observing a population where the difference in means is not larger than 120 (n = 50),
or not larger than 50 (n = 2000).

But is this result really scientifically important? If the experimenter has specified the
largest scientifically unimportant difference greater than zero, then this can be used to relate
the statistical result to the scientific claim. Obviously, meta-statistical rules are necessary to
interpret this result.

6.5 Design and Analysis of Computer Experiments 119

6.5.6 Comparing Particle Swarm Variants

Our next goal is to detect differences between the two major particle swarm variants, the
inertia weight and the constriction factor variant. As the former requires only four parameters,
a legitimate question is “Why does the inertia weight variant require three additional factors?”
We consider the differences in the performance of the constriction and inertia weight particle
swarm optimization variants based on optimization data from the 10-dimensional Rosenbrock
function. 50 experiments were performed, resulting in 50 differences. The null hypothesis
reads: “There is no difference in means.” The observed difference is 66.86. As histograms and
boxplots reveal, there is no statistically significant difference observable. Both configurations
perform similarly. Population mean, median, and standard deviation are shown in Table 6.13.
The plot of the observed significance versus the difference in means indicates that differences
δ in the mean value f̃ (50) larger than 100 occur seldom. If the experimenter specifies the
smallest scientifically significant difference he can judge the consequences of accepting the
null hypothesis.

6.5.7 Optimizing the Nelder-Mead Simplex Algorithm and a Quasi-Newton
Method

In the Nelder-Mead simplex algorithm, four parameters must be specified, namely the co-
efficients of reflection, ρ, expansion, χ, contraction, γ, and shrinkage, σ. Default settings
are reported in Table 5.1. Experiments indicate that the value of the reflection parameter,
ρ, should be smaller than 1.5 An analysis that is based on the visualization tools from the
DACE toolbox reveals that there exists a relatively small local optimum regarding χ (expan-
sion parameter) and ψ (contraction parameter), respectively. The sequential approach could
be successfully applied to the NMS algorithm, its performance on the Rosenbrock function
was improved significantly. Results from this tuning process are presented in Table 6.13.

In addition to the optimization algorithms analyzed so far, the performance of a quasi-
Newton method (see Section 5.2.2) was analyzed. An implementation from the commercial
MATLAB optimization toolbox was used in the experiments. Quasi-Newton clearly outper-
formed the other algorithms, as can be seen from the results in Table 6.13.

A comparison of the RLDs of the three algorithms is shown in Figure 6.12. The results
support the claim that PSO performs better than the Nelder-Mead simplex (NMS) algorithm.
Only the tuned version of the latter was able to complete 20% of the experiments with success.
Regarding the two PSO variants, it is not obvious which one performs better. After the tuning

Table 6.12: PSO constriction factor. DA that was used to optimize Rosenbrock’s function. The
variables s, χ, ϕ, and vmax have been defined in Table 5.5. x(l)

PSOC and x(u)
PSOC denote the ranges of the

LHD, x∗PSOC is the improved design and x(0)
PSOC is the design suggested in Clerc and Kennedy (2002).

Design s χ ϕ vmax

x
(l)
PSOC 5 0.68 3.0 10
x

(u)
PSOC 100 0.8 4.5 750
x∗PSOC 17 0.759 3.205 324.438
x

(0)
PSOC 20 0.729 4.1 100

120 Comparison

0 50 100 150 200 250
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Difference δ

O
bs

er
ve

d
si

gn
ifi

ca
nc

e
le

ve
l β

n=10

n=50

n=2000

Figure 6.11: Comparing PSO constriction and PSO constriction*, n = 10, 50, and 2000 repeats.
The observed difference for n = 50 is d = 55.47. A t-test would accept the null hypothesis H “there is
no difference in means” for n = 50, because β55.47(0) < 0.95. A t-test would reject the null hypothesis
for n = 2000, because β30.1(0) > 0.95). This is case AC-1 as introduced in Section 1.6. The t-test
results depend on the sample size.

process, the inertia weight variant appears to be better, but it requires the specification
of seven (compared to only four in the constriction factor variant) exogenous parameters.
However, the Rosenbrock function is mostly of academic interest, since it lacks many features
of a real-world optimization problem.

The analysis and the tuning procedure described so far have been based solely on the
average function value in 50 runs. This value may be irrelevant in a different optimization
context. For example, the best function value (minimum) or the median can be alternatively
used. A similar optimization procedure could have been performed for any of these cases with
the presented sequential approach. Note that the optimal algorithm design presented in this
study is only applicable to this specific optimization task x(1)

rosen as listed in Table 6.9.
As in Shi and Eberhart (1999), the starting points have been initialized randomly in

the range [15, 30]d . Hence, different sources of randomness are mixed in this example. The
following studies will be based on deterministically generated starting points, as recommended
in More et al. (1981).

6.6 Experimental Results for the S-Ring Model

The Rosenbrock function, which was considered in the previous sections, was chosen to provide
a comprehensive introduction to the sequential DACE approach. In the following, we will
present a more realistic real-world problem. The performance of a PSO is compared to a

6.6 Experimental Results for the S-Ring Model 121

Table 6.13: Result table of the mean function values of the best particle in the swarm after n = 50
runs, f̃ (50), for the Rosenbrock function. Default algorithm designs from Shi and Eberhart (1999);
Clerc and Kennedy (2002); Lagarias et al. (1998), as well as the improved design for all algorithms,
for n = 50 runs, are reported.

Design Mean Median StD Min Max

x
(0)
PSO 1.84 × 103 592.13 3.10 × 103 64.64 18519

x∗PSO 39.70 9.44 55.38 0.79 254.19

x
(0)
PSOC 162.02 58.51 378.08 4.55 2.62 × 103

x∗PSOC 106.56 37.65 165.90 0.83 647.91

x
(0)
NMS 9.07 × 103 1.14 × 103 2.50 × 104 153.05 154966

x∗NMS 112.92 109.26 22.13 79.79 173.04

Quasi-Newton 5.46 × 10−11 5.79 × 10−11 8.62 × 10−12 1.62 × 10−11 6.20 × 10−11

500 1000 1500 2000 2500
0

0.2

0.4

0.6

0.8

1
Empirical CDF

Function evaluations

F
(X

)

 Inertia

 Inertia*

 Constr

 Constr*

 NelderM

 NelderM*

Figure 6.12: Run length distribution. Step (S-11), the final comparison of the canonical and the
improved design based on RLDs. Asterisks denote improved configurations. The improved inertia
weight version of PSO succeeded in more than 80% of the experiments with less than 2500 function
evaluations. The standard NMS algorithm failed completely (hence the corresponding curve is not
shown in this figure), but it was able with an improved design to succeed in 10% of the runs after 2500
function evaluations. For a given budget of 1500 function evaluations, both the constriction factor and
the improved inertia weight PSO variants perform equally well.

122 Comparison

NMS algorithm and to a quasi-Newton method. The S-ring simulator was selected to define
a 12-dimensional optimization problem with noisy function values. The number of function
evaluations, tmax, was limited to 1000 for each optimization run. This value appears to be
realistic for real-world applications. The related problem design is reported in Table 6.14.

Similar to the analysis for the Rosenbrock function, the constriction factor and inertia
weight variants of PSO were analyzed. The former requires only 4 exogenous strategy param-
eters, whereas 7 parameters have to be specified for the latter. Optimizing the PSO inertia
weight variant improved the algorithm’s robustness as reported in Table 6.15. The average
function value decreased from 2.61 to 2.51, which is a significant difference. However, it is
very important to note that the minimum function value could not be improved, but increased
slightly from 2.4083 to 2.4127. The tuning procedure was able to find an algorithm design
that prevents outliers and produces robust solutions at the cost of an aggressive exploratory
behavior. However, an increased probability of finding a solution that has a minimum func-
tion value could have been specified as an optimization goal, resulting in a different “optimal”
design. Measures such as the best solution from n runs are better suited for real-world opti-
mization problems than the mean function value. Computer intensive methods facilitate the
determination of related statistics.

Although the function values look slightly better, the tuning process produced no signif-
icant improvement for the rest of the algorithms. The constriction factor PSO variant, as
well as the NMS algorithm and the quasi-Newton method were not able to escape from local
optima. In contrast to the Rosenbrock function, many real-world optimization problems have
many local minima on flat plateaus. The distribution of local optima in the search space
is unstructured. Therefore these algorithms were unable to escape plateaus of equal fitness.
This behavior occurred independently from the parameterization of their exogenous strategy
parameters. The inertia weight PSO variant that required the determination of 7 exogenous
strategy parameters, outperformed the other algorithms in this comparison. Whether this
improved result was caused by the scaling property of the inertia weight is subject to further
investigation.

Experimental results indicate that there is no generic algorithm that works equally well
on each problem. Even different instances of one problem may require different algorithms,
or at least different parameterizations of the employed algorithms. None of the algorithms
has proved in our study to be satisfying for every problem. The quasi-Newton method,
as expected, outperformed the other algorithms on the Rosenbrock function, but it failed
completely on the elevator optimization problem, where the inertia weight PSO variant, which
requires nearly twice as many parameters as the PSO constriction factor variant, performed
best.
Finally, we note that the determination of a good initial algorithm (and problem) design is not
trivial, and therefore a drawback of the proposed approach. This is common to all statistical
methods in this field, especially for the classical DOE approach.

Table 6.14: Problem design for the S-ring experiments. Note that due to the stochastic nature of the
S-ring simulation model, no additional noise was added to the function values.

Design n tmax d Init. Term. xl xu Perf.

x
(1)
sring 50 1000 12 DETMOD EXH −10 10 MBST

6.7 Criteria For Comparing Algorithms 123

Table 6.15: Results from the optimization of the S-ring model. Default designs, reported in Shi and
Eberhart (1999); Clerc and Kennedy (2002); Lagarias et al. (1998), and improved designs, for n = 50
repeats, are reported. The tuned inertia weight PSO variant appears to be more robust than the default
variant. It generates no outliers, as can be seen in the last column, but it was not able to find a better
minimum.

Design Mean Median StD Min Max

x
(0)
PSO 2.6152 2.5726 0.4946 2.4083 5.9988

x∗PSO 2.5171 2.5112 0.0754 2.4127 2.6454

x
(0)
PSOC 4.1743 2.6252 1.7021 2.5130 5.9999

x∗PSOC 4.1707 2.6253 1.7055 2.5164 5.9999

x
(0)
NMS 4.3112 4.3126 1.7059 2.6200 5.9999

Quasi-Newton 4.3110 4.3126 1.7060 2.6186 5.9999

6.7 Criteria For Comparing Algorithms

Nowadays it is widely accepted that there is no algorithm that performs on average better
than any other algorithm. Schwefel (1995) comments on evolution strategies:

So, is the evolution strategy the long-sought-after universal method of optimiza-
tion? Unfortunately, things are not so simple and this question cannot be answered
with a clear “yes.”

Some optimization algorithms are exceptionally popular, for example the Nelder-Mead sim-
plex algorithm or evolutionary algorithms. The popularity of these direct search algorithms
is not founded on their overall optimality, but might be related to the following reasons:

1. Direct search algorithms are appealing, because they are easy to explain, understand
and implement. They share this feature with some of the designs presented in Chapter 4.

2. For many real-world optimization problems, it is vital to find an improvement, but not
the global optimum. Direct search algorithms produce significant improvements during
the first stage of their search.

3. Function evaluations are extremely costly in many real-world applications. Hence, the
usage of finite-gradient approximation schemes that require at least d function evalua-
tions in every step is prohibitive (d denotes the problem dimension).

We claim that universal optimization methods are suitable tools during the first stage of
an optimization process. The experimental methodology presented in this chapter provides
statistical tools to detect relevant factors. It can be advantageous to combine or even to
replace the universal method with small, smart, and flexible heuristics. The experimental
analysis provides means for a deepened understanding of the problem, the algorithm, and
their interaction as well. Learning happens and leads to a progress in science.

124 Comparison

6.8 Summary

The ideas presented in this chapter can be summarized as follows:

1. Tuning was introduced as an optimization process.

2. Optimization relies on very restrictive assumptions. “With the possible exception of
the laboratory or casino” these assumptions are met nowhere (Klein, 2002).

3. An optimization process can be regarded as a process that enables learning. This
concept is related to Mayo’s extension of the classical NPT approach.

4. To start the tuning process, a performance measure has to be defined. Effectivity and
efficiency can guide the choice of an adequate performance measure.

5. The classical DOE approach consists of three steps: Screening, modeling, and opti-
mization. Each step requires different experimental designs.

6. As the assumption of a linear model for the analysis of computer programs is highly
speculative, a sequential approach (SPO) that combines classical and modern statistical
tools has been proposed. This sequential process can be used for tuning algorithms.

7. Results that are statistically significant are not automatically scientifically meaningful.
Results from the classical Neyman-Pearson theory of testing (NPT) should be comple-
mented with NPT∗ tools.

8. The optimization practitioner does not always choose the absolute best algorithm.
Sometimes a robust algorithm or an algorithm that provides insight into the structure
of the optimization problem is preferred.

Chapter 7
Understanding

Life is really simple, but men insist on
making it complicated.

Confucius

7.1 Introduction

This chapter closes the circle on the problem begun in the discussion of the Neyman-Pearson
theory in Chapter 1. It demonstrates the difference between statistical testing as an automatic
rule (NPT) and as a learning tool (NPT∗). Automatic rules can be implemented as computer
programs that generate solutions. Learning tools provide means to interpret the relevance of
these results.

This chapter consists of two parts. First a classification of methods that can be integrated
into the selection process of evolutionary algorithms is presented. Threshold selection is only
one approach to handle the problem of noisy function evaluations. The second part presents
a case study to demonstrate how NPT∗ tools enable an understanding of the basic principles
of threshold selection.

Understanding can be seen not only as an analytic, but also as a synthetic, bottom-up
approach: Starting from the very basic parts of the algorithm, new parts are added if they
improve the algorithm’s performance. Interactions play an important role, since some effects
may appear only as a result of correlations between two or more parts. Simple algorithms
often perform excellently on realistic benchmark problems (Watson et al., 1999; Whitley et al.,
2002). Therefore, it might be useful to determine the essential features of algorithms.

In this chapter we present a study devoted to the problem of selection under uncertainty.
First, existing approaches and theoretical results for the design and analysis of experiments for
selection and screening are presented. The related statistical procedures require assumptions
that are not always met in practice, especially when applied to search algorithms.

Therefore, an experimental approach is useful. In a pre-experimental study, simple config-
urations are tested to find out if there is any effect at all. This study enables the experimenter
to define a first experimental design and to state the scientific claim more precisely.

Bechhofer et al. (1995) give an in depth presentation of methods for statistical selection,
screening, and comparisons. Rubinstein (1998) and Gigerenzer and Selten (2002) discuss

126 Understanding

models of bounded rationality. The concept of simple heuristics is presented in (Gigerenzer
et al., 1999).

7.2 Selection Under Uncertainty

Noise is a common factor in most real-world optimization problems. It arises from different
sources, such as measurement errors in experiments, the stochastic nature of the simulation
process, or the limited amount of samples gathered from a large search space. Common means
used by evolutionary algorithms to cope with noise are resampling, averaging techniques
based on statistical tests, local regression methods for function value estimation, or methods
to vary the population size (Stagge, 1998; Beyer, 2000; Sano and Kita, 2000; Arnold, 2001;
Branke et al., 2001; Bartz-Beielstein and Markon, 2004). In this thesis we concentrate our
investigations on the selection process when the function values are disturbed by additive
noise.

Noise that affects the object variables is not subject of our investigations. From our point
of view the following case is fundamental for the selection procedure in noisy environments:

Reject or accept a new candidate, while the available information is uncertain.
Thus, two errors may occur: An α error as the probability of accepting a worse
candidate due to noise and a β error, as the error probability of rejecting a better
candidate.

In the context of selection and decision making the terms “candidate” and “point” will be
used synonymously. A well established context where these error probabilities are analyzed
is hypothesis testing as introduced in Section 2.2.

7.2.1 A Survey of Different Selection Schemes

Depending on the prior knowledge, selection schemes can be classified according to the fol-
lowing criteria:

1. Threshold: subset selection – indifference zone.

2. Termination: single stage – multi stage (sequential).

3. Sample size: open procedures – closed procedures.

4. Variances: known – unknown, equal – unequal.

The goal of subset selection is the identification of a subset containing the best candidate. It
is related to screening procedures. Subset selection is used when analyzing results, whereas
the indifference zone (IZ) approach is used when designing experiments. The sample size
r is known in subset selection approaches, it is determined prior to the experiments in the
indifference zone approaches.

Single stage procedures can be distinguished from multi stage procedures. The terms
“multi stage” and “sequential” will be used synonymously. The latter can use elimination:
If inferior solutions are detected, they are eliminated immediately. Selection procedures are
closed, if prior to experimentation an upper bound is placed on the number of observations
to be taken from each candidate. Otherwise, they are open. Furthermore, it is important to
know whether the variance is common or known.

7.2 Selection Under Uncertainty 127

Our analysis is based on the following statistical assumptions. Let {Yij}, 1 ≤ i ≤ r, 1 ≤
j ≤ k, denote r independent random samples of observations, taken from k ≥ 2 candidates.
The Yij can denote function values taken from candidate solutions X1, . . . ,Xk or individuals
(particles) of some evolutionary algorithm. Candidate Xi has a (fitness) function value with
unknown mean µi and common unknown variance σ2

ε,i = σ2
ε , 1 ≤ i ≤ k. The ordered means

are denoted by
µ[1] ≤ µ[2] ≤ . . . ≤ µ[k], (7.1)

where µ[1] denotes the mean of the best candidate (minimization). Generally, normal response
experiments are considered.

7.2.2 Indifference Zone Approaches – A Single Stage Procedure

In the indifference zone approach, the optimization practitioner a priory specifies a value
δ∗ > 0 representing the smallest difference worth detecting (threshold). Errors below this
threshold resulting from incorrect selection are ignored. Following Bechhofer et al. (1995) we
define experimental goals (G) and associated probability requirements (P). The experimental
goal is related to the scientific claim, whereas the probability requirement is related to the
statistical model of experimental tests, see Figure 1.2. The first experimental goal reads:

(G-1) To select the candidate associated with the smallest mean µ[1].

A correct selection (CS) is said to have been made if (G-1) is achieved. Let δ∗, 0 < δ∗ < ∞,
be the smallest difference worth detecting. The probability requirement reads

(P-1) For given constants (δ∗, P ∗) with 1/k < P ∗ < 1, we require

Pr(CS) ≥ P ∗, whenever µ[2] − µ[1] ≥ δ∗. (7.2)

A configuration that satisfies the preference zone requirement

µ[2] − µ[1] ≥ δ∗, (7.3)

is said to be in the preference zone, otherwise it is said to be in the indifference zone. Indif-
ference zone approaches are procedures that guarantee Equation 7.2. Bechhofer et al. (1995)
proposed the single stage selection procedure shown in Figure 7.1 for common known vari-
ance. The procedure shown in Figure 7.1 is location invariant, only the difference in means,
and not their absolute values are important. The upper-α equicoordinate critical point Z(α)

k,ρ ,
see Equation 2.4, is determined to satisfy the probability requirement (P-1) for any true
configuration of means satisfying the preference zone requirement, see Equation 7.3. Under
the assumptions from Section 7.2.1 is no procedure requiring fewer observations per candi-
date than Procedure 7.1 if the experimenter is restricted to single stage location invariant
procedures that guarantee the probability requirement (P-1) (Bechhofer et al., 1995).

