
Evolution Strategies and Threshold Selection

Thomas Bartz-Beielstein

Department of Computer Science
University of Dortmund, Germany

thomas.bartz-beielstein@udo.edu,
WWW home page: http://ls11-www.cs.uni-dortmund.de/people/tom

Abstract. A hybrid approach that combines the (1+1)-ES and thresh-
old selection methods is developed. The framework of the new exper-
imentalism is used to perform a detailed statistical analysis of the ef-
fects that are caused by this hybridization. Experimental results on the
sphere function indicate that hybridization worsens the performance of
the evolution strategy, because evolution strategies are well-scaled hill-
climbers: the additional threshold disturbs the self-adaptation process of
the evolution strategy. Theory predicts that the hybrid approach might
be advantageous in the presence of noise. This effect could be observed—
however, a proper fine tuning of the algorithm’s parameters appears to
be advantageous.

1 Introduction

Following Stützle and Hoos, metaheuristic approaches can be described as generic
techniques that are used “to guide or control an underlying problem-specific
heuristic method in order to improve its performance or robustness”[1]. Hybrid
metaheuristics combine methods of different metaheuristics. Two contradictory
trends can be observed in recent research: (i) to develop more and more new
algorithms or (ii) to analyze and understand existing heuristics and to add new
features only when necessary. Following (ii), we will analyze potential assets and
drawbacks that arise from a combination (hybridization) of evolution strategies
and threshold selection. The analysis comprehends methods from the new ex-
perimentalism, that is an influential trend in recent philosophy of science. The
new experimentalists develop statistical methods to set up experiments, to test
algorithms, and to learn from the resulting errors and successes [2].

In many cases heuristics require the determination of parameters before the
optimization run is performed. In the remainder of this paper, optimization runs
will be treated as experiments. From the viewpoint of an experimenter, design
variables (factors) are the parameters that can be changed during an experiment.
Here comes the new experimentalism into play: a systematic variation of these
factors and a statistical analysis of the resulting errors and successes are the
keys for an understanding of the algorithm’s performance. Generally, there are
two different types of factors that influence the behavior of an optimization
algorithm: (i) problem specific and (ii) algorithm specific factors .



2

These factors will be discussed in Section 2. Evolution strategies will be
introduced in Section 3, and threshold selection approaches are presented in
Section 4. Section 5 considers test problems and performance measures that are
used afterwards to perform the experiments. The paper closes with a summary
and conclusion.

2 Experimental Designs

Algorithm specific factors will be considered first: Endogenous can be distin-
guished from exogenous algorithm parameters. The former are kept constant
during the optimization run, whereas the latter, e.g. standard deviations in evo-
lution strategies, are modified by the algorithms during the run. An algorithm
design DA is a set of vectors with specific settings of an algorithm. A design can
be specified by defining ranges of values for the design variables, e.g. “1:1:10”
denotes integers from 1 to 10, whereas “1:10” denotes real numbers from the
interval [1, 10], or by specifying a set of values, e.g. “{1, 5, 10}”. Note that a
design can contain none, one, several or even infinitely many vectors. We will
consider quantitative factors only. How qualitative factors can be included into
the experimental analysis is discussed in [3].

Problem designs DP provide information related to the optimization problem,
such as the available resources, e.g. the number of function evaluations tmax.
Furthermore it is important to specify initialization and termination criteria. An
experimental design D consists of a problem design DP and an algorithm design
DA. The run of a stochastic search algorithm can be treated as an experiment
with a stochastic output Y (xa, xp), with xa ∈ DA and xp ∈ DP . If random seeds
are specified, the output would be deterministic. This case will not be considered
further, because it is not a common practice to specify the seed that is used in
an optimization run.

Performance can be measured in many ways, for example as the best or the
average function value from n runs (see also Section 5). One of our goals is to
find a design point x∗

a ∈ DA that improves the performance of an optimiza-
tion algorithm for one problem design point xp ∈ DP . To test the robustness
of an algorithm, more than one design point can be considered. The approach
to determine good design points presented in this paper is based on the sequen-
tial parameter optimization (SPO) methodology developed in [4] that has been
applied successfully in several contexts, e.g. [5, 6].

3 The Two Membered Evolution Strategy

The two membered evolution strategy, or (1 + 1)-ES, is included in our analysis
for three reasons: (i) It is easy to implement, (ii) it requires only a few exogenous
parameters, and (iii) it defines a standard for comparisons. Many optimization
practitioners apply the (1 + 1)-ES (Figure 1) to their optimization problem.
Schwefel [7] describes this algorithm as “the minimal concept for an imitation
of organic evolution”. The standard deviation σ will be referred to as step-width



3

Procedure (1 + 1)-ES/TS.