7.2.3 Subset Selection

Selection of a Subset of Good Candidates

A common problem for population based direct search methods is the selection of a subset of
k “good” candidates out of a set of m (1 ≤ k < m) under uncertainty.

Gupta (1965) proposed a single stage procedure, which is applicable when the function
values of the candidates are balanced and are normal with common variance. Balanced
samples are those in which the candidates have an equal number of observations.

128 Understanding

Procedure Single stage procedure

1. For the given k and specified (δ∗/σε, P
∗) determine

r =
⌈
2
(
σεZ

(1−P ∗)
k−1,1/2/δ

∗
)2

⌉
. (7.4)

2. Take a random sample of r observations Yij, 1 ≤ j ≤ r, in a single stage from Xi,
1 ≤ i ≤ k.

3. Calculate the k sample means yi =
∑r

j=1 yij/r, 1 ≤ i ≤ k.

4. Select the candidate that yields the smallest sample mean y[1] as the one associated
with the smallest sample mean µ[1].

Figure 7.1: Indifference zone approach. Single stage procedure.

Selection of a Random-Size Subset of Good Candidates

This selection method generates a random-size subset that contains the candidate associated
with the smallest true mean µ[1].

(G-2) To select a (random-size) subset that contains the candidate Xi associated with µ[1].

For unknown variance σ2
ε the probability of a correct selection depends on (µ, σ2

ε). If the
variance is known, Pr(CS) depends only on the true means µ = (µ1, . . . , µk).

(P-2) For a specified constant P ∗ with 1/k < P ∗ < 1, we require that

Pr{CS|(µ, σ2
ε)} ≥ P ∗ (7.5)

for all µ.

Bartz-Beielstein and Markon (2004) describe an implementation of this selection scheme
for evolutionary algorithms in noisy environments. As the size of the selected subset is not
known in advance, the population size varies during the optimization: It increases with the
noise level. Nelson et al. (1998) and Goldsman and Nelson (1998) propose an extension of
Gupta’s single stage procedure, that is also applicable if the variances are unknown and not
necessarily equal. A subset-selection approach for the selection of the k best candidates is
described in Bechhofer et al. (1995, p. 86). The procedure shown in Figure 7.2 implements a
(random-size) subset-selection method.

Selection of δ∗-Near-Best Candidates

Selecting the near-best candidate may be more useful than selecting the k best candidates in
some situations (Fabian, 1962; Bechhofer et al., 1995). Candidate Xi is δ∗-near-best, if µi is
within a specified amount δ∗ > 0 of the smallest sample mean:

µi ≤ µ[1] + δ∗, (7.11)

7.2 Selection Under Uncertainty 129

Procedure Gupta Selection

1. Take a random sample of r observations Yij, 1 ≤ j ≤ r, in a single stage from Xi,
1 ≤ i ≤ k.

2. Calculate the k sample means yi =
∑r

j=1 yij/r, 1 ≤ i ≤ k.

3. If the variance σ2
ε is unknown, calculate

s2ν =
k∑

i=1

r∑
j=1

(yij − yi)
2/ν, (7.6)

the unbiased pooled estimate of σ2
ε based on ν = k(r − 1) degrees of freedom.

4. We have to distinguish between known and unknown variance:

(a) In case of known variance σ2
ε , include the candidate Xi in the selected subset

if and only if
yi ≤ y[1] + hσε

√
2/r, (7.7)

where
h = Z

(1−P ∗)
k−1,1/2. (7.8)

(b) In case of unknown variance σ2
ε , include the candidate Xi in the selected subset

if and only if
yi ≤ y[1] + hsν

√
2/r, (7.9)

where
h = T

(1−P ∗)
k−1,ν,1/2. (7.10)

Figure 7.2: Subset selection. Gupta selection is a single stage procedure. If σ2
ε is known, h is the

upper-(1−P ∗) equicoordinate critical point of the the equicorrelated multivariate standard normal dis-
tribution, see Equation 2.4. If σ2

ε is unknown, h is the equicoordinate critical point of the equicorrelated
multivariate t-distribution.

130 Understanding

(G-3) Select a (random-size) subset that contains at least one candidate Xi satisfying Equa-
tion 7.11.

(P-3) For specified constants (δ∗, P ∗) with δ∗ > 0 and 1/k < P ∗ < 1, we require that (see
Roth (1978); van der Laan (1992))

Pr{δ∗-near-best CS} ≥ P ∗ (7.12)

for all µ.

A δ∗-near-best selection procedure is shown in Figure 7.3.

7.2.4 Threshold Selection

Threshold rejection (TR) and threshold acceptance (TA) are complementary strategies. Thresh-
old rejection is a selection method for evolutionary algorithms, that accepts new candidates
if their noisy function values are significantly better than the value of the other candi-
dates (Markon et al., 2001). “Significant” is equivalent to “by at least a margin of τ”.
Threshold acceptance accepts a new candidate even if its noisy function value is worse. The
term threshold selection (TS) subsumes both selection strategies.
The basic idea of threshold selection is relatively simple and already known in other contexts:

• Matyáš (1965) introduced a threshold operator (with some errors, see Driml and Hanš
(1967)) for a (1+1)-evolution strategy and objective functions without noise.

• Stewart et al. (1967) proposed a threshold strategy that accepts only random changes
that result in a specified minimum improvement in the function value.

• Dueck and Scheuer (1990) presented a threshold acceptance algorithm.

• Nagylaki (1992) stated that a similar principle, the so-called truncation selection, is
very important in plant and animal breeding: “Only individuals with phenotypic value
at least as great as some number c are permitted to reproduce.” Truncation selection
is important for breeders, but it is unlikely to occur in natural populations.

• Jansen and Wegener (2000) compared the (1+1)-EA to a variant, the so called (1+1)∗-
EA, that accepts only the offspring whose function value is strictly better (smaller)
than the function value of its parent. They considered a discrete search space B

d and
objective functions without noise.

Threshold selection is also related to Fredkin’s paradox: “The more equally attractive two
alternatives seem, the harder it can be to choose between them—no matter that, to the same
degree, the choice can only matter less”(Minsky, 1985). Regarding the distinction between
rules of inductive behavior and learning rules given in Section 1.6.2, TS as presented here is
an automatic test rule and belongs to the former type of rules.

7.2 Selection Under Uncertainty 131

Procedure δ∗-Near-Best Selection

1. Take a random sample of r observations Yij, 1 ≤ j ≤ r, in a single stage from Xi,
1 ≤ i ≤ k.

2. Calculate the k sample means yi =
∑r

j=1 yij/r, 1 ≤ i ≤ k.

3. Include the candidate Xi in the selected subset if and only if

yi ≤ y[1] + h(δ∗)σε

√
2/r, (7.13)

where
h(δ∗) = Z

(1−P ∗)
k−1,1/2 − δ∗/σε

√
r/2. (7.14)

Figure 7.3: δ∗-Near-Best Selection

Procedure Threshold Selection

1. Given: A candidate X1 with a related sample Y1j of r observations and sample
mean y1 =

∑r
j=1 y1j/r.

2. Take a random sample of r observations Y2j, 1 ≤ j ≤ r, in a single stage from a
new candidate X2.

3. Calculate the sample mean y2 =
∑r

j=1 y2j/r.

4. Select the new candidate X2 if and only if

TR : y2 + τ < y1, with τ ≥ 0 (7.15)

or
TA : y2 + τ < y1, with τ ≤ 0. (7.16)

Figure 7.4: Threshold selection. This basic procedure can be implemented in many optimization
algorithms, for example evolution strategies or particle swarm optimization.

132 Understanding

The Threshold Selection Procedure

As in (G-1), the experimental goal is to select the candidate associated with the smallest
mean µ[1]. Figure 7.4 shows the threshold selection algorithm. As can be seen from Equation
7.15, threshold rejection increases the chance of rejecting a worse candidate at the expense
of accepting a good candidate. It might be adequate if there is a very small probability of
generating a good candidate. Equation 7.16 reveals that threshold acceptance increases the
chance of accepting a good candidate at the risk of failing to reject worse candidates.

Threshold Selection and Hypothesis Testing

The calculation of a threshold value for the TR scheme can be interpreted in the context of
hypothesis testing as the determination of a critical point (Beielstein and Markon, 2001). The
critical point c1−α for a hypothesis test is a threshold to which one compares the value of the
test statistic in a sample. It specifies the critical region CR and can be used to determine
whether or not the null hypothesis is rejected. We are seeking a value c1−α, so that

Pr{S > c1−α |H true } ≤ α, (7.17)

where S denotes the test statistic and the null hypothesis H reads: “There is no difference in
means.” The threshold acceptance selection method can be interpreted in a similar manner.

Generally, hypothesis testing interpreted as an automatic rule as introduced in Sec-
tion 1.6.2 considers two-decision problems in which a null hypothesis is either accepted or
rejected. A false null hypothesis H can be rejected 50 % of the time by simply tossing a
coin. Every time that heads comes up, H is rejected. The rejection procedures considered so
far (Procedures 7.1-7.3) can be applied to k-decision problems. Here, larger sample sizes are
required than for the two-decision problem. The probability of a correct selection for k > 2
is smaller than 50 % if the decision is based on the roll of a fair k-sided die. To avoid too
large sample sizes r for fixed k the indifference zone δ∗ can be increased or the probability of
a correct selection P ∗ can be reduced.

Known Theoretical Results

The theoretical analysis in Markon et al. (2001), where threshold rejection was introduced for
evolutionary algorithms with noisy function values, was based on the progress rate theory on
the sphere model and was shown for the (1 + 1)-evolution strategy. However, this theoretical
result is only applicable when the distance to the optimum and the noise level are known—
conditions that are not very often met in practice. By interpreting this result qualitatively,
we can see that the threshold value τ should be increased while approaching the optimizer x∗

(τ should be infinite, when the optimum is obtained).
Another approach was used by Beielstein and Markon (2001). They demonstrated theo-

retically and experimentally how threshold rejection can improve the quality gain introduced
in Equation 6.4 as the expected change in the function value). The influence of TR on the
selection process was analyzed using a simple stochastic search model that is related to a
model proposed in Goldberg (1989). This model possesses many crucial features of real-world
optimization problems, i. e. a small probability of generating a better offspring in an uncertain
environment. Then the search can be misled, although the algorithm selects only “better”
candidates. TR can prevent this effect. In the simple stochastic search model the optimal

7.3 A Case Study: Threshold Selection 133

threshold value could be calculated as a function of the noise strength, the probability of
generating a better candidate, and the difference between the expectation of the function
values of two adjacent states.
However, the determination of an optimal threshold value in this simple search model required
information that is usually not available in real-word situations. For example, the probability
of generating a better offspring is unknown during the search process.

7.2.5 Sequential Selection

The selection procedures presented above can be extended to sequential strategies. We list
some promising approaches that might be applicable as population based selection schemes.

For the case of unknown variance σ2
ε , Santner (1976) proposed a two-stage selection

scheme. Considering candidates with different means, unknown and not necessarily equal
variances, Sullivan and Wilson (1984, 1989) presented a bounded subset selection for select-
ing a δ∗-near-best candidate. A fully sequential procedure was proposed by Paulson (1964).
Hartmann (1988, 1991) improved this procedure. Kim and Nelson (2001) extended the ap-
proach from Hartmann (1991) to unequal and unknown variances.

Bechhofer et al. (1990) and Kim and Nelson (2001) demonstrate the superiority of se-
quential selection methods over two-stage-ranking-and-selection procedures. Pichitlamken
and Nelson (2001) and Pichitlamken et al. (2003) present a sequential selection procedure
with memory (SSM). SSM is fully sequential with elimination: If inferior solutions are de-
tected, they are eliminated immediately.

Population based algorithms can benefit from Welch’s approximation. The original goal of
Welch’s approximation was to solve the Behren-Fisher problem (Welch, 1947). A Student’s
t distribution was used to approximate the distribution of the standardized difference be-
tween sample means. Welch’s approximation avoids storing the function values from previous
generations.

7.3 A Case Study: Threshold Selection Applied to Evolution

Strategies

This section describes how selection methods introduced in Section 7.2 can be integrated into
optimization algorithms. We will present an experimental approach to analyze the effect of
these methods that is not limited to situations where the distance to the true optimum or
the probability of generating a better offspring as in Markon et al. (2001) or Beielstein and
Markon (2001), respectively, is known.

7.3.1 Pre-Experimental Studies

Beielstein et al. (2003a) only demonstrated the effect of threshold selection in a complex
optimization environment. Our goal is to understand the effect of threshold selection on the
algorithm’s performance.

To analyze the influence of threshold rejection we use a bottom-up approach. Therefore, an
elementary optimization algorithm, the (1+1)-evolution strategy, and a simple test function,
the sphere function, are chosen for the first experiments. To avoid floor or ceiling effects, the
run-length distribution of an (1+1)-ES on the sphere function without noise has been studied.

134 Understanding

Table 7.1: Problem design for the pre-experimental (1+1)-ES runs. This table shows the experiment
number, the number of repeat runs n, the maximum number of function evaluations tmax, the problem
dimension d, the initialization method as defined in Section 4.6.1, the termination criterion, lower
xl and upper xu bounds for the initialization, the optimization problem as defined in Table 3.1, the
performance measure from Section 6.3, and the noise level σ2

ε .

Design n tmax d Init. Term. xl xu Perf. Noise

x
(0)
sphere 5 1000 2 DETMOD EXH 15 30 MBST 0 − 50

The corresponding problem design (x(1)
sphere) is shown in Table 7.1. The first experiments have

been performed to analyze the hypothesis

(H-7.1) Threshold selection affects the performance of the (1 + 1)-ES.

The procedure shown in Figure 7.5 is an implementation of the (1+1)-evolution strategy with
threshold selection. The impact of the selection scheme on the performance was measured
for different noise levels. Results from this pre-experimental study indicate that threshold
selection can improve the search. But, we did only observe this effect—it could not be
explained yet. And we did not prove that the threshold selection procedure caused this
effect. This problem is related to the ceteris paribus conditions mentioned in Chapter 2.
Consequently we have to analyze further aspects of the selection process.

7.3.2 A Simulation Study

Instead of analyzing the global performance, i.e. the mean function values after 1000 function
evaluations, we start with an analysis of the local performance. Simulations were performed
to analyze the influence of the threshold value on the progress rate ϕ (PRATE) and on the
success rate sr as defined in Section 6.3. Figure 7.6 describes the simulation procedure. The
problem designs are shown in Table 7.2. The corresponding hypothesis reads:

(H-7.2) Threshold selection produces better quality results than plus selection, if the func-
tion values are disturbed by additive, gaussian noise. The results are independent of
the test problem.

To reject hypothesis (H-7.2), we have to find a test function on which the (1+1)-ES performs
better than the (1+ 1)-TS. We consider three candidates: The absolute value function (abs),
the identity function (id), and the sphere function (sphere). A constant noise level σ2

ε = 1,

Table 7.2: Problem designs for the (1+1)-ES simulation runs. The progress rate PRATE was chosen
as a performance measure. Note, that the sample size is denoted by r. The starting point is chosen
deterministically: x(0) = 1.

Design r tmax d Init. Term. x(0) Perf. Noise

x
(1)
abs 105 1 1 DETEQ EXH 1 PRATE 1
x

(1)
id 105 1 1 DETEQ EXH 1 PRATE 1
x

(1)
sphere 105 1 1 DETEQ EXH 1 PRATE 1

7.3 A Case Study: Threshold Selection 135

Procedure (1 + 1)-ES with threshold selection.

Initialization: Initialize the generation counter: g = 0. Determine a threshold value
τ (g). Determine a point X(g)

1 and a standard deviation σ(g) with associated position
vector x(g)

1 ∈ R
d. Determine the (noisy) function value ỹ1 = f̃(x(g)

1).

repeat

Mutation: Generate a new point X(g)
2 with associated position vector x(g)

2 as fol-
lows:

x
(g)
2 = x

(g)
1 + z, (7.18)

where z is a d-dimensional vector. Each component of z is the realization of a
normal random variable Z with mean zero and standard deviation σ(g).

Evaluation: Determine the (noisy) function value ỹ2 = f̃(x(g)
2).

Selection: Accept X(g)
2 as X(g+1)

1 if the sum of its noisy function value and the
threshold value τ (g) does not exceed that of X(g)

1 :

ỹ2 + τ (g) < ỹ1, (7.19)

otherwise retain X
(g)
1 as X(g+1)

1 .

Adaptation: Update σ(g) and τ (g). Increment g.

until some stopping criterion is satisfied.

Figure 7.5: The (1+1)-ES with threshold selection. This is an extension of the (1+1)-ES presented
in Figure 5.2.

136 Understanding

Procedure (1 + 1)-ES simulation to approximate the one-generation progress ϕ.

Initialization: Initialize the sample counter i = 1. The index i has been suppressed to
improve readability. Choose one initial parent X1 with associated position vector
x1 ∈ R

d. Choose the standard deviation σ ∈ R+, the threshold value τ ∈ R, and
the noise level σ2

ε .

repeat

Mutation: Generate a new point X2 with position vector x2 as follows:

x2 = x1 + z, (7.20)

where each component of the d-dimensional vector z is the realization of ran-
dom variable Z ∼ N (0, σ2).

Evaluation: Determine the function values

yj = f(xj), (7.21)
ỹj = f(xj) + wj , (7.22)

where wj are realizations of N (0, σ2
ε) distributed random variablesWj , j = 1, 2.

Selection: Accept X2 if
ỹ2 + τ < ỹ1, (7.23)

otherwise reject X2.

Progress: Determine

δi =
{
x1 − x2, if X2 was accepted,
0, otherwise.

(7.24)

Increment i.

until r samples have been obtained.

Return
∑r

i=1 δi/r, an estimate of the expected progress ϕ from generation g to g+ 1, see
(PM-14) in Section 6.3.

Figure 7.6: (1 + 1)-ES simulation to study the effect of threshold selection on the progress rate ϕ.

7.3 A Case Study: Threshold Selection 137

the starting point x(0) = 1, and the step size σ = 1 have been chosen for these experiments.
Figure 7.7 illustrates the results. The approximated progress rate ϕ is plotted against the
threshold value τ . Positive ϕ values are better, because ϕ is the expected change in the
distance of the search point to the optimum in one generation. The results from this study
show that threshold acceptance (τ ≤ 0) can improve the progress rate on the absolute value
function and on the sphere function. But threshold acceptance worsens the performance on
the identity function (id). And threshold rejection (τ > 0) worsens the progress rate in any
case.

What are the differences between id, abs, and sphere? The starting point x(0) was chosen
in the immediate vicinity of the global minimizer x∗ of the test functions abs and sphere.
This closeness to the optimum might explain the effect of the threshold selection scheme.
This consideration leads to the next hypothesis:

(H-7.3) Threshold selection produces better quality results than plus selection in the vicinity
of the global minimizer x∗, if the function values are disturbed by additive, gaussian
noise. The results are independent of the test problem.

The problem design in Table 7.3 was used to perform the experiments. As before, the sim-
ulation procedure shown in Figure 7.6 was used to approximate the one-step progress rate
ϕ. The results (not shown here) indicate that the starting point x(0) influences the threshold
selection scheme. The optimal threshold value decreases (becomes negative) as the distance
of the starting point x(0) to the optimum x∗ is reduced.

A similar effect could be observed for the absolute value function abs. The influence of
the TS scheme vanishes already if the starting point x(0) = 2 was chosen.

Both functions, abs and sphere, are convex. Recall that a convex function is a continuous
function whose value at the midpoint of every interval in its domain does not exceed the
average of its values at the ends of the interval (Weisstein, 2004). In other words, a function
f(x) is convex on an interval [a, b] if for any two points x1 and x2 in [a, b],

f

(
1
2
(x1 + x2)

)
≤ 1

2
f(x1 + x2).

A function f(x) is strictly convex if f
(

1
2 (x1 + x2)

)
< 1

2f(x1 + x2). I.e., a function is convex
if and only if its epigraph (the set of points lying on or above the graph) is a convex set. The

−15 −10 −5 0 5
−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

Threshold τ

P
ro

gr
es

s
ph

i

 |x|
 x

1

 x2

Figure 7.7: Three different functions:
abs, id, and sphere and related problem
designs x(1)

abs, x
(1)
id , and x(1)

sphere, respectively,
from Table 7.2. Results from the simulation
study described in Figure 7.6 to study the
effect of TS on the progress rate. Progress
rate ϕ plotted against threshold value τ .
Noise σ2

ε = 1, starting point x(0) = 1, and
step size σ = 1. These results indicate
that threshold selection produces worse re-
sults on the identity function, whereas pos-
itive effects could be observed on x

(1)
abs and

x
(1)
sphere.

138 Understanding

Table 7.3: Problem design for the (1 + 1)-ES simulation runs. The distance to the optimum of the
starting point is varied.

Design r tmax d Init. Term. xl xu Perf. Noise

x
(2)
abs 105 1 1 DETMOD EXH 1 10 PRATE 1
x

(2)
id 105 1 1 DETMOD EXH 1 10 PRATE 1
x

(2)
sphere 105 1 1 DETMOD EXH 1 10 PRATE 1

sphere function x2 and the absolute value function |x| are convex. The function id(x) = x is
convex but not strictly convex. Thus, the next hypothesis reads:

(H-7.4) Let f denote a strictly convex test function. Threshold acceptance produces better
quality results than plus selection in the vicinity of the global minimizer x∗ of f if the
function values are disturbed by additive, gaussian noise.

To test hypothesis (H-7.4), we simulate the (1 + 1)-ES on the bisecting line cosine function
(bilcos). This function has infinitely many local minimizers xi = 2i+ ε and infinitely many
local maximizers xi = 2i− 1 − ε, with i ∈ Z and ε = sin−1(1/π)/π ≈ −.1031.

Figure 7.8 illustrates the results from these simulations: The (1 + 1)-ES with threshold
acceptance performs better with threshold acceptance if a starting point x(0) in the neighbor-
hood of a local minimum is chosen. Threshold rejection improves the approximated progress
rate in the neighborhood of a local maximum. A zero threshold value is best if x(0) is placed
between two local optima. This simulation study demonstrated that the curvature influences
the optimal threshold value: The (1 + 1)-ES with threshold acceptance performs better on
strictly convex functions than the (1+1)-ES, whereas the (1+1)-ES with threshold rejection
performs better than the (1 + 1)-ES on strictly concave functions. The next experiments to
refine our hypothesis are conducted to analyze the influence of the noise level σ2

ε . Therefore,
we state:

(H-7.5) Let f (g) denote a strictly convex (concave) test function. Threshold acceptance
(rejection) produces better quality results than plus selection in the vicinity of a local
minimum (maximum) of f (g) if the function values are disturbed by additive, gaussian
noise. The optimal threshold value τ∗ increases as the noise level σ2

ε grows.

Experiments varying the noise level σ2
ε (not presented here) gave no indication that (H-7.5)

is wrong. If the noise level is very high, threshold selection cannot improve the progress rate.
The influence of the TS is only marginal for small noise levels.

7.3.3 Plateaus and Discrete Test Functions

To analyze the influence of threshold selection on the algorithm’s performance for functions
with large plateaus as in the S-ring or the elevator control optimization, we can use floor
or ceiling functions. Consider the step function step(x) =
x�. The center point of the
i-th plateau is defined as xc,i := i − 1/2. If the center point of a plateau is chosen as the
starting point x(0), then threshold selection worsens the progress rate. If x(0) ∈ [i − 1, xc,i],
then exists a positive threshold value that improves the progress rate (TR). If x(0) ∈ [xc,i, i],
then exists a negative threshold value that improves the progress rate (TA). This result is in

7.3 A Case Study: Threshold Selection 139

−5 0 5
−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

Threshold τ

P
ro

gr
es

s
ph

i
2

2.5

3

3.5

4

Figure 7.8: Progress rate ϕ and
threshold selection. Bisecting line
cosine function bilcos. Curves
represent results from experiments
with different starting points x(0) ∈
{2, 2.5, 3, 3.5, 4}. A positive thresh-
old value improves the performance
if the simulation is started from a
local maximum, i.e. x(0) = 3.

correspondence with the result from Beielstein and Markon (2001), where the effect of TS on
a discrete function f(i) = i, i ∈ Z, was analyzed. In this case threshold rejection improved
the progress rate. Results from the studies presented in Beielstein and Markon (2001) could
be reproduced exactly in the (1 + 1)-ES simulation model from Figure 7.6.

The experimental analysis of the simulation model produced important results that enable
an understanding of the influence of threshold selection on the local performance of the
(1 + 1)-ES. Before we investigate the global performance, we present a theoretical analysis
that complements the experimental results.

7.3.4 An Exact Analysis of the Local Performance

We discuss some results from the identity function id(x) = x and from the absolute value
function abs(x) = |x|. The essential behavior of optimization algorithms can be analyzed ex-
actly only on simple test functions with the methodology presented here, because the required
integrals become increasingly more difficult.

The Identity Function

Regarding the identity function, the expected one-generation progress ϕ of the (1 + 1)-ES
with threshold selection (Figure 7.5) can be determined as

ϕ =
1

4πσσε

∫ ∞

z=−∞

∫ ∞

w=z+τ
−zf1(w)f2(z) dw dz, (7.25)

with

f1(w) = exp

{
−1

2

(
w

2σε

)2
}

(7.26)

and

f2(z) = exp
{
−1

2

(z
σ

)2
}
. (7.27)

140 Understanding

A perspective plot of the joint density of W and Z is shown for σ = 1 and σ2
ε = 2 in Figure 7.9.

Note, that −z is used to determine the expected progress E(ϕx) in Equation 7.25, because
we are considering minimization problems. Equation 7.25 is easy to understand. Consider
the (1 + 1)-ES simulation procedure described in Figure 7.6. According to Equation 7.23 the
probability that the new candidate is accepted reads

Pr(ỹ2 + τ < ỹ1) = Pr(Z < W1 +W2 − τ)

=
1√

2πσ2
√

2πσε

∫ ∞

z=−∞

∫ ∞

w=z+τ
f1(w)f2(z) dw dz.

Analyzing this distribution is the key to the understanding of several important properties of
the threshold selection process. Denote the size of the region A by F (A). Consider Figure 7.10.
The line g1 divides the plane J that is spanned by the random variables w and z into the
upper half plane J+ and the lower half plane J−. The product of the volume under the
density surface over J− and z is the expected progress E(ϕx). The region of interest J−

is divided by the w−axis into the regions K+ and K− with negative and positive expected
progress respectively:∫∫

K+

f1(w)f2(w) dw dz ≤ 0, and
∫∫
K−

f1(w)f2(w) dw dz ≥ 0.

A geometric argument shows that

F (I∗0) = F (I+
0), (7.28)

and the product of the volume under the density surface over I−0 and −z equals E(ϕx). Intro-
ducing threshold rejection (τ > 0) moves the point S along the w-axis to the right, threshold
acceptance moves S to the left. A configuration for τ < 0 is illustrated in Figure 7.10. One
can see that τ = 0 maximizes the expected progress:

F (I−0) ≥ F (I−τ) ∀τ ∈ R. (7.29)

Threshold selection worsens the expected progress on the identity function id under additive,
gaussian noise. This result is consistent with the conclusions drawn from the experimental
study.

The Absolute Value Function

The determination of the expected one-generation progress ϕ|x| for the absolute value function
is slightly more complicated. The expected one-generation progress reads

ϕ =
1

4πσσε

∫ ∞

w=s

∫ a

z=b
−zf1(w)f2(z) dz dw, (7.30)

with s = τ −x(0), a = w−τ , and b = −w+τ−2x(0). Equation 7.30 can be derived as follows:
According to Equation 7.23 the probability that the new candidate is accepted reads for the
absolute value function abs

Pr(ỹ2 + τ < ỹ1) = Pr(|x(0) + Z| +W2 + τ < |x(0)| +W1) (7.31)

=
1√

2πσ2
√

2πσε

∫ ∞

w=s

∫ a

z=b
exp

{
−1

2

(
w

2σε

)2
}

exp
{
−1

2

(z
σ

)2
}
dz dw.

7.3 A Case Study: Threshold Selection 141

−5

0

5 −5

0

50

2

4

Z
W

D
en

si
ty

Figure 7.9: Perspective plot of
the joint density of W and Z.
The density is given by f(w, z) =
f1(w)f2(z), with f1 and f2 as de-
fined in Equations 7.26 and 7.27.

Figure 7.10: The influence of
threshold selection on the expected
progress E(ϕx) of an (1+1)-ES on
the identity function. A threshold
value τ �= 0 can only worsen the
expected progress E(ϕx), no matter
what values are chosen for the step
size σ or noise level σ2

ε .

142 Understanding

Figure 7.11: The influence of
threshold selection on the expected
progress E(ϕ|x|) of an (1 + 1)-ES
on the absolute value function. For
large x(0) values, the situation is
similar to the situation illustrated
in Figure 7.10. The coordinates
read: A = (0, 0), A′ = (0,−τ),
B = (0,−2x(0)), and B′ = (0, τ −
2x(0)).

The expectation is calculated by integration over the wedge shaped area Iτ shown in Fig-
ure 7.11. The relevant area Iτ is splitted by the w-axis into a positive and a negative part:
Iτ = I+

τ + I−τ . Hence:∫∫
Iτ

−zf1(w)f2(z) dz dw =
∫∫
I+
τ

−zf1(w)f2(z) dz dw +
∫∫
I−τ

−zf1(w)f2(z) dz dw

=

∞∫
s

0∫
b

−zf1(w)f2(z) dz dw +

∞∫
s

a∫
0

−zf1(w)f2(z) dz dw.

Consider the points A = (0, 0), A′ = (0,−τ), B = (0,−2x(0)), B′ = (0, τ − 2x(0)), S, and
S′, see Figure 7.11. Threshold acceptance (τ < 0) moves A to A′, B to B′, and S to S′.
Therefore the wedge shaped area Iτ is moved to the left as denoted by the arrow (1). As I+

τ

and I−τ are non-symmetric with respect to the w-axis, the expected progress E(ϕ|x|) can be
improved for certain τ values. However,∫∫

I+
τ

−zf1(w)f2(z) dz dw =
∫∫
I−τ

−zf1(w)f2(z) dz dw

as τ → ±∞, and therefore E(ϕ|x|) approaches zero for too large τ -values.
We can see even more from Figure 7.11. Note, that E(ϕ|x|) depends on x(0). If x(0) is

increased, the influence of the straight line g1 on the progress vanishes. Hence, the absolute
value function behaves as the identity function f(x) = x for large x(0) values (far away from
the optimum x∗).

Results from the theoretical analysis of the dependency of E(ϕ|x|) on x(0) have been
confirmed experimentally. Furthermore, the optimal threshold value can be determined nu-
merically. For example, if the noise level reads σ2

ε = 1 and the starting point x(0) = 1, the

7.4 Global Performance 143

optimal threshold value is τ∗ = −0.42. The optimal threshold value approaches zero as the
distance of the starting point to the optimum is increased. These results are in correspon-
dence with hypothesis (H-7.5). Equation 7.31 might enable a further theoretical analysis of
the relationship of convexity and threshold selection.

7.3.5 Summary of the Exact Analysis

In addition to restrictive assumptions in the noise model (constant noise level, gaussian noise)
our analysis considered the local performance only. Local performance measures are essential
because evolution strategies operate locally. The probability to generate an offspring that
is better than its parent decreases if the mutation rate is increased. Rechenberg (1973)
introduced the concept of the evolution window: It states that evolutionary progress occurs
only within a very narrow band of the mutation step size σ.

Although local performance measures may be useful to predict the global performance,
e.g. for the sphere model, the situation in real-world scenarios may be different. The chance
of finding an absolute optimum of f among several local minima depends on the structure of
its fitness landscape.

The analytical approximation requires the identification of relevant factors as in the exper-
imental analysis, consider for example the selection phase for regression trees or the forward
selection mechanisms for regression models. Beyer (2001) notes that this selection process is
the “source for a more in-depth understanding of the functioning of ES.”

Regarding the influence of threshold selection on the global performance, we will use the
statistical selection methods introduced in previous chapters of this thesis.

7.4 Global Performance

The first hypothesis to be tested reads:

(H-7.6) Threshold selection has no influence on the global performance of an evolution
strategy, if the function values are disturbed by additive, gaussian noise.

It is not difficult to find a problem and an algorithm design to reject (H-7.6). For example,
the test function sphere and the (1 + 1)-ES have been chosen to demonstrate the effect of
threshold acceptance. See Table 7.4 for the problem design and Table 7.5 for the algorithm
design. Further experiments (not shown here) support the assumption that threshold can
also influence the global behavior of the algorithm. Negative threshold values, for example
τ = −2, result in an improved performance (MBST) of the (1 + 1)-ES. Other strictly convex
functions, such as the abs function, show a similar behavior.

Until now, we have analyzed known test functions on simple test problems. Scientific
methods are needed to transfer the results from the simplified models to complex ones. Re-
call the discussion of the role of models in science in Section 1.5: We claim that statistical

Table 7.4: Problem design for the (1 + 1) runs.

Design n tmax d Init. Term. x(0) Perf. Noise

x
(3)
sphere 10 1000 2 DETEQ EXH 100.0 MBST 0 − 2

144 Understanding

testing (NPT∗) in combination with the sequential parameter optimization from Chapter
6 provides suitable means to analyze algorithms. Our goal in this analysis is to determine
how much variance in the algorithm’s performance is explained by its parts or factors, i.e. by
threshold selection. If a simulation study reveals that the new operator has an influence
on the algorithm’s performance, various algorithm designs can be analyzed statistically to
determine a suitable design for a given problem.

The TS-scheme is a good example for a problem-dependent operator. Results from the
sphere function are not directly transferable to real-world problems, because the determina-
tion of an adequate threshold value depends on the curvature. In addition, we can note that
assumptions on the noise distributions that are usually required to derive theoretical results
are met only approximately in practice.
Before the experimental study is conducted, we present some known results.

Threshold Rejection and Elevator Group Control

Beielstein et al. (2003a) report that threshold rejection was successfully integrated in an
evolution strategy to optimize an elevator group controller. During the first phase of the
optimization process a relatively high error of the first kind (erroneously accepting a worse
candidate) is used. This α error is reduced during the optimization process. The α value
is inversely proportional to the threshold value τ , as can be seen from Equation 7.17, the
threshold value is increased while approaching the optimum. This idea can be formulated as
a heuristic, see Figure 7.12. This heuristic should provide the opportunity to escape from
local optima and is implemented in many algorithms, for example in simulated annealing.

Integrating this annealing schedule into an evolution strategy might improve its perfor-
mance. The determination of a threshold value can be performed in three steps.

1. The error of the first kind is updated. An annealing schedule for the error of the first
kind α can be implemented as follows:

α(t) = 1/2
(
1 − (t/tmax)

2
)
,

with 1 ≤ t ≤ tmax the number of function evaluations. In the beginning, α is close
to 0.5. This enables the selection of worse candidate solutions. Reducing the α value
during the optimization process results in a smaller error probability of selecting the
wrong candidate.

2. The noise level is estimated. The pooled estimate of the variance s2ν can be calculated
as in Equation 7.6.

Annealing Schedule During the initial iterations of a search algorithm it is advanta-
geous to accept worse candidate solutions. The probability of accepting a worse candidate
should be continuously reduced as the number of iterations increases.

Figure 7.12: Heuristic. This annealing schedule can be found in many search heuristics.

7.4 Global Performance 145

3. Based on the α value and on the estimate of the noise level s2ν , the threshold value is
calculated as

τ(α(t)) = tα(t),r−1sν , (7.32)

where r denotes the sample size. Note that τ(t) goes to +∞ as t approaches tmax.
This formula is purely heuristic. It combines information from the search process and
information from the noise level. Although it reflects some theoretical results, it was
not derived theoretically.

Beielstein et al. (2003a) suggest that the threshold value τ is relatively robust to changes
in the noise level. The annealing schedule from Figure 7.12 uses a positive threshold value that
increases as the number of function values grows. We will analyze schemes with increasing
and decreasing threshold values.

7.4.1 A Simple Threshold Selection Scheme for Evolution Strategies

Consider a situation where the function values are disturbed by constant noise. Then, the
variance can be determined only once at the beginning of the optimization task to adjust
the threshold value. A strictly increasing, or decreasing, threshold value during the search
process can improve the algorithm’s performance.

The (1 + 1)-ES with algorithm design x
(0)
1+1 from Table 7.5 was chosen for this analysis.

The problem design x
(4)
sphere from Table 7.6 was used to determine the maximum number of

function evaluations for the comparisons. The success limit was set to 10−4. An analysis
of the run length distributions reveals that a budget of tmax = 500 function evaluations is
sufficient: 100% of the runs were able to reach this limit with tmax function evaluations.

The (1 + 1)-ES for noisy functions requires the specification of the following parameters:
Adaptation interval sn, success rate sr, step size adjustment factor sa, starting value of the
step size σ, and the number of function reevaluations r. In addition to these parameters, the
(1 + 1)-TS strategy requires the specification of a threshold parameter τ . The continuous
update rule (s1/5 = cont) was used and the initial step size σ(0) was held constant during the
experiments: σ(0) = 1. Hence, there are 5 remaining parameters.

The sequential parameter optimization was used to tune the (1 + 1)-ES first. As this
procedure was detailed in Chapter 6, we only present results in the following. The resulting
algorithm design is shown in Table 7.5. These results correspond to the theoretical results:
Under noise, the 1/5 success rule has to be modified. The SPO procedure suggests a 1/40
success rule. A negative threshold value τ = −0.41 is considered advantageous.

The following four algorithms were subject to our analysis:

(ES) The standard (1 + 1)-ES. It will be referred to as x(0)
1+1 in Table 7.7.

(TS) The tuned (1+1)-TS. This variant uses a constant threshold value that was determined
with the SPO procedure. It will be referred to as x∗TS.

Design sn sr sa τ σ(0) r

x
(0)
1+1 100 5 0.85 0.0 1.0 1
x∗TS 76 39.39 0.74 −0.41 1.0 1

Table 7.5: (1+1)-ES: Al-
gorithm design.

146 Understanding

Table 7.6: Problem designs for the final study. The design x
(4)
sphere was chosen to determine tmax, the

maximum number of function evaluations. The design x
(5)
sphere has been used to perform the compar-

isons.

Design n tmax d Init. Term. x(0) Perf. Noise

x
(4)
sphere 50 500 1 DETEQ FSOL 100 SCR 0
x

(5)
sphere 500 500 1 DETEQ EXH 100 MBST 10

(TRD) A (1 + 1)-TS that uses an adaptive threshold scheme. Increase τ according to

τ(t) =
(

t

tmax

)
σ2

ε . (7.33)

This variant will be referred to as x∗TRD.

(TAD) A (1 + 1)-TS that uses an adaptive threshold scheme. Increase τ according to

τ(t) =
(
−1 +

t

tmax

)
σ2

ε . (7.34)

This variant will be referred to as x∗TAD.

Results from the experiments are shown in Table 7.7. Figure 7.13 presents a plot of the
observed significance level versus the hypothesized difference in means of the standard (1+1)-
ES and the TA algorithm. The observed differences are δ = 11.44, 9.36, and 5.59 for n =
10, 50, and 500 experiments respectively (mean function value after optimizing the sphere
function with a budget of 500 function evaluations, noise level σ2

ε = 10). Consider n = 50:
A difference as small as 3.6, that would occur frequently, has an observed significance level
smaller than 0.1. This is a strong indication that the observed difference is larger than 3.6.
This difference can already be detected with a small sample size.

Now that we have presented a first study to illustrate our approach, one might ask how to
continue. Threshold selection analyzed so far was applied to k = 2 candidate solutions only.
Recalling the survey of different selection schemes in the beginning of this chapter, one can
see that threshold selection is a basic selection method. It can easily be extended to the single
stage procedure from Figure 7.1 and integrated into a (1 + λ)-ES or into a PSO. However,
the corresponding analyses will become increasingly more complicated. Simple heuristics
are more adequate in many situations. Optimization practitioners observe that the largest
improvements occur during the first optimization stages. This idea leads to the concept of
bounded rationality, which can be seen as an inspiring source to create smart heuristics.

Table 7.7: Problem design x
(5)
sphere. Results from the optimization of the noisy sphere. Default and

tuned algorithm designs.

Design Mean Median StD Min Max

x
(0)
1+1 8.58 5.08 10.73 1.0 × 10−4 101.48
x∗TA 5.35 2.53 8.88 7.41 × 10−6 134.01
x∗TRD 9.18 5.53 11.55 1.0 × 10−4 137.1
x∗TAD 3.09 1.22 4.94 4.1 × 10−6 39.84

7.5 Bounded Rationality 147

0 5 10 15 20 25 30 35
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Difference δ

O
bs

er
ve

d
si

gn
ifi

ca
nc

e
le

ve
l α

n=10
n=50
n=500

Figure 7.13: Problem design
x

(5)
sphere. Observed significance

level. The evolution strategy with
the default parameters x

(0)
1+1 is

compared to the tuned version
x∗TAD that uses an adaptive thresh-
old acceptance strategy . The
curves are a strong indication
for the assumption that the tuned
version performs better than the
default ES. This assumption is
supported by the curve that repre-
sents n = 10 repeats only. This
is unambiguously case RE-1 as
defined in Section 1.6.

7.5 Bounded Rationality

Simon’s (1955) concept of bounded rationality considers

1. Cognitive limits of actual humans.

2. Environments that permit simplifications of rational decision making.

Gigerenzer and Selten (2002) note that optimization is often based on uncertain assumptions
(guesswork), and there maybe about as many different outcomes of optimization strategies
as there are sets of assumptions: “In these real world cases, it is possible that simple and
robust heuristics can match or even outperform a specific optimization strategy.” Imitation,
equal weighting, take the best, take the first, and small-sample inferences are examples of
fast and frugal heuristics (Goldstein et al., 2002). Another example, where a simple model
outperforms a complex model, is given by Forster and Sober (1994).

Example 7.1 (Overfitting)
Curve fitting in classical and modern regression analysis consists of two steps. A family of
curves is selected first, i.e. linear, quadratic, or more sophisticated functions. Simple curves
are preferred in this step, consider the situation depicted in Figure 7.14. In a second step
the curve in that family that fits the data best is selected. To perform the second step some
measure of goodness-of-fit is necessary.

Simplicity and goodness-of-fit are two conflicting goals. Therefore, the following ques-
tion arises: Why should the simplicity of a curve have any relevance to our opinions about
which curve is true? Including the prediction error to these considerations provides a deeper
understanding. A result in statistics from Akaike shows how simplicity and goodness-of-fit
contribute to a curve’s expected accuracy in making predictions. The predictive power of
the curve is more important than its fit of the actual data. Curves that fit a given data set
perfectly will usually perform poorly when they are used to make predictions about new data
sets, a phenomenon known as overfitting. �

148 Understanding

Figure 7.14: Simplicity of
curves. Linear (A) and cubic
(B) curves. Imagine a third
curve (C) that fits every data
point. Why do scientists pre-
fer curve (B)?

1.4 1.6 1.8 2 2.2 2.4 2.6 2.8
−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

x

y

(A)

(B)

Threshold selection, the (1 + 1)-ES, and the 1/5 success rule can be classified as simple
and robust heuristics. They avoid overfitting, because they only use a minimal amount of
information from the environment. Under this perspective, algorithm tuning as introduced
in Chapter 6 can be seen as an analogue to curve fitting (Chapter 2): Algorithms with more
exogenous strategy parameters enable a greater flexibility for the cost of an expensive tuning
procedure. Worse designed algorithms can cause “overfitting”—they are able to solve one
specific problem only. Domain specific heuristics require a moderate amount of information
from the environment.

Does the environment permit a reduction of the required amount of information for deci-
sion making or optimization? Although simple heuristics often work well, they can be mislead
easily if they are used in unsuitable environments. Consider for example the 1/5 rule: Its
validity is not restricted to the sphere function. However, Beyer (2001) describes fitness land-
scapes in which the 1/5 rule fails, for example when the objective function is not continuously
differentiable in the neighborhood of the parental position vector. Recognizing the situations
in which domain specific heuristics perform better than other strategies provides a better
understanding of their mechanisms. Understanding is seen here as to figure out in which
environments a simple tool can match or even outperform more complex tools. Gigerenzer
et al. (1999) use the term “ecological rationality” for this concept.

7.6 Summary

The basic ideas from this chapter can be summarized as follows:

1. Indifference zone approaches require the specification of the distance δ∗ and the proba-
bility of a correct selection P ∗. The IZ procedure assumes known and common variances.

2. Subset selection requires the specification of the number of samples r and the probability
of a correct selection P ∗.

7.6 Summary 149

3. Threshold selection requires the specification of the number of samples r and the prob-
ability of a correct selection P ∗.

4. The probability of a correct acceptance P ∗ in TS is related to the error of the first kind
in hypothesis testing.

5. An annealing schedule can be used to adapt the probability of a correct acceptance
during the search process of an optimization algorithm.

6. Threshold selection can be interpreted as a rule of inductive behavior, or as an automatic
testing rule.

7. The 1/5 rule has to be modified if the function values are disturbed by noise.

8. Threshold selection (TS) can be characterized as a fast and frugal heuristic for decision
making under uncertainty. Obviously, TS does not work in every environment.

Chapter 8
Summary and Outlook

It is good to have an end to journey
toward; but it is the journey that
matters, in the end.

Ernest Hemingway

Now that we have reached the end of an exploratory tour during which we discussed a
broad spectrum of ideas from computer science, philosophy of science, and statistics, it is
time to summarize the basic achievements.

To compare different objects is a basic human activity. Decisions are based on compar-
isons. However, the accuracy of the observed data that are necessary for comparisons is
limited in many real-world situations.

Statistics provides a means to cope with this uncertainty or “noise”. Although computer
science is built on deterministic grounds, it can be advantageous to introduce uncertainty or
randomness. One famous example is the quick-sort algorithm, where randomness is introduced
to implement the selection procedure. Another important field is stochastic search algorithms
that started their triumphal procession in the 1960s. Nowadays, stochastic search algorithms
belong to the standard repertoire of every optimization practitioner who has to solve harder
ones than just toy problems. However, their enormous flexibility complicates their analysis.
The approach presented in this thesis suggests to treat program runs as experiments to enable
a statistical analysis.

The New Experimentalists

Experiments have a long history in science, their role changed drastically during the last
centuries. They have been downplayed by Aristotelians who favored deduction from first
principles for a long time. But the scientific revolution of the seventeenth century declared
the experimental method as the “royal road to knowledge.” The first scientific journals
that presented experimental results and deductions from experiments were established at
that time— a completely different situation to the theoretically oriented contents of modern
scientific journals. Hacking (1983), one of the most influential contemporary philosophers of
science, proposes to “initiate a Back-to-Bacon movement, in which we attend more seriously

152 Summary and Outlook

to experimental science.” His slogan “experiment may have a life of its own” points to
several new experimentalists themes, but it does not claim that experimental work could
exist independently of theory. “That would be the blind work of those whom Bacon mocked
as ‘mere empirics’. It remains the case, however, that much truly fundamental research
precedes any relevant theory whatsoever” (Hacking, 1983).

Ian Hacking, as well as Robert Ackermann (1989), Nancy Cartwright (1983; 2000), Allen
Franklin (1990), Peter Galison (1987), Ronald Giere (1999), and Deborah Mayo (1996), be-
longs to a group of philosophers of science who share the thesis that “focusing on aspects of
experiments holds the key to avoiding or solving a number of problems, problems thought to
stem from the tendency to view science from theory-dominated stances”. Ackermann (1989)
introduced the term “new experimentalists”. One major goal of the new experimentalists
is to develop statistical tools for generating reliable data from experiments and using such
data to learn from experiments. Mayo (1996) proposes a modern theory of statistical testing
and learning from error. This thesis is an attempt to establish a modern theory of statistical
testing in computer science, especially in evolutionary computation. The new experimental-
ism in evolutionary computation has its roots in the actual debate over the epistemology of
experimentation in philosophy. Based on the ideas presented by the new experimentalists, in
particular on Mayo’s learning from error and her concept of severity, a methodology for per-
forming and analyzing computer experiments has been developed. By controlling the errors
that occur during experimentation, we can gain insight into the dependencies and interactions
of important factors.

The new experimentalists extend Popper’s position that only hypotheses that are in prin-
ciple falsifiable by experience should count as scientific. The resulting consequences from
this position have been widely discussed in the last decades, we mention only one problem
that arises from the popperian view: Hypotheses require assumptions. A serious problem
arises when we have to decide whether the hypothesis itself or the supporting assumption
is wrong. Moreover, these assumptions require additional assumptions, which leads to an
infinite regress. And finally, there are unquestionable truths, e.g. “1 + 1 = 2”.

Learning From Error

This thesis discusses various ways to pose the right questions, to measure the performance
of algorithms, and to analyze the results. However, the statistical analysis is only the first
part of the investigation, it is the beginning, and not the end. We learn about algorithms by
being perspicacious investigators knowing how to produce errors. Actively generating errors
is a major step forward in understanding how algorithms work. This thesis points out various
sources of error in the context of evolutionary computation. Errors (ER) can be caused by the
selection of an inadequate test function, erroneously specified experimental designs, wrongly
specified experimental goals, inadequately selected performance measures, misinterpretations
of the experimental or the statistical results. This thesis provides means to master these
problems in the following ways:

(ER-1) Selection of an inadequate test function: Nowadays it is a well-accepted fact
that there is no computer algorithm that performs better than any other algorithm in
all cases (Droste et al., 2000). However, the interaction between the problem (envi-
ronment, resources) and the algorithm is crucial for its performance. To demonstrate
an effect, a test problem that is well-suited to the solver (algorithm) must be chosen.

153

Ceiling effects can make results from computer experiments useless. They occur when
every algorithm achieves the maximum level of performance—the results are indistin-
guishable. Floor effects arise when the problem is too hard, no algorithm can produce
a satisfactory solution and every statistical analysis will detect no difference in the per-
formance. Statistical methods such as run-length distributions have been proposed to
tackle this issue.

We developed an elevator simulation model (S-ring) that can be used to generate test
problem instances. The results are of practical relevance. They are based on an intensive
cooperation with one of the world’s leading elevator manufacturer (Markon et al., 2001;
Beielstein and Markon, 2002; Beielstein et al., 2003a,b; Bartz-Beielstein et al., 2003c;
Bartz-Beielstein and Markon, 2004; Bartz-Beielstein et al., 2005b). The S-ring model
and test functions have been discussed in Chapter 3.

(ER-2) Erroneously specified experimental designs: This source of error comprehends
wrongly selected exogenous strategy parameters as well as problem parameters. Designs
play a key role in this context: The concept of problem and algorithm designs is con-
sequently realized. Experimental designs are used to vary and control these errors
systematically. The experimenter can screen out less important factors and concentrate
the analysis on the relevant ones. To give an example: Evolutionary algorithms pro-
duce random results. The experimenter can vary the input parameters of the algorithm,
e.g. change the recombination operator. This leads directly to the central question “how
much variance in the response is explained by the variation in the algorithm?” Statis-
tical tools that are based on the analysis of variance (ANOVA) methodology can be
used to tackle this question. Classical ANOVA, modern regression techniques like tree
based regression or design and analysis of computer experiments (DACE) follow this
principle. Another basic tool to perform a statistical analysis is hypothesis testing.

We are not the first who use design of experiments techniques to analyze algorithms.
However, the first attempts to apply design of experiments techniques to evolution
strategies and particle swarm optimization have been presented in Beielstein et al. (2001)
and Beielstein and Markon (2001). We have developed the sequential parameter opti-
mization (SPO) method: SPO combines methods from classical DOE, computational
statistics, and design and analysis of computer experiments. Results from the SPO can
be analyzed with NPT∗ tools: The experimenter can learn from errors while improv-
ing an algorithm, see also (ER-5) and (ER-6). We consider the NPT∗ analysis as the
crucial step in the analysis of computer algorithms. Experimental designs have been
introduced in Chapter 4.

(ER-3) Wrongly specified experimental goals: Gary Klein (2002) uses the term “fic-
tion of optimization” to characterize this problem. Boundary conditions that are nec-
essary to perform optimization tasks have been discussed in Section 6.2. Specifying
and analyzing boundary conditions is in accordance with Mayo’s concept of learning
from error and one important step of the SPO approach. Experimental goals have been
discussed in Chapter 6.

(ER-4) Inadequately selected performance measures: We distinguish different perfor-
mance measures to analyze algorithms, e.g. efficiency and effectivity. This classification

154 Summary and Outlook

is based on ideas that have been presented nearly three decades ago in Schwefel (1977).
This problem has been addressed in Chapter 6.

(ER-5) Misinterpretations of the experimental results: Guidelines from experimental
algorithmics (an influential discipline from computer science) recommend to state a
clear set of objectives, or to formulate a question or a hypothesis. Analysis of variance
methods as well as regression methods and hypothesis testing have been presented in
Chapters 2 and 6.

(ER-6) Misinterpretations of the statistical results: Serious problems arise when sta-
tistical significance and scientific meaning are not distinguished. Introducing different
models provides statistical tools to deal with this problem. Based on NPT∗, Mayo’s
extension of the classical Neyman-Pearson theory of statistical testing, we developed sta-
tistical tools that allow the objective comparison of experimental results. Misconstruals
can occur, if statistical tests are not severe. Consider for example the first misconstrual
(MC-1) from Section 1.6 that can be accomplished by increasing the sample size n or
by reducing the significance level:

A test can be specified that will produce a result that exceeds a pre-specified
difference by the required difference. As a consequence, the null hypothesis
H is rejected, even if the true difference exceeds the pre-specified difference
by as little as one likes.

We developed plots of the observed significance level (OSL) as key elements for an
extended understanding of the significance of statistical results. They are easy to inter-
pret, and combine information about the p-value, the sample size, and the experimental
error.
We developed a bootstrap procedure to generate OSL plots independently from any
assumptions on the underlying distribution. Misinterpretations of the statistical results
have been discussed in Chapters 2 and 7.

Theory and Experiment

This thesis does not solely transfer concepts to compare and improve algorithms from statistics
to computer science. It presents a self-contained experimental methodology that bridges the
gap between theory and experiment. The advantage of applying results from theory, for
example Beyer (2001), to real world optimization problems can be analyzed in an objective
manner. However, as a consequence of our considerations, the interpretation of the scientific
import of these results requires human experience, or the “experimenter’s skill”.

Why is the experimenter’s skill central in our argumentation? The experimenter’s skill
comprises the ability to get the apparatus to indicate phenomena in a certain way. Numerous
examples from the history of science can be listed in which the invention of a new apparatus
enables the experimenter to perform another investigation. Results from these experiments
defined the route, which the theoreticians must follow. Gigerenzer’s (2003) tool-to-theory
approach extends this idea from technical apparatus to abstract entities such as statistical
procedures. We summarize an example presented in Hacking (1983) to illustrate our argu-
mentation:

155

Example 8.1 (The Faraday Effect)
The Faraday effect, or magneto-optical effect, describes the rotation of the plane of polariza-
tion (plane of vibration) of a light beam by a magnetic field (Encyclopaedia Britannica Online,
2001). Being a deeply religious man, Michael Faraday (1791–1867) was convinced that all
forces in nature must be connected. At that time the newtonian unity of science was in confu-
sion due to several important discoveries, i.e. the wave theory of light. Faraday unsuccessfully
tried to establish a connection between electrification and light in 1822, in 1834, and in 1844.
In 1845 he gave up and tried to discover a connection between the forces of electromagnetism
and light. Using a special kind of dense glass, which had been developed earlier in a different
context, he discovered the magneto-optical effect. Faraday had no theory of what he found.
One year later, G.B. Airy integrated the experimental observations into the wave theory of
light simply by adding some ad hoc further terms to the corresponding equations. “This is a
standard move in physics. In order to make the equations fit the phenomena, you pull from
the shelf some fairly standard extra terms for the equations, without knowing why one rather
than another will do the trick.” Only 47 years later, in 1892, H.A. Lorentz combined models
proposed by Kelvin and adapted by Maxwell with his electron theory. �

This example nicely illustrates several levels of theory. Theory, as mentioned earlier, can
be characterized as speculation: It can be seen as the process of restructuring thoughts or
playing with ideas that are based on a qualitative understanding of some general features from
reality. However, there is no direct link between theory and experiment. Most initial thoughts
are not directly testable. Here comes calculation into play. Calculation is the mathematical
formulation to bring speculative thoughts into accordance with the world and to conduct an
experimental verification. Calculation is the first part to bridge the gap between theory and
experiment.

We have not left the classical, hypothetico-deductive grounds so far. However, to bring
theory in accordance with reality is not simply a matter of calculation. To do this requires
more than just quantifying speculative thoughts. The idea of beginning with speculations
that are gradually cast into a form from whence experimental tests can be deduced, appears
to be attractive—but it is incomplete. A very extensive activity is necessary: Model-building.
Models can be all sorts of things (recall the discussion in Section 1.5). It is crucial for our
reasoning that they can co-exist in theory. Despite of the common understanding that at
most one model can be true, several models of the physical world can be used indifferently
and interchangeably in the theoretical context. Hacking presents a typical sentence from a
physics textbook as an illustrative example:

For free particles, however, we may take either the advanced or retarded potentials,
or we may put the results in a symmetrical form, without affecting the result (Mott
and Sneddon, 1948).

Hence, models are not merely intermediaries that connect some abstract aspects of real phe-
nomena by simplifying mathematical structures to theories that govern the phenomena. Why
can physicists use a number of mutually inconsistent models within the same theory? Re-
calling the ideas presented in Chapter 1, we can state that models are the central elements
of science. Models are more robust than theory, that is “you keep the model and dump the
theory.” The number of models scientists use in their daily routine increases from year to
year. Maybe there will be one unified theory of all in some years—but “that will leave most
physics intact, for we shall have to do applied physics, working out what happens from case
to case (Hawking, 1980).”

156 Summary and Outlook

Approximations appear to be a solution to bridge the gap between models for theory and
models for reality. But the number of possible approximations is endless, and the correct
approximation cannot be derived from theory. Going one step further, Nancy Cartwright
claims that “theory itself has no truth in it” (Cartwright, 1983, 2000). We follow Hacking
who gives a descriptive characterization of the interplay between theories, models, and reality:

I prefer myself an Argentine fantasy. God did not write a Book of Nature of the
sort that the old Europeans imagined. He wrote a Borgesian library, each book
of which is as brief as possible, yet each book of which is inconsistent with each
other. No book is redundant. For every book, there is some humanly accessible bit
of Nature such that that book, and no other, makes possible the comprehension,
prediction and influencing what is going on. Far from being untidy, this is the
New World Leibnizianism. Leibniz said that God chose a world which maximized
the variety of phenomena while choosing the simplest laws. Exactly so: but the
best way to maximize phenomena and have the simplest laws is to have the laws
inconsistent with each other, each applying to this or that but none applying to
all.

The methodology presented in this thesis may be the missing-link needed by the practitioner
to consciously apply theoretical results to practical problems—and by the theoretician to
explore new ideas and to confront speculations with reality. Figure 8.1 illustrates a modified
view of the relationship between theory and experiment from Chapter 1.

Outlook

The items discussed in this thesis suggest various routes for further research. We will list
some of them.

The experimental approach presented in this thesis may lay the cornerstone for a “borge-
sian library” in evolutionary computation. Consider a theory T1, e.g. entitled “Evolutionary
Algorithms in Theory”, and a theory T2, entitled “The Theory of Evolution Strategies”, see
Figure 8.1. Both theories use models as tools for representing parts of the world (or the the-
ory) for specific purposes. We distinguished representational models, that represent a certain
part of the world, from instantial models, that are used to present abstract entities. Perform-
ing experiments, data can be generated to test the fit of the model with some part of the world
or with some theory. As models are limited per definitionem they may contain laws that are
inconsistent with each other. And, not only models for different theories may contain conflict-
ing laws—even models that are used within one theory might lead to different conclusions.
At this point the approach presented in this thesis becomes relevant: The experimenter can
use statistical tools to investigate the error probabilities by “actively probing, manipulating,
and simulating patterns of error, and by deliberately introducing known patterns of error into
the collection and analysis of data”(Mayo, 1996). Consider two scenarios:

1. Experimental designs (Chapter 4) provide means to specify the essential conditions in
an objective manner. Optimization practitioners can consult a “book from the problem
design section of the library” and look up a candidate algorithm that might be able
to solve their problem. This algorithm will not be used directly with some default
parameter settings—it will be tuned before the optimization run is performed.

157

Figure 8.1: A second attempt to model the relationship between theory and practice. The first attempt
(Figure 1.1) is reconsidered. Different theories and models, even with conflicting laws, coexist. The
variables ti denote the time-dependency of some theories. Speculation can be interpreted as “playing
with ideas”, calculation brings speculative thoughts in accordance with models, and experimentation
tests the fit of models with the world.

2. Researchers will base the comparison of different algorithms not on their default pa-
rameterizations, but on the tuned versions. The SPO (or a similar method) enables an
algorithmical tuning process with traceable costs.

Consequently, a tool box with many different algorithms, e.g. as suggested by Schwefel (1995),
“might always be the ‘optimum optimorum’ for the practitioner.” The methods presented in
this thesis might give some valuable advice for the selection of an appropriate tool.

Recent discussions indicated a great demand for an automated version of the sequential
parameter optimization procedure (Chapter 6). The development of such an automated tool
is—at least from our perspective—a conflicting goal, because the user does not “see” what
happens during the design optimization. However, SPO will gain acceptance and influence,
if we keep the complexity that is necessary to apply SPO as low as possible. A first imple-
mentation of an automated SPO is under development (Bartz-Beielstein et al., 2005a).

Including the relationship between step-size adaptation and threshold selection into the
analysis from the case study in Chapter 7 will provide interesting insights into the behavior
of evolution strategies. In general, an analysis of the self-adaptation mechanisms seems to
be one of the most exciting tasks for further research. Recall, that a careful examination is
required to perform this task, because the evolution strategy presented in Chapter 5 required
the specification of nine design variables and various interactions have to be considered.

Only first attempts have been made to apply SPO to multi-criteria optimization prob-
lems (Bartz-Beielstein et al., 2003b; Mehnen et al., 2004a). A discussion—similar to the one
presented in Chapter 6—of performance measures for multi-criteria optimization has to be

158 Summary and Outlook

done in advance. This issue is analyzed in the collaborative research center “Design and Man-
agement of Complex Technical Processes and Systems by Means of Computational Intelligence
Methods” (Beielstein et al., 2003c).

Visual tools that enable an intuitive understanding of experimental results and their sci-
entific meaning should be developed. The observed significance level plots (Chapter 1) are
merely a first step in this direction.

Based on considerations related to the concept of bounded rationality, one can ask in
which environment an algorithm performs well (Gigerenzer et al., 1999). Not merely organic
evolution, but also social evolution, might give valuable hints to develop new strategies or to
understand existing behaviors. This process can be beneficial in both directions: Evolutionary
algorithms can be used to model social behavior and vice versa. Consider for example the
model of urban growth by cellular automata from Bäck et al. (1996), or a current diploma
thesis that models farm size and market power on agricultural land markets with particle
swarm optimization (de Vegt, 2005). We close this thesis with an analogy to depict the
relativity of good algorithms (or strategies) and to demonstrate the usefulness of experience:

In a remote stream in Alaska, a rainbow trout spies a colorful dimple on the
undersurface of the water with an insect resting on top of it. Darting over with
the mouth agape, the fish bites down and turns in search for its next victim. It
does not get far, however, before the “insect” strikes back. The trout is yanked
from the quiet stream by the whiplike pull of a fly fisherman’s rod. In a world
without fisherman, striking all the glitter is adaptive; it increases the chance for
survival. In a world with predators, however, this once-adaptive strategy can turn
a feeding fish into a fisherman’s food (Goldsman et al., 2002).

Bibliography

Ackermann, R. (1989). The new experimentalism. Brit. J. Phil. Sci., 40:185–190.

Anderson, R. (1997). The role of experiment in the theory of algorithms. In Proceedings of the
5th DIMACS Challenge Workshop, volume 59 of DIMACS: Series in Discrete Mathematics
and Theoretical Computer Science, pages 191–196. American Mathematical Society.

Armitage, P., McPherson, C., and Rowe, B. C. (1969). Repeated significance tests on accu-
mulating data. Journal of the Royal Statistical Society: Series A, 132:235–244.

Arnold, D. V. (2001). Evolution strategies in noisy environments — A survey of existing
work. In Kallel, L., Naudts, B., and Rogers, A., editors, Theoretical Aspects of Evolutionary
Computing, Natural Computing, pages 239–249. Springer, Berlin.

Arnold, D. V. and Beyer, H.-G. (2003). A comparison of evolution strategies with other direct
search methods in the presence of noise. Computational Optimization and Applications,
24(1):135–159.

Aslett, R., Buck, R. J., Duvall, S. G., Sacks, J., and Welch, W. J. (1998). Circuit optimization
via sequential computer experiments: design of an output buffer. Journal of the Royal
Statistical Society: Series C (Applied Statistics), 47(1):31–48.

Athen, H. and Bruhn, J., editors (1980). Lexikon der Schulmathematik. Studienausgabe. Aulis,
Köln.

Azadivar, F. (1999). Simulation optimization methodologies. In Farrington, P., Nembhard,
D. T., Sturrock, D. T., and Evans, G. W., editors, Proceedings of the 1999 Winter Simu-
lation Conference, pages 93–100, Piscataway, New Jersey. IEEE.

Bäck, T. (1996). Evolutionary Algorithms in Theory and Practice. Oxford University Press,
New York.

Bäck, T., Dörnemann, H., Hammel, U., and Frankhauser, P. (1996). Modeling urban growth
by cellular automata. In Voigt, H.-M., Ebeling, W., Rechenberg, I., and Schwefel, H.-P.,
editors, Proc. Parallel Problem Solving from Nature – PPSN IV, Berlin, pages 636–645,
Berlin. Springer.

160 BIBLIOGRAPHY

Bandler, J., Cheng, Q., Dakroury, S., Mohamed, A., Bakr, M., Madsen, K., and Søndergaard,
J. (2004). Space mapping: the state of the art. IEEE Transactions on Microwave Theory
and Techniques, 52(1):337–361.

Banks, J., Carson, J. S., Nelson, B. L., and Nicol, D. M. (2001). Discrete Event System
Simulation. Prentice Hall.

Barney, G. (1986). Elevator Traffic Analysis, Design and Control. Cambridge U.P.

Barr, R., Golden, B., Kelly, J., Rescende, M., and Stewart, W. (1995). Designing and report-
ing on computational experiments with heuristic methods. Journal of Heuristics, 1(1):9–32.

Barr, R. and Hickman, B. (1993). Reporting computational experiments with parallel algo-
rithms: Issues, measures, and experts’ opinions. ORSA Journal on Computing, 5(1):2–18.

Bartz-Beielstein, T. (2003). Experimental analysis of evolution strategies – overview and com-
prehensive introduction. Interner Bericht des Sonderforschungsbereichs 531 Computational
Intelligence CI–157/03, Universität Dortmund.

Bartz-Beielstein, T., Blum, D., Lasarczyk, C., and Preuss, M. (2005a). Sequential parameter
optimzation. Submitted to the 2005 IEEE Congress on Evolutionary Computation.

Bartz-Beielstein, T., de Vegt, M., Parsopoulos, K. E., and Vrahatis, M. N. (2004a). Designing
particle swarm optimization with regression trees. Interner Bericht des Sonderforschungs-
bereichs 531 Computational Intelligence CI–173/04, Universität Dortmund.

Bartz-Beielstein, T., Limbourg, P., Mehnen, J., Schmitt, K., Parsopoulos, K. E., and Vrahatis,
M. N. (2003a). Particle swarm optimizers for Pareto optimization with enhanced archiving
techniques. In Sarker, R. et al., editors, Proc. 2003 Congress on Evolutionary Computation
(CEC’03), Canberra, volume 3, pages 1780–1787, Piscataway NJ. IEEE Press.

Bartz-Beielstein, T., Limbourg, P., Mehnen, J., Schmitt, K., Parsopoulos, K. E., and Vra-
hatis, M. N. (2003b). Particle Swarm Optimizers for Pareto Optimization with Enhanced
Archiving Techniques. Interner Bericht des Sonderforschungsbereichs 531 Computational
Intelligence CI–153/03, Universität Dortmund.

Bartz-Beielstein, T. and Markon, S. (2004). Tuning search algorithms for real-world applica-
tions: A regression tree based approach. In Greenwood, G. W., editor, Proc. 2004 Congress
on Evolutionary Computation (CEC’04), Portland OR, volume 1, pages 1111–1118, Pis-
cataway NJ. IEEE Press.

Bartz-Beielstein, T., Markon, S., and Preuß, M. (2003c). Algorithm based validation of a
simplified elevator group controller model. In Ibaraki, T., editor, Proc. 5th Metaheuristics
Int’l Conf. (MIC’03), pages 06/1–06/13 (CD–ROM), Kyoto.

Bartz-Beielstein, T. and Naujoks, B. (2004). Tuning multi criteria evolutionary algorithms
for airfoil design optimization. Interner Bericht des Sonderforschungsbereichs 531 Compu-
tational Intelligence CI–159/04, Universität Dortmund.

Bartz-Beielstein, T., Parsopoulos, K. E., and Vrahatis, M. N. (2004b). Analysis of particle
swarm optimization using computational statistics. In (Simos and Tsitouras, 2004), pages
34–37.

BIBLIOGRAPHY 161

Bartz-Beielstein, T., Parsopoulos, K. E., and Vrahatis, M. N. (2004c). Design and analysis
of optimization algorithms using computational statistics. Applied Numerical Analysis &
Computational Mathematics (ANACM), 1(2):413–433.

Bartz-Beielstein, T., Preuß, M., and Markon, S. (2003d). Validation and optimization of
an elevator simulation model with modern search heuristics. Interner Bericht des Sonder-
forschungsbereichs 531 Computational Intelligence CI–158/03, Universität Dortmund.

Bartz-Beielstein, T., Preuß, M., and Markon, S. (2005b). Validation and optimization of an
elevator simulation model with modern search heuristics. In Ibaraki, T., Nonobe, K., and
Yagiura, M., editors, Metaheuristics: Progress as Real Problem Solvers, chapter 5, pages
109–128. Kluwer, Boston MA. (in print).

Bartz-Beielstein, T., Preuß, M., and Reinholz, A. (2003e). Evolutionary algorithms for opti-
mization practitioners. Interner Bericht des Sonderforschungsbereichs 531 Computational
Intelligence CI–151/03, Universität Dortmund.

Bartz-Beielstein, T., Preuß, M., and Reinholz, A. (2003f). Evolutionary algorithms for opti-
mization practitioners (tutorial). 5th Metaheuristics Int’l Conf. (MIC’03) Kyoto.

Bartz-Beielstein, T., Schmitt, K., Mehnen, J., Naujoks, B., and Zibold, D. (2004d). KEA –
A software package for development, analysis, and application of multiple objective evo-
lutionary algorithms. Interner Bericht des Sonderforschungsbereichs 531 Computational
Intelligence CI–185/04, Universität Dortmund.

Bechhofer, R. E., Dunnett, C. W., Goldsman, D. M., and Hartmann, M. (1990). A comparison
of the performances of procedures for selecting the normal population having the largest
mean when populations have a common unknown variance. Communications in Statistics,
B19:971–1006.

Bechhofer, R. E., Santner, T. J., and Goldsman, D. M. (1995). Design and Analysis of
Experiments for Statistical Selection, Screening, and Multiple Comparisons. Wiley.

Beielstein, T. (2003). Tuning evolutionary algorithms – Overview and comprehensive in-
troduction. Interner Bericht des Sonderforschungsbereichs 531 Computational Intelligence
CI–148/03, Universität Dortmund.

Beielstein, T., Dienstuhl, J., Feist, C., and Pompl, M. (2001). Circuit design using evo-
lutionary algorithms. Interner Bericht des Sonderforschungsbereichs 531 Computational
Intelligence CI–122/01, Universität Dortmund.

Beielstein, T., Dienstuhl, J., Feist, C., and Pompl, M. (2002a). Circuit design using evolu-
tionary algorithms. In Fogel, D. B., El-Sharkawi, M. A., Yao, X., Greenwood, G., Iba, H.,
Marrow, P., and Shackleton, M., editors, Proc. 2002 Congress on Evolutionary Computation
(CEC’02) within Third IEEE World Congress on Computational Intelligence (WCCI’02),
Honolulu HI, pages 1904–1909, Piscataway NJ. IEEE Press.

Beielstein, T., Ewald, C.-P., and Markon, S. (2003a). Optimal elevator group control by
evolution strategies. In Cantú-Paz, E., Foster, J. A., Deb, K., Davis, L. D., Roy, R.,
O’Reilly, U.-M., Beyer, H.-G., et al., editors, Proc. Genetic and Evolutionary Computation
Conf. (GECCO 2003), Chicago IL, Part II, volume 2724 of Lecture Notes in Computer
Science, pages 1963–1974, Berlin. Springer.

162 BIBLIOGRAPHY

Beielstein, T. and Markon, S. (2001). Threshold selection, hypothesis tests, and DoE methods.
Interner Bericht des Sonderforschungsbereichs 531 Computational Intelligence CI–121/01,
Universität Dortmund.

Beielstein, T. and Markon, S. (2002). Threshold selection, hypothesis tests, and DOE meth-
ods. In Fogel, D. B., El-Sharkawi, M. A., Yao, X., Greenwood, G., Iba, H., Marrow, P.,
and Shackleton, M., editors, Proc. 2002 Congress on Evolutionary Computation (CEC’02)
within Third IEEE World Congress on Computational Intelligence (WCCI’02), Honolulu
HI, pages 777–782, Piscataway NJ. IEEE Press.

Beielstein, T., Markon, S., and Preuß, M. (2003b). A parallel approach to elevator opti-
mization based on soft computing. In Ibaraki, T., editor, Proc. 5th Metaheuristics Int’l
Conf. (MIC’03), pages 07/1–07/11 (CD–ROM), Kyoto.

Beielstein, T., Mehnen, J., Schönemann, L., Schwefel, H.-P., Surmann, T., Weinert, K.,
and Wiesmann, D. (2003c). Design of evolutionary algorithms and applications in surface
reconstruction. In Schwefel, H.-P., Wegener, I., and Weinert, K., editors, Advances in
Computational Intelligence – Theory and Practice, pages 145–193. Springer, Berlin.

Beielstein, T., Parsopoulos, K. E., and Vrahatis, M. N. (2002b). Tuning PSO parameters
through sensitivity analysis. Interner Bericht des Sonderforschungsbereichs 531 Computa-
tional Intelligence CI–124/02, Universität Dortmund.

Beielstein, T., Preuss, M., and Markon, S. (2003d). A parallel approach to elevator op-
timization based on soft computing. Interner Bericht des Sonderforschungsbereichs 531
Computational Intelligence CI–147/03, Universität Dortmund.

Belisle, C. J. P. (1992). Convergence theorems for a class of simulated annealing algorithms.
Journal Applied Probability, 29:885–895.

Bentley, P. (2002). ISGEC workshop on standards at GECCO 2002.
http://www.cs.ucl.ac.uk/staff/P.Bentley/standards.html.

Berger, J. O. (2003). Could Fisher, Jeffreys and Neyman have agreed on testing? Statistical
Science, pages 1–32.

Beyer, H.-G. (2000). Evolutionary algorithms in noisy environments: Theoretical issues and
guidelines for practice. CMAME (Computer methods in applied mechanics and engineering),
186:239–267.

Beyer, H.-G. (2001). The Theory of Evolution Strategies. Natural Computing Series. Springer,
Heidelberg.

Beyer, H.-G. and Schwefel, H.-P. (2002). Evolution strategies – A comprehensive introduction.
Natural Computing, 1:3–52.

Birattari, M., Stützle, T., Paquete, L., and Varrentrapp, K. (2002). A racing algorithm for
configuring metaheuristics. In et al., W. B. L., editor, GECCO 2002: Proceedings of the
Genetic and Evolutionary Computation Conference, pages 11–18. Morgan Kaufmann.

Bohachevsky, I. (1986). Generalized simulated annealing for function optimization. Techno-
metrics, 28(3):209–217.

BIBLIOGRAPHY 163

Box, G. E. P. (1957). Evolutionary operation: A method for increasing industrial productivity.
Applied Statistics, 6:81–101.

Box, G. E. P. and Draper, N. R. (1987). Empirical Model Building and Response Surfaces.
Wiley.

Box, G. E. P., Hunter, W. G., and Hunter, J. S. (1978). Statistics for experimenters. Wiley
series in probabilty and mathematical statistics: Applied probability and statistics. Wiley.

Branke, J., Schmidt, C., and Schmeck, H. (2001). Efficient fitness estimation in noisy en-
vironments. In et al., L. S., editor, Genetic and Evolutionary Computation Conference
(GECCO’01). Morgan Kaufmann.

Breiman, L., Friedman, J. H., Olshen, R. A., and Stone, C. J. (1984). Classification and
Regression Trees. Wadsworth.

Briest, P., Brockhoff, D., Degener, B., Englert, M., Gunia, C., Heering, O., Jansen, T.,
Leifhelm, M., Plociennik, K., Röglin, H., Schweer, A., Sudholt, D., Tannenbaum, S., and
Wegener, I. (2004). Experimental supplements to the theoretical analysis of EAs on prob-
lems from combinatorial optimization. In Yao, X., Burke, E., Lozano, J. A., Smith, J.,
Merelo-Guervós, J., Bullinaria, J., Rowe, J., Kabán, P., and Schwefel, H.-P., editors, Par-
allel Problem Solving from Nature - PPSN VIII, volume 3242 of LNCS, pages 21–30, Birm-
ingham, UK. Springer.

Bussieck, M., Drud, A., Meeraus, A., and Pruessner, A. (2003). Quality assurance and
global optimization. In Global Optimization and Constraint Satisfaction: First Interna-
tional Workshop on Global Constraint Optimization and Constraint Satisfaction, COCOS
2002, Lecture Notes in Computer Science 2861/2003, pages 223–238, Berlin. Springer.

Cartwright, N. (1983). How the Laws of Physics Lie. Oxford University Press.

Cartwright, N. (2000). The Dappled World: A Study of the Boundaries of Science. Cambridge
University Press, Cambridge.

Chalmers, A. F. (1999). What is This Thing Called Science. Universiy of Queensland Press,
3. edition.

Chambers, J., Cleveland, W., Kleiner, B., and Tukey, P. (1983). Graphical Methods for Data
Analysis. Wadsworth.

Chambers, J. M. and Hastie, T. H., editors (1992). Statistical Models in S. Wadsworth &
Brooks/Cole, Pacific Grove, California.

Chiarandini, M. and Stützle, T. (2002). Experimental evaluation of course timetabling algo-
rithms. Technical Report AIDA-02-05, FG Intellektik, TU Darmstadt.

Clerc, M. and Kennedy, J. (2002). The particle swarm-explosion, stability, and convergence
in a multidimensional complex space. IEEE Transactions on Evolutionary Computation,
6(1):58–73.

Cohen, J. (1990). Things I have learned (so far). American Psychologist, 45:1304–1312.

164 BIBLIOGRAPHY

Cohen, P., Gent, I. P., and Walsh, T. (2000). Empirical methods for AI, tutorial given at
AAAI, ECAI and Tableaux conferences in 2000.

Cohen, P. R. (1995). Empirical Methods for Artificial Intelligence. MIT Press, Cambridge,
MA.

Coleman, T. and Zhang, Y. (2004). Optimization Toolbox for Use with MATLAB. The
MathWorks, Inc.

Colemann, D. E. and Montgomery, D. C. (1993). A systematic approach to planning for a
designed industrial experiment. Technometrics, 35:1–27.

Collett, D. (1991). Modelling Binary Data. Chapman and Hall, London.

Cox, D. R. (1977). The role of significance tests. Scandinavian Journal of Statistics, 4:49–70.

Cox, D. R. and Hinkley, D. V. (1974). Theoretical statistics. Chapman and Hall, London.

Crites, R. and Barto, A. (1998). Elevator group control using multiple reinforcement learning
agents. Machine Learning, 33(2-3):235–262.

Croarkin, C. and Tobias, P., editors (2004). NIST/SEMATECH e-Handbook
of Statistical Methods. National Institute of Standards and Technology.
http://www.itl.nist.gov/div898/handbook/ (April 2004).

de Groot, A. (1946/1978). Thought and Choice in Chess. Mouton, New York.

de Vegt, M. (2005). Einfluss verschiedener Parametrisierungen auf die Dynamik des Par-
tikelschwarm Verfahrens: Eine empirische Analyse. Diplomarbeit. Fachbereich Informatik,
Universität Dortmund.

Demetrescu, C. and Italiano, G. F. (2000). What do we learn from experimental algorithmics?
In Mathematical Foundations of Computer Science, pages 36–51.

Dolan, E. D. and More, J. J. (2001). Benchmarking optimization software with performance
profiles. Technical Report ANL/MCS-P861-1200, Argonne National Laboratory.

Draper, N. R. and Smith, H. (1998). Applied regression analysis. Wiley series in probability
and statistics. Wiley, New York, 3rd edition.

Driml, M. and Hanš, O. (1967). On a randomized optimization procedure. In Kožešnik,
J., editor, Transactions of the 4th Prague Conference on Information Theory, Statistical
Decision Functions and Random Processes (held at Prague 1965), pages 273–276, Prague.
Czechoslovak Academy of Sciences.

Droste, S., Jansen, T., and Wegener, I. (2000). Optimization with randomized search heuris-
tics: The (A)NFL theorem, realistic scenarios, and difficult functions. Technical Report
CI–91/00, SFB 531, Universität Dortmund.

Dueck, G. and Scheuer, T. (1990). Threshold accepting: a general purpose optimization
algorithm appearing superior to simulated annealing. Journal of Computational Physics,
90:161–175.

BIBLIOGRAPHY 165

Eberhart, R. and Shi, Y. (1998). Comparison between genetic algorithms and particle swarm
optimization. In Porto, V., Saravanan, N., Waagen, D., and Eiben, A., editors, Evolutionary
Programming, volume VII, pages 611–616. Springer, Berlin.

Efron, B. and Tibshirani, R. J. (1993). An Introduction to the Bootstrap. Chapman and Hall,
London.

Eiben, A., Hinterding, R., and Michalewicz, Z. (1999). Parameter control in evolutionary
algorithms. IEEE Trans. on Evolutionary Computation, 3(2):124–141.

Eiben, A. and Jelasity, M. (2002). A critical note on experimental research methodology in
EC. In Proceedings of the 2002 Congress on Evolutionary Computation (CEC’2002), pages
582–587. IEEE Press.

Eiben, A. and Smith, J. (2003). Introduction to Evolutionary Computing. Springer, Berlin.

Emmerich, M., Giotis, A., Özdemir, M., Bäck, T., and Giannakoglou, K. (2002). Metamodel-
assisted evolution strategies. In et al., J. J. M. G., editor, Parallel Problem Solving from
Nature – PPSN VII, Proc. Seventh Int’l Conf., Granada, pages 361–370, Berlin. Springer.

Encyclopaedia Britannica Online (2001). “Faraday effect”.
http://members.eb.com/bol/topic?eu=34314&sctn=1 (28 October 2001).

Fabian, V. (1962). On multiple decision methods for ranking population means. Ann. Math.
Stat., 33:248–254.

Federov, V. (1972). Theory of optimal experiments. Academic Press.

Feldt, R. and Nordin, P. (2000). Using factorial experiments to evaluate the effect of genetic
programming parameters. In Poli, R., Banzhaf, W., Langdon, W. B., Miller, J. F., Nordin,
P., and Fogarty, T. C., editors, Genetic Programming, Proceedings of EuroGP’2000, volume
1802 of LNCS, pages 271–282, Edinburgh. Springer.

Felscher, W. (1998). Two dicta. Historia Matematica Mailing List Archive.
http://sunsite.utk.edu/math archives/.http/hypermail/historia/aug98/0021.html. Article
posted: Wed, 5 Aug 1998.

Fisher, R. A. (1935). The Design of Experiments. Oliver and Boyd, Edinburgh.

Folks, J. (1981). Ideas of Statistic. Wiley.

Forster, M. and Sober, E. (1994). How to tell when simpler, more unified, or less ad hoc
theories will provide more accurate predictions. Brit. J. Phil. Sci., 45:1–35.

François, O. and Lavergne, C. (2001). Design of evolutionary algorithms – a statistical per-
spective. IEEE Transactions on Evolutionary Computation, 5(2):129–148.

Franco, J. and Paull, M. (1983). Probabilistic analysis of the Davis Putnam procedure for
solving the satisfiability problem. Discrete Applied Mathematics, 5(1):77–87.

Franklin, A., editor (1990). Experiment, right or wrong. Cambridge University Press, Cam-
bridge.

166 BIBLIOGRAPHY

Franklin, A. (Summer 2003). Experiment in physics. In Zalta, E. N., editor, The Stanford
Encyclopedia of Philosophy.

Galavotti, M. C., editor (2003). Observation and experiment in the natural and social sciences.
Kluwer, Dordrecht.

Galison, P. (1987). How experiments end. University of Chicago Press, Chicago.

Gentle, J. E., Härdle, W., and Mori, Y. (2004a). Computational statistics: An introduction.
In (Gentle et al., 2004b), pages 3–16.

Gentle, J. E., Härdle, W., and Mori, Y., editors (2004b). Handbook of Computational Statis-
tics. Springer, Berlin.

Giere, R. (1999). Using models to represent reality. In Magnani, L., editor, Model based
reasoning in scientific discovery. Proceedings of the International Conference on Model-
Based Reasoning in Scientific Discovery, pages 41–57, New York. Kluwer.

Gigerenzer, G. (2003). Where do new ideas come from? A heuristic of discovery in cognitive
sciences. In (Galavotti, 2003), pages 99–139.

Gigerenzer, G. and Selten, R., editors (2002). Bounded Rationality – The Adaptive Toolbox.
The MIT Press, Cambridge, Massachusetts.

Gigerenzer, G., Todd, P. M., and the ABC research group (1999). Simple heuristics that make
us smart. Oxford University Press, New York.

Giunta, A., Wojtkiewicz Jr., S., and Eldred, M. (2003). Overview of modern design of
experiments methods for computational simulations. In Proceedings of the 41st AIAA
Aerospace Sciences Meeting and Exhibit. paper AIAA-2003-0649.

Goldberg, A. (1979). On the complexity of the satisfiability problem. Technical Report 16,
Courant Computer Science Report, New York University, NY.

Goldberg, A., Purdom, P. W., and Brown, C. A. (1982). Average time analyses of simplified
Davis-Putnam procedures. Inf. Process. Lett., 15(2):72–75.

Goldberg, D. E. (1989). Genetic Algorithms in Search, Optimization, and Machine Learning.
Addison-Wesley.

Goldsman, D., Kim, S., Marshall, W. S., and Nelson, B. L. (2002). Ranking and selection for
steady-state simulation: Procedures and perspectives. INFORMS Journal on Computing,
14:2–19.

Goldsman, D. and Nelson, B. L. (1998). Statistical screening, selection, and multiple compar-
ison procedures in computer simulation. In Proceedings of the 30th conference on Winter
simulation, pages 159–166. IEEE Computer Society Press.

Goldstein, D., Gigerenzer, G., Hogart, R., Kacelnik, A., Kareev, Y., Klein, G., Martignon,
L., Payne, J., and Schlag, K. (2002). Group report: Why and when do simple heuristics
work? In (Gigerenzer and Selten, 2002), pages 174–190.

BIBLIOGRAPHY 167

Gooding, D., Pinch, T., and Schaffer, S. (1989). The uses of experiment: Studies in the
natural sciences. Cambridge University Press, Cambridge.

Gregoire, T. (2001). Biometry in the 21st century: Whither statistical inference? Invited
Keynote. Forest Biometry, Modelling and Information Science. Proceedings of a IUFRO
4.11 conference held at the University of Greenwich, June 2001.

Gregory, D., Gao, L.-X., Rosenberg, A., and Cohen, P. (1996). An empirical study of dynamic
scheduling on rings of processors. In 8th IEEE Symp. on Parallel and Distr. Processing,
pages 470–473.

Guala, F. (2003). Experimental localism and external validity. Philosophy of Science, 70:1195–
1205.

Gupta, S. S. (1965). On some multiple decision (selection and ranking) rules. Technometrics,
7:225–245.

Hacking, I. (1983). Representing and intervening. Cambridge University Press.

Hacking, I. (1996). Einführung in die Philosophie der Naturwissenschaften. Reclam.

Hacking, I. (2001). An Introduction to Probability and Inductive Logic. Cambridge University
Press.

Hartmann, M. (1988). An improvement on Paulsson’s sequential ranking procedure. Sequen-
tial Analysis, 7:363–372.

Hartmann, M. (1991). An improvement on Paulsson’s procedure for selecting the popula-
tion with the largest mean from k normal populations with a common unknown variance.
Sequential Analysis, 10:1–16.

Hastie, T., Tibshirani, R., and Friedman, J. (2001). The Elements of Statistical Learning.
Springer, Berlin.

Hawking, S. W. (1980). Is the end in sight for theoretical physics? : an inaugural lecture.
Cambridge University Press, Cambridge, New York.

Hillstrom, K. E. (1977). A simulation test approach to the evaluation of nonlinear optimization
algorithms. ACM Trans. Math. Softw., 3(4):305–315.

Hooker, J. (1994). Needed : An empirical science of algorithms. Operations Res., 42(2):201–
212.

Hooker, J. (1996). Testing heuristics: We have it all wrong. Journal of Heuristics, 1(1):33–42.

Hoos, H. H. (1998). Stochastic Local Search – Methods, Models, Applications. PhD thesis,
Technische Universität Darmstadt.

Isaaks, E. H. and Srivastava, R. M. (1989). An Introduction to Applied Geostatistics. Oxford
University Press.

Jansen, T. and Wegener, I. (2000). Evolutionary algorithms: How to cope with plateaus of
constant fitness and when to reject strings of the same fitness. Technical Report CI–96/00,
Universität Dortmund, Fachbereich Informatik.

168 BIBLIOGRAPHY

Jarvie, I. C. (1998). Popper, Karl Raimund. In Craig, E., editor, Routledge En-
cyclopedia of Philosophy. Routledge, London. Retrieved November 19, 2003, from
http://www.rep.routledge.com/article/DD052SECT2.

Jin, R., Chen, W., and Sudjitanto, A. (2002). On sequential sampling for global metamodeling
in engineering design. In Design Automation Conference, pages 1–10. ASME.

Jin, Y. (2003). A comprehensive survey of fitness approximation in evolutionary computation.
Soft Computing Journal. In press.

Johnson, D. S. (2002). A theoretician’s guide to the experimental analysis of algorithms. In
Goldwasser, M. H., Johnson, D. S., and McGeoch, C. C., editors, Data Structures, Near
Neighbor Searches, and Methodology: Fifth and Sixth DIMACS Implementation Challenges,
pages 215–250, Providence. American Mathematical Society.

Johnson, D. S., Aragon, C. R., McGeoch, L. A., and Schevon, C. (1989). Optimization by
simulated annealing: an experimental evaluation. Part I, graph partitioning. Operations
Research, 37(6):865–892.

Johnson, D. S., Aragon, C. R., McGeoch, L. A., and Schevon, C. (1991). Optimization
by simulated annealing: an experimental evaluation. Part II, graph coloring and number
partitioning. Operations Research, 39(3):378–406.

Jones, D., Schonlau, M., and Welch, W. (1998). Efficient global optimization of expensive
black-box functions. Journal of Global Optimization, 13:455–492.

Kan, A. (1976). Machine Scheduling Problems: Classification, Complexity and Computation.
Martinus Nijhoff, The Hague.

Kelton, W. (2000). Experimental design for simulation. In Joines, J., Barton, R., Kang, K.,
and Fishwick, P., editors, Proceedings of the 2000 Winter Simulation Conference.

Kempthorne, O. and Folks, L. (1971). Probability, Statistics, and Data Analysis. Iowa State
University Press.

Kennedy, J. (2003). Bare bones particle swarms. In Proc. 2003 IEEE Swarm Intelligence
Symposium, pages 80–87. IEEE Press.

Kennedy, J. and Eberhart, R. (1995). Particle swarm optimization. In Proc. IEEE Int.’l Conf.
on Neural Networks, volume IV, pages 1942–1948, Piscataway, NJ. IEEE Service Center.

Kennedy, J. and Eberhart, R. (2001). Swarm Intelligence. Morgan Kaufmann Publishers.

Kim, S.-H. and Nelson, B. L. (2001). A fully sequential procedure for indifference-zone
selection in simulation. ACM Trans. Model. Comput. Simul., 11(3):251–273.

Kleijnen, J. P. C. (1987). Statistical Tools for Simulation Practitioners. Marcel Dekker, New
York.

Kleijnen, J. P. C. (1997). Experimental design for sensitivity analysis, optimization, and
validation of simulation models. In Banks, J., editor, Handbook of simulation. Wiley, New
York.

BIBLIOGRAPHY 169

Kleijnen, J. P. C. (2001). Experimental designs for sensitivity analysis of simulation models.
In et al., A. W., editor, Proceedings of EUROSIM 2001.

Kleijnen, J. P. C. and Van Groenendaal, W. (1992). Simulation - A Statistical Perspective.
Wiley, Chichester.

Klein, G. (2002). The fiction of optimization. In (Gigerenzer and Selten, 2002), pages 103–121.

Knuth, D. (1981). The Art of Computer Programming. Addison-Wesley, Reading, 2. edition.

Kursawe, F. (1999). Grundlegende empirische Untersuchungen der Parameter von Evolutions-
strategien — Metastrategien. Dissertation, Fachbereich Informatik, Universität Dortmund.

Lagarias, J. C., Reeds, J. A., Wright, M. H., and Wright, P. E. (1998). Convergence properties
of the Nelder–Mead simplex method in low dimensions. SIAM J. on Optimization, 9(1):112–
147.

Law, A. and Kelton, W. (2000). Simulation Modeling and Analysis. McGraw-Hill, New York,
3rd edition.

Lewis, R., Torczon, V., and Trosset, M. (2000). Direct search methods: Then and now.
Journal of Computational and Applied Mathematics, 124(1–2):191–207.

Lophaven, S., Nielsen, H., and Søndergaard, J. (2002a). Aspects of the Matlab Toolbox
DACE. Technical Report IMM-REP-2002-13, Informatics and Mathematical Modelling,
Technical University of Denmark.

Lophaven, S., Nielsen, H., and Søndergaard, J. (2002b). DACE - A Matlab Kriging Toolbox.
Technical Report IMM-REP-2002-12, Informatics and Mathematical Modelling, Technical
University of Denmark.

Mammen, E. and Nandi, S. (2004). Bootstrap and resampling. In (Gentle et al., 2004b),
pages 467–495.

Markon, S. (1995). Studies on Applications of Neural Networks in the Elevator System. PhD
thesis, Kyoto University.

Markon, S., Arnold, D. V., Bäck, T., Beielstein, T., and Beyer, H.-G. (2001). Thresholding
– A selection operator for noisy ES. In Kim, J.-H., Zhang, B.-T., Fogel, G., and Kuscu, I.,
editors, Proc. 2001 Congress on Evolutionary Computation (CEC’01), Seoul, pages 465–
472, Piscataway NJ. IEEE Press.

Markon, S. and Nishikawa, Y. (2002). On the analysis and optimization of dynamic cellu-
lar automata with application to elevator control. The 10th Japanese-German Seminar,
Nonlinear Problems in Dynamical Systems, Theory and Applications. Noto Royal Hotel,
Hakui, Ishikawa, Japan.

Martinez, W. and Martinez, A. (2002). Computational Statistics Handbook with MATLAB.
Chapman & Hall / CRC.

Matyáš, J. (1965). Random Optimization. Automation and Remote Control, 26(2):244–251.

170 BIBLIOGRAPHY

Mayo, D. G. (1981a). In defense of the Neyman-Pearson theory of confidence intervals.
Philosophy of Science, 48:268–280.

Mayo, D. G. (1981b). Testing statistical testing. In Pitt, J., editor, Philosophy in Economics,
pages 175–201. Reidel, Dordrecht.

Mayo, D. G. (1983). An objective theory of statistical testing. Synthese, 57:297–340.

Mayo, D. G. (1996). Error and the Growth of Experimental Knowledge. The University of
Chicago Press.

Mayo, D. G. (1997). Severe tests, arguing from error, and methodological underdetermination.
Philosophical studies, 86:243–266.

Mayo, D. G. (2003). Comment on a paper by Berger. Statistical Science, 18(1):19–24.

McCullagh, P. and Nelder, J. (1989). Generalized Linear Models. Chapman and Hall, 2nd
edition.

McGeoch, C. (1986). Experimental analysis of algorithms. PhD thesis, Carnegie Mellon
University.

McKay, M. D., Beckman, R. J., and Conover, W. J. (1979). A comparison of three methods
for selecting values of input variables in the analysis of output from a computer code.
Technometrics, 21(2):239–245.

McPherson, C. and Armitage, P. (1971). Repeated significance tests on accumulating data
when the null hypothesis is not true. Journal of the Royal Statistical Society, A 134:15–25.

Mehnen, J., Michelitsch, T., Bartz-Beielstein, T., and Henkenjohann, N. (2004a). Systematic
analyses of multi-objective evolutionary algorithms applied to real-world problems using
statistical design of experiments. In Teti, R., editor, Proc. Fourth Int’l Seminar Intelligent
Computation in Manufacturing Engineering (CIRP ICME’04), volume 4, pages 171–178,
Universität von Neapel. C.O.C. Com. Org. Conv. CIRP ICME’04.

Mehnen, J., Michelitsch, T., Bartz-Beielstein, T., and Schmitt, K. (2004b). Evolutionary opti-
mization of mould temperature control strategies: Encoding and solving the multiobjective
problem with standard evolution strategy and kit for evolutionary algorithms. Journal of
Engineering Manufacture (JEM), 218(B6):657–666.

Merriam-Webster Online Dictionary (2004a). “Statistics”. http://www.merriam-webster.com
(2 April 2004).

Merriam-Webster Online Dictionary (2004b). “Theory”. http://www.merriam-webster.com
(2 April 2004).

Mertens, H. (1990). Moderne – Sprache – Mathematik: eine Geschichte des Streits um die
Grundlagen der Disziplin und des Subjekts formaler Systeme. Suhrkamp.

Metropolis, N. and Ulam, S. (1949). The monte carlo method. Journal of the American
Statistical Association, 44(247):335–341.

BIBLIOGRAPHY 171

Minsky, M. (1985). The Society of Mind. Simon and Schuster, New York.

Mitchell, D. G., Selman, B., and Levesque, H. J. (1992). Hard and easy distributions for SAT
problems. In Rosenbloom, P. and Szolovits, P., editors, Proceedings of the Tenth National
Conference on Artificial Intelligence, pages 459–465, Menlo Park, California. AAAI Press.

Montgomery, D. C. (2001). Design and Analysis of Experiments. John Wiley & Sons, New
York, NY, 5th edition.

More, J., Garbow, B., and Hillstrom, K. (1981). Testing unconstrained optimization software.
ACM Transactions on Mathematical Software, 7(1):17–41.

Moret, B. M. E. (2002). Towards a discipline of experimental algorithmics. In Goldwasser,
M., Johnson, D., and McGeoch, C., editors, Data Structures, Near Neighbor Searches, and
Methodology: Fifth and Sixth DIMACS Implementation Challenges, DIMACS Monographs
59, pages 197–213, Providence. American Mathematical Society.

Morgan, J. and Sonquist, J. (1963). Problems in the analysis of survey data and a proposal.
Journal of the American Statistical Association, 58:415–434.

Morrison, D. and Henkel, R., editors (1970). The Significance Test Controversy – A Reader.
Butterworths.

Mott, N. F. and Sneddon, I. N. (1948). Wave Mechanics and Its Application. Oxford Uni-
versity Press, London.

Myers, R. and Hancock, E. (2001). Empirical modelling of genetic algorithms. Evolutionary
Computation, 9(4):461–493.

Nagylaki, T. (1992). Introduction to Theoretical Population Genetics. Springer, Berlin.

Naudts, B. and Kallel, L. (2000). A comparison of predictive measures of problem difficulty
in evolutionary algorithms. IEEE Transactions on Evolutionary Computation, 4(1):1–15.

Nelder, J. and Mead, R. (1965). A simplex method for function minimization. Computer
Journal, 7:308–313.

Nelson, B., Swann, J., Goldsman, D., and Song, W. (1998). Simple procedures for selecting the
best simulated system when the number of alternatives is large. Technical report, Dept. of
Industrial Engineering and Management Science, Northwestern University, Evanston, Illi-
nois.

Neumaier, A., Shcherbina, O., Huyer, W., and Vinko, T. (2004). A comparison of complete
global optimization solvers. Submitted to the special issue on Global Optimization of Math.
Programming.

Newman, J. R., editor (1956). The World of Mathematics. Simon and Schuster, New York.

Neyman, J. (1950). First course in probability and statistics. Henry Holt, New York.

Noceda, J. and Wright, S. (1999). Numerical Optimization. Springer, Berlin.

172 BIBLIOGRAPHY

Parkes, A. J. and Walser, J. P. (1996). Tuning local search for satisfiability testing. In
Proceedings of the Thirteenth National Conference on Artificial Intelligence (AAAI’96),
pages 356–362.

Parsopoulos, K. and Vrahatis, M. (2002). Recent approaches to global optimization problems
through particle swarm optimization. Natural Computing, 1(2–3):235–306.

Parsopoulos, K. E. and Vrahatis, M. N. (2004). On the computation of all global minimizers
through particle swarm optimization. IEEE Transactions on Evolutionary Computation,
8(3):211–224.

Paulson, E. (1964). A sequential procedure for selecting the population with the largest mean
from k normal populations. Annals of Mathematical Statistics, 35:174–180.

Pearson, E. (1955). Statistical concepts in their relation to reality. Journal of the Royal
Statistical Society, 17:204–207.

Pichitlamken, J. and Nelson, B. L. (2001). Comparing systems via stochastic simulation:
selection-of-the-best procedures for optimization via simulation. In Proceedings of the 33nd
conference on Winter simulation, pages 401–407. IEEE Computer Society.

Pichitlamken, J., Nelson, B. L., and Hong, L. J. (2003). A sequential procedure for neighbor-
hood selection-of-the-best in optimization via simulation. Working Paper, Department of
Industrial Engineering and Management Sciences, Northwestern University (under second
review for Naval Research Logistics).

Popper, K. (1959). The Logic of Scientific Discovery. Hutchinson, London.

Popper, K. (1979). Objective Knowledge: An evolutionary approach. Oxford University,
Oxford.

Popper, K. (1983). Realisim and the aim of science. Rowman and Littlefield, Totowa, N.J.

Pukelsheim, F. (1993). Optimal Design of Experiments. Wiley.

Rardin, R. and Uzsoy, R. (2001). Experimental evaluation of heuristic optimization algo-
rithms: A tutorial. Journal of Heuristics, 7(3):261–304.

Rechenberg, I. (1973). Evolutionsstrategie. Optimierung technischer Systeme nach Prinzipien
der biologischen Evolution. problemata. frommann-holzboog.

Reeves, C. and Yamada, T. (1998). Genetic algorithms, path relinking and the flowshop
sequencing problem. Evolutionary Computation journal (MIT press), 6(1):230–234.

Rosenbrock, H. (1960). An automatic method for finding the greatest or least value of a
function. Computer Journal, 3:175–184.

Roth, A. (1978). A new procedure for selecting a subset containing the best normal population.
Journal American Statistical Association, 73:613–617.

Rubin, H. (1971). Occam’s razor needs new blades. In Godambe, V. and Sprott, D., editors,
Foundations of Statistical Inference, pages 372–374. Holt, Rinehart and Winston, Toronto.

BIBLIOGRAPHY 173

Rubinstein, A. (1998). Modeling Bounded Rationality. MIT Press, Cambridge, MA.

Rudolph, G. (1997). Convergence Properties of Evolutionary Algorithms. Verlag Dr. Kovač,
Hamburg.

Sacks, J., Welch, W. J., Mitchell, T. J., and Wynn, H. P. (1989). Design and analysis of
computer experiments. Statistical Science, 4(4):409–435.

Sanders, P. (2004). Announcement of the ”algorithm engineering for fundamen-
tal data structures and algorithms” talk during the summer school on experimen-
tal algorithmics, 5-7 july, 2004, kursuscentret rungstedgaard, rungsted kyst, den-
mark. http://www.diku.dk/forskning/performance-engineering/Sommerskole/scientific-
program.html.

Sano, Y. and Kita, H. (2000). Optimization of Noisy Fitness Functions by Means of Genetic
Algorithms using History of Search. In Schoenauer, M., Deb, K., Rudolph, G., Yao, X.,
Lutton, E., Merelo, J., and Schwefel, H.-P., editors, Parallel Problem Solving from Nature
(PPSN VI), volume 1917 of LNCS, pages 571–580, Berlin. Springer.

Santner, T., Williams, B., and Notz, W. (2003). The Design and Analysis of Computer
Experiments. Springer, Berlin.

Santner, T. J. (1976). A two-stage procedure for selection of δ∗-optimal means in the normal
case. Communications in Statistics - Theory and Methods, A5:283–292.

Satterthwaite, F. E. (1959a). Random balance experimentation. Technometrics, 1:111–137.

Satterthwaite, F. E. (1959b). REVOP or random evolutionary operation. Technical Report
Report 10-10-59, Merrimack College.

Schaffer, J. D., Caruana, R. A., Eshelman, L., and Das, R. (1989). A study of control
parameters affecting online performance of genetic algorithms for function optimization.
In Schaffer, J. D., editor, Proceedings of the Third International Conference on Genetic
Algorithms, San Mateo, CA. Morgan Kaufman.

Schmidt, J. W. (1986). Introduction to systems analysis, modeling and simulation. In Wilson,
J., Henriksen, J., and Roberts, S., editors, Proceedings of the 1986 Winter Simulation
Conference, pages 5–16.

Schneier, B. (1996). Applied Cryptography: Protocols, Algorithms, and Source Code in C.
Wiley, New York.

Schonlau, M. (1997). Computer experiments and global optimization. PhD thesis, University
of Waterloo, Ontario.

Schwefel, H.-P. (1975). Evolutionsstrategie und numerische Optimierung. Dr.-Ing. Disserta-
tion, Technische Universität Berlin, Fachbereich Verfahrenstechnik.

Schwefel, H.-P. (1977). Numerische Optimierung von Computer–Modellen mittels der Evolu-
tionsstrategie, volume 26 of Interdisciplinary Systems Research. Birkhäuser, Basel.

174 BIBLIOGRAPHY

Schwefel, H.-P. (1979). Direct search for optimal parameters within simulation models. In
Conine, R. D., Katz, E. D., and Melde, J. E., editors, Proc. Twelfth Annual Simulation
Symp., Tampa FL, pages 91–102, Long Beach CA. IEEE Computer Society.

Schwefel, H.-P. (1981). Numerical Optimization of Computer Models. Wiley, Chichester.

Schwefel, H.-P. (1988). Evolutionary learning optimum–seeking on parallel computer archi-
tectures. In Sydow, A., Tzafestas, S. G., and Vichnevetsky, R., editors, Systems Analysis
and Simulation, volume 1, pages 217–225. Akademie–Verlag, Berlin.

Schwefel, H.-P. (1995). Evolution and Optimum Seeking. Sixth-Generation Computer Tech-
nology. Wiley Interscience, New York.

Schwefel, H.-P., Rudolph, G., and Bäck, T. (1995). Contemporary evolution strategies. In
Morán, F., Moreno, A., Merelo, J. J., and Chacón, P., editors, Advances in Artificial Life
– Proc. Third European Conf. Artificial Life (ECAL’95), pages 893–907, Berlin. Springer.

Schwefel, H.-P., Wegener, I., and Weinert, K., editors (2003). Advances in Computational
Intelligence – Theory and Practice. Natural Computing Series. Springer, Berlin.

Selvin, H. (1970). A critique of tests of significance in survey research. In (Morrison and
Henkel, 1970), pages 94–106.

Shi, Y. (2004). Particle swarm optimization. IEEE CoNNectionS – The Newsletter of the
IEEE Neural Networks Society, 2(1):8–13.

Shi, Y. and Eberhart, R. (1999). Empirical study of particle swarm optimization. In Angeline,
P. J., Michalewicz, Z., Schoenauer, M., Yao, X., and Zalzala, A., editors, Proceedings of the
Congress of Evolutionary Computation, volume 3, pages 1945–1950.

Simon, H. (1955). A behavioral model of rational choice. Quarterly Journal of Economics,
69(1):99–118.

Simos, T. E. and Tsitouras, C., editors (2004). International Conference on Numerical Analy-
sis and Applied Mathematics 2004, Weinheim. European Society of Computational Methods
in Science and Engineering (ESCMSE), Wiley-VCH.

Simpson, T. W., Booker, A., Ghosh, D., Giunta, A. A., Koch, P., and Yang, R.-J. (2004).
Approximation methods in multidisciplinary analysis and optimization: a panel discussion.
Struct Multidisc Optim, 27:302–313.

Singer, S. and Singer, S. (2004). Efficient termination test for the nelder-mead search algo-
rithm. In (Simos and Tsitouras, 2004), pages 348–351.

Smith, V. (1962). An experimental study of competitive market behavior. Journal of Political
Economy, 70:111–137.

So, A. and Chan, W. (1999). Intelligent Building Systems. Kluwer A.P.

Spall, J. (2003). Introduction to Stochastic Search and Optimization. Wiley.

Stagge, P. (1998). Averaging efficiently in the presence of noise. In A.Eiben, editor, Parallel
Problem Solving from Nature, PPSN V, pages 188–197, Berlin. Springer.

BIBLIOGRAPHY 175

Staley, K. (2002). What experiment did we just do? Counterfactual error statistics and
uncertainties about the reference class. Philosophy of Science, 69:279–299.

Stewart, E. C., Kavanaugh, W. P., and Brocker, D. H. (1967). Study of a global search algo-
rithm for optimal control. In Proceedings of the 5th International Analogue Computation
Meeting, Lausanne, pages 207–230.

Sullivan, D. W. and Wilson, J. R. (1984). Restricted subset selection for normal popula-
tions with unknown and unequal varainces. In Proceedings of the 1984 Winter Simulation
Conference.

Sullivan, D. W. and Wilson, J. R. (1989). Restricted subset selection procedures for simula-
tion. Operations Research, 61:585–592.

Suppes, P. (1969a). A comparison of the meaning and uses of models in mathematics and the
empirical sciences. In (Suppes, 1969c).

Suppes, P. (1969b). Models of data. In (Suppes, 1969c), pages 24–35.

Suppes, P. (1969c). Studies in the methodology and foundation of science. D. Reidel.

Tarski, A. (1953). A general method in proofs of undecidability. In (Tarski et al., 1953), pages
3–35.

Tarski, A., Mostowski, A., and Robinson, R., editors (1953). Undecidable theories. North–
Holland Publ. Co.

Therneau, T. M. and Atkinson, E. J. (1997). An introduction to recursive partitioning using
the rpart routines. Technical Report 61, Department of Health Science Research, Mayo
Clinic, Rochester.

Trosset, M. and Padula, A. (2000). Designing and analyzing computational experiments for
global optimization. Technical Report 00-25, Department of Computational and Applied
Mathematics, Rice University.

Tukey, J. (1991). The philosophy of multiple comparisons. Statistical Science, 6:100–116.

Van Breedam, A. (1995). Improvement heuristics for the vehicle routing problem based on
simulated annealing. European Journal of Operational Research, 86:480–490.

van der Laan, P. (1992). Subset selection of an almost best treatment. Biometrical J.,
34:647–656.

Watson, J.-P., Barbulescu, L., Howe, A., and Whitley, D. (1999). Algorithm performance and
problem structure for flow-shop scheduling. In AAAI/IAAI, pages 688–695.

Weinert, K., Mehnen, J., Michelitsch, T., Schmitt, K., and Bartz-Beielstein, T. (2004). A
multiobjective approach to optimize temperature control systems of moulding tools. Pro-
duction Engineering Research and Development, Annals of the German Academic Society
for Production Engineering, XI(1):77–80.

Weisstein, E. W. (2004). “Convex function”. From MathWorld–A Wolfram Web Resource.
http://mathworld.wolfram.com/ConvexFunction.html (2 April 2004).

176 BIBLIOGRAPHY

Welch, B. L. (1947). The generalization of student’s problem when several different population
variances are involved. Biometrika, 34:29–35.

Welch, W. J., Buck, R. J., Sacks, J., Wynn, H. P., Mitchell, T. J., and Morris, M. D. (1992).
Screening, predicting, and computer experiments. Technometrics, 34:15–25.

Whitley, D., Mathias, K., Rana, S., and Dzubera, J. (1995). Building better test functions. In
Eshelman, L., editor, Proc. of the Sixth Int. Conf. on Genetic Algorithms, pages 239–246,
San Francisco, CA. Morgan Kaufmann.

Whitley, D., Mathias, K., Rana, S., and Dzubera, J. (1996). Evaluating evolutionary algo-
rithms. Artificial Intelligence, 85(1–2):245–276.

Whitley, D., Watson, J., Howe, A., and Barbulescu, L. (2002). Testing, evaluation and per-
formance of optimization and learning systems. Technical report, The GENITOR Research
Group in Genetic Algorithms and Evolutionary Computation, Colorado State University.

Wineberg, M. and Christensen, S. (2004). An Introduction to Statistics for
EC Experimental Analysis. CEC tutorial slides. http://ls11-www.cs.uni-
dortmund.de/people/tom/public html/experiment04.html.

Wolpert, D. and Macready, W. (1997). No free lunch theorems for optimization. IEEE
Transactions on Evolutionary Computation, 1(1):67–82.

Zoubir, A. M. and Boashash, B. (1998). The bootstrap and its application in signal processing.
Signal Processing Magazine, IEEE, 15(1):56–67.

Nomenclature

Roman symbols

number sign, page 95

1 vector of ones, page 94

d difference between sample means, page 22

y sample mean, page 12

y(v) mean of the node v, page 49

f̃ obtained best objective function value, page 94

x̃ position of the obtained best objective function value, page 94

ỹ measured response, page 74

AT transpose of matrix A

B(x0, ε) ε-environment of x0, page 62

ci passenger waiting bit, page 63

d difference vector of two random samples, page 39

e experimental outcome, page 24

E(X) expectation of the random variable X, page 44

ET (Y) experimental testing model, page 20

f objective function

F (A) size of the region A, page 140

f∗ known best objective function value, page 94

g generation, page 85

k number of design variables (factors), page 44

178 NOMENCLATURE

l leaf of a tree, page 49

M(µ) probability model, page 19

n sample size, page 12

nb number of bootstrap samples, page 39

nL the number of leaves in regression tree, page 50

nv number of cases in node v, page 49

P probability distribution, page 19

p passenger arrival rate, page 63

Pr(A) probability of event A

r sample size for reevaluation, page 126

R(T) mean squared error for the tree, page 49

R(v) squared error of a node, page 49

RCV(T) cross-validation estimate for the prediction error, page 50

Rcp(T) cost-complexity measure, page 50

RU testing rule, page 20

S2 sample variance, page 37

s2ν estimate of σ2
ε based on ν degrees of freedom, page 129

Sd sample standard deviation of the differences, page 38

si server present bit, page 63

S2
p pooled variance, page 37

sR estimate of the standard error of the cross-validation estimate of the prediction error,
page 50

sr success rate, page 83

s1/5 step size update rule, page 85

SSE sum of squares due to error, page 43

SSTREAT sum of squares due to the treatments, page 43

SST total corrected sum of squares, page 43

T test statistic, page 20

TL set of all leaves of a tree T , page 49

NOMENCLATURE 179

tα,n the upper α percentage point of the t-distribution with n degrees of freedom, page 37

U [0, 1] uniformly distributed r.v. from [0, 1]

v node of a tree, page 49

vL left subtree with root node v, page 50

vR rightsubtree with root node v, page 50

X regression matrix, page 44

x(t) state of the system at time t, page 64

X(0) set of search points at generation 0, page 77

x(0) starting point, page 59

x∗ minimizer (global or local), page 58

xl lower initialization bound

xu upper initialization bound

x∗ap apparent global optimizer, page 61

xborder border for successful solutions, page 94

xeffect effects of a subset, page 53

Y random variable, page 19

y′ gradient of y

Z(·) random process, page 52

Z
(α)
k,ρ upper-α equicoordinate critical point, page 37

zα upper α percentage point of the normal distribution, page 22

C scientific claim, page 19

D experimental design, page 71

DA algorithm design, page 70

DP problem design, page 70

F regression model, page 52

R correlation model, page 52

O observation, page 20

Y sample space, page 20

i.i.d. independent and identically distributed

180 NOMENCLATURE

r.v. random variable

Acronyms

ANOVA analysis of variance, page 43

CART classification and regression trees, page 49

CCD central composite designs

CI computational intelligence, page 62

CONT continuous update rule, page 85

CR critical region, page 20

CR critical region, page 37

CRN common random numbers, page 17

CS correct selection, page 127

DACE Design and analysis of computer experiments, page 5

DETEQ deterministically determined starting vectors, page 77

DETMOD deterministically modified starting vectors, page 77

DOE design of experiments, page 41

EA evolutionary algorithm, page 1

EC evolutionary computation, page 2

ESGC elevator supervisory group control, page 62

EXH resources exhausted, page 78

EXPIMP expected improvement heuristic, page 76

FSOL problem was solved (function values), page 78

INTV interval update rule, page 83

LHD Latin hypercube design, page 74

LHS Latin hypercube sampling, page 74

MBST mean best function value, page 95

MSE mean squared error of the predictor, page 53

NFL no free lunch theorem, page 59

NN neural network, page 62

NP Non-deterministic polynomial, page 4

NOMENCLATURE 181

NPT Neyman-Pearson theory of testing, page 20

NPT∗ Mayo’s extension of the Neyman-Pearson theory of testing, page 24

NUNIRND non-uniform random starts, page 78

P Polynomial, page 4

PRATE progress rate, page 98

PSO particle swarm optimization, page 12

RLD run length distribution, page 95

RSM Response surface methodology, page 102

SAT propositional satisfiability problem, page 58

SCR success ratio, page 94

SPO sequential parameter optimization, page 107

SQ severity question, page 24

SR severity requirement, page 24

STAL algorithm stalled, page 78

TA threshold acceptance, page 130

TR threshold rejection, page 130

TS threshold selection, page 130

TSP traveling salesperson problem, page 4

UNIRND uniform random starts, page 78

VRT variance-reduction techniques, page 17

XSOL problem was solved, page 78

Greek symbols

αd(δ) observed significance level (rejection), page 26

βd(δ) observed significance level (acceptance), page 28

δ difference between two population means, page 21

δ∗ the smallest difference worth detecting, page 127

δun the largest scientifically unimportant value in excess of δ0, page 26

ε machine precision, page 94

µ mean of Y , page 19

182 NOMENCLATURE

µ[i] i-th ordered mean, page 127

Ω parameter space, page 20

π policy, page 63

π∗ optimal policy, page 64

ρ correlation, page 37

σ standard deviation, page 22

σd standard error, page 22

τ threshold, page 130

ϕ progress rate, page 98

Index

1/5 success rule, 84
ε-environment, 62
(1 + 1)-ES, see evolution strategy
p-value, see significance level
t-test, 37
z-test, 36, 38
DETEQ, 77
DETMOD, 77, 109
EXH, 78, 109
FSOL, 78
NPT

Neyman-Pearson theory of testing, 20–23,
26, 29

NPT∗

Mayo’s extension of NPT, 24, 27–29, 32,
144, 153, 154

popperian testing, 32
NUNIRND, 78
STAL, 78, 109
UNIRND, 78
XSOL, 78, 109

accepting a hypothesis
case AC-1, 31

Ackerman, R., 152
Akaike’s information criterion (AIC), 103
algorithm design, 66, 69–71, 75, 76, 89
algorithm engineering, see experimental algo-

rithmics
algorithm tuning, see tuning
analysis of variance (ANOVA), 43

fundamental principle, 43
automatic detection technique (AID), 49

Bäck, T., 3, 85, 86, 103, 106
balanced samples, 127

best linear unbiased estimator (BLUE), 44
Beyer, H.-G., 98, 143, 148, 154
bias (systematic error), 17
big-valley structure, 67
bootstrap, 29, 36, 39–42, 154

observed significance, 39
border

for successful solutions, 94
boundary conditions, 90
bounded rationality, 90, 126, 146, 147, 158

calculation, 155
candidate, see point
ceiling effect, 100
ceteris paribus conditions, 19
classification and regression trees (CART),

49, 107
Cohen, P.R., 2, 24, 26, 100
common random numbers (CRN), 17, 38
complexity cost, 50
computational intelligence (CI), 62
computational statistics, 35, 106
confidence interval, 38
consonance interval, 29
convergence, 94–97, 100

velocity, 97
correct selection (CS), 127
correlation, 37
correlation function

exponential, 53
gaussian, 53
general exponential, 53

cost-complexity measure, 50
critical point, 127, 129, 132

upper-α equicoordinate critical point, 37
critical region (CR), 20, 37, 132

184 INDEX

design, 153
A-optimal, 71
D-optimal, 71
alphabetic optimal, 71
best-guess strategy, 79
central composite (CCD), 72
correction, 112
fractional factorial, 72
matrix, see regression matrix
one-factor-at-a-time, 70, 72, 80
point, 41, 70, 71, 79, 106, 107

LHD, 75
minimum number to fit a DACE model,

110
placement of, 74

sequential, 75
space, 41, 102
space filling, 45
variable, 41, 89, 109

design and analysis of computer experiments
(DACE), 5, 52, 69, 74, 90, 107, 110–
112, 120

Kriging, 50
design of experiments (DOE), 3, 5, 41, 45, 69,

70, 72, 74, 90, 101, 102, 107, 153
three-stage approach, 101

difference
between two population means, 21
smallest worth detecting, see threshold

effect, 41
confounded effects, 101
interaction, 41
main, 41

effectivity, 92
efficiency, 94
Eiben, A., 2, 5, 12, 92
elevator

balanced traffic, 62
bunching, 66
car, 63
down-peak traffic, 62
lunchtime traffic, 62
passenger arrival rate, 63
policy, 63
site, 63
supervisory group control (ESGC), 4, 62

up-peak traffic, 62
waiting time, 62

error
type I (α), 37
type II (β), 37

evolution strategy, 81
multimembered, 85
two membered, 83

evolution window, 143
evolutionary algorithm (EA), 1
evolutionary computation (EC), 2
evolutionary operation (EVOP), 75
expectation, 44
expected improvement, 75–77, 107
experiment, 151
experimental algorithmics, 4, 15, 154

guidelines, 15
experimental design, 41, 71
experimental region, see design space
experimental testing model, 20

factor, 41, 70
endogenous, 70
exogenous, 70

fail tests, 78
floor effect, 100
Fredkin’s paradox, 92, 130
function, see test function

convex, 137
function value, 58

generation, 85
Gigerenzer, G., 32, 125, 147, 148, 154, 158
global minimizer, 58

Hacking, I., 6, 11, 19, 23, 32, 33, 151, 152,
154–156

half-normal plot, 45, 102
heuristic, 126

annealing schedule, 144
fast and frugal, 147
simple, 126, 146, 147

Hooker, J., 4, 12–14
Hoos, H.H., 95
hypothesis, 36
hypothesis testing, 37, 153

indifference zone, 127

INDEX 185

initialization method, 76
DETEQ, 77
DETMOD, 77, 109
NUNIRND, 78
UNIRND, 78
deterministic, 76
non-uniform, 76
uniform, 76

interaction, 41
interaction plot, 46
interquartile range (IQR), 48

Kleijnen, J.P.C., 3, 41, 72, 102
Klein, G., 90, 91, 153
Kriging, see design and analysis of computer

experiments
Kursawe, F., 3, 97

Latin hypercube design (LHD), 109
adequate number of points, 109

leaf, 49
learning from error, 152
learning tools, 21
level, 41
linear model, 43
linear regression model, 43
logistic regression, 44
Lophaven, S.N., 110

machine precision, 94, 96
Markon, S., 63, 64, 66, 90, 130, 132, 133
maximum likelihood estimation (MLE), 53
maximum number of iterations (tmax), 100
Mayo, D., 1, 6, 11, 16, 19, 21–23, 25, 26, 28,

29, 32, 152
and K. Popper, 32

mean, 19
of a node, 49

mean squared error
for the tree, 49
of the predictor (MSE), 53

Mehnen, J., 90
minimization problem, 58
minimizer

local, 57
misconstrual, 25–27
model, 17, 155–157

instantial, 18

representational, 18
Monte Carlo sampling, 74
mutation, 75, 85

Nelder-Mead simplex algorithm (NMS), 81
neural network (NN), 62
new experimentalism, 1, 6, 19, 151

in evolutionary computation, 152
Neyman-Pearson theory of testing, see NPT
Nielsen, H.B., 110
no free lunch theorem (NFL), 59, 92
node, 49
noise, 126, 128, 138, 140, 143–145

1/5 success rule, 145
observational data, 16
random error, 17

Notz, W.I., 36, 53, 70, 72, 75, 79, 90, 107, 110,
112

observation, 20
observed significance level, 26–31, 117
observed significance level plot, 154
one-standard error rule (1-SE rule), 50, 51
optimization, 91

fiction of, 90
via simulation, 61

ordinary least squares (OLS), 44
overfitting, 147

parameter
endogenous, 5, 89
exogenous, 5, 89

parameter space, 20
particle swarm optimization (PSO), 12, 86
performance, 2, 15, 76, 91, 92, 134, 152

algorithm-to-optimal ratio, 4
efficiency, 98
expected, 61
mean best function value (MBST), 95
profile, 98
progress rate (PRATE), 98, 134
ratio, 98
robustness, 94
run length distribution, 95
success ratio (SCR), 44, 94
success ratio (SCR), 97

plateau, 62, 67, 138
point, 126

186 INDEX

global minimizer, 58
local minimizer, 57
starting point, 59

policy, 63
perceptron representation, 66
greedy, 66

Popper, K., 11, 16, 18, 19, 32, 33, 152
power, 25
predictor variables, 49
preference zone, 127

requirement, 127
probability model, 19
probability requirement, 127
problem

design problem, 92
on-line control problem, 92
repetitive problem, 92

problem design, 54, 69–71, 76, 89, 107, 109
program, see algorithm
progressive deepening, 90
propositional satisfiability problem (SAT), 58
pseudo-random number, see random number

quasi-Newton method, 82, 119, 122

random, 3, 16, 35
random evolutionary operation (REVOP), 75
random number, 3, 16, 35
recombination, 85
regression matrix, 44, 71, 72
regression tree, 36, 49

1-SE rule, 50
contruction of, 49

rejecting a hypothesis
case RE-1, 30
case RE-2, 30

reproduction cycle, see generation
response, 41, 74
response surface methodology (RSM), 102
resubstitution error, 50, 51
robustness, 92
Rudolph, G., 98
rules of inductive behavior, 21, 130
run length distribution (RLD), 95

S-ring, 63–67, 122, 123
optimal policy, 64, 65
passenger arrival probability, 64

policy, 63
state of the system, 64
state transition table, 64

sample
mean, 12
size, 12
size for reevaluation, 126
space, 20
standard deviation of the differences, 38
variance, 37

sample (design point, point), 41
Santner, T.J., 36, 53, 70, 72, 75, 79, 90, 107,

110, 112
scatter plot, 46
Schwefel, H.-P., 14, 92, 94, 97, 100, 123, 154
scientific claim, 19
selection, 85

closed, 126
elimination, 126
indifference zone (IZ), 126
multi stage (sequential), 126
open, 126
sequential (multi stage), 126
single stage, 126
subset selection, 126

separable, 58
sequential, 70
sequential parameter optimization (SPO), 90,

107
severity, 24, 32, 152, 154

criterion, 24
question (SQ), 24
requirement (SR), 24

significance level, 20, 22, 26, 37
size of a test, see significance level
Smith, V., 6
space mapping techniques, 63
speculation, 155
squared error of a node, 49
standard deviation, 83
standard error, 22
starting point, 76

random, 76
statistic, 20, 22–24, 27, 29
statistical hypothesis, 19
statistical models of hypotheses, 19
step length, 83

INDEX 187

step size
adjustment, 83
continuous 1/5 update rule (CONT), 85
interval 1/5 update rule (INTV), 83
update rule, 85

stochastic process model, 52
strategy parameter, see parameter
subset selection, 126
subtree, 49
success rate, 83, 98
sum of squares due to error (SSE), 43, 68
sum of squares due to the treatments (SSTREAT),

43, 68
symmetric, 58
systems analysis, 18
Søndergaard, J., 110

termination
method, 77, 78

EXH, 78, 109
FSOL, 78
STAL, 78, 109
XSOL, 78, 109

test function
absolute value (abs), 60
bisecting line cosine (bilcos), 60
Bohachevsky (boha), 60
elevator optimization, 65
Griewangk (grie), 60
identity (id), 60
L-1 norm (l1), 60
quartic with noise (quartic), 60
Rastrigin (rast), 60
Rosenbrock

generalized, 61
Rosenbrock (rosen), 60
Schwefel (schwe), 60
Shekel (shekel), 60
sphere (sphere), 60
step (step), 60, 138
Whitley (whit), 60

test scenario, 59
test statistic, 20, 37

see statistic, 20
test suite, 57
testing rule, 20, 21
threshold, 127, 130, 132, 133, 144

(1 + 1)-ES with threshold selection, 135
and progress rate, 134, 137
optimal value, 133
acceptance (TA), 130
rejection (TR), 130
selection (TS), 130

total corrected sum of squares (SST), 43, 68
traveling salesperson problem (TSP), 4, 67,

101
tree-based model, 49
tuning, 89–92, 122

ES, 102
NMS, 119
PSO, 111
PSOC, 117

two-sample test, 37
type I error, 20
type II error, 20

upper α percentage point of the normal dis-
tribution, 22

variable
scaled, 72

variance, 44
variance-reduction techniques (VRT), 17

Williams, B.J., 36, 53, 70, 72, 75, 79, 90, 107,
110, 112