Initialization: Initialize the iteration counter: t = 1. Determine: (i) a point X
(t)
1

with associated position vector x
(t)
1 ∈ R

d, (ii) a standard deviation σ(t), and

(iii) a threshold value τ (t). Determine the function value y1 = f(x
(t)
1 ).

while some stopping criterion is not fulfilled do

repeat M times:

Mutation: Generate a new point X
(t)
2 with associated position vector

x
(t)
2 as follows:

x
(t)
2 = x

(t)
1 + z, (1)

where z is a d-dimensional vector. Each component of z is the real-
ization of a normal random variable Z with mean zero and standard
deviation σ(t).

Evaluation: Determine the function value y2 = f(x
(t)
2 ).

Selection: Accept X
(t)
2 as X

(t+1)
1 if

y2 + τ (t) < y1, (2)

otherwise retain X
(t)
1 as X

(t+1)
1 . Increment t.

end.

Adaptation:

Update σ(t). Update τ (t). (3)

done.

Fig. 1: The hybrid evolution/threshold selection strategy (ES/TS). The two membered

evolution strategy or (1 + 1)-ES for real-valued search spaces uses M = 1 and τ (t) ≡ 0.
The symbol f denotes an objective function f : R

d → R to be minimized. Threshold
selection (TS) uses a constant step-size σ(t) ≡ σ and a threshold adaptation scheme.

or mutation strength. We will consider the following two ES-variants:

(ES-1) Constant Step Length. The basic (1+1) algorithm does not modify
the step-size σ(t) in Equation 3 and uses a zero threshold τ (t). It is expected
to be outperformed by other algorithms. However, sometimes unexpected
results may occur. Probably nothing unexpected may happen, “but if some-
thing did happen, that would be a stupendous discovery” [8]. This algorithm
requires the specification of a (constant) step-size σ(t) value only.

(ES-2) Step-Length Adaptation. Step-length adaptation relies on the fol-
lowing heuristic: The step-size (standard deviation) should be adapted dur-
ing the search. It should be increased, if many successes occur, otherwise
it should be reduced. The 1/5 success rule derived by Rechenberg [9] while
analyzing the (1+1)-ES on two basically different objective functions for se-
lecting appropriate step lengths can be seen as one instance of this heuristic:
From time to time during the optimization obtain the frequency of successes,



4

i.e., the ratio of the number of the successes to the total number of trials
(mutations). If the ratio is greater than 1/5, increase the variance, if it is
less than 1/5, decrease the variance.

A more precise formulation is required to implement the 1/5 success rule. “From
time to time during the optimization run” can be interpreted as “after every
sn mutations.” “Increase the variation” can be implemented as a multiplication
with a step-size adjustment factor. Other schemes are possible, e.g. to additive
or exponential variations. The ratio of the number of the successes to the total
number of mutations, the so-called success rate sr, might be modified as well as
the factor by which the variance is reduced or increased, the so-called step size
adjustment factor sa. We analyze the following two variants to implement the
1/5 rule:

(intv) A success counter c ∈ N0 is initialized at iteration t = 1. If a success-
ful mutation occurs, c is increased. Every sn iterations, the success rate is
determined as c/sn and c is set to zero.

(cont) A success vector v(t) ∈ B
sn is initialized at iteration t = 1: v

(t)
k = 0,

1 ≤ k ≤ sn. If a successful mutation occurs at iteration t, the (1+t mod sn)-
th bit is set to 1, otherwise it is set to 0. After an initialization phase of sn

iterations, the success rate is determined in every iteration as
∑sn

k=1 v
(t)
k /sn.

The related algorithm designs are summarized in Table 1.

Table 1: Factors of the two membered evolution strategy. Based on the default values,
the step size σ is multiplied by 0.85, if the success rate is larger than 1/sr = 1/5 or
equivalently, if more than 20 out of 100 mutations have been successful.

Symbol Factor Range Default

sn adaptation interval N 100
sr 1/success rate R+ 5
sa step size adjustment factor R+ 0.85

σ(0) starting value of the step size σ R+ 1
s1/5 step size update rule {intv, cont } cont

4 Threshold Selection Algorithms

Threshold rejection (TR) and threshold acceptance (TA) are complementary
strategies. Threshold rejection has been proposed as a selection method for evo-
lutionary algorithms, that accepts new candidates if their function values are
significantly better than the values of the other candidates [10]. “Significant” is
equivalent to “by at least a margin of τ”. Threshold acceptance accepts a new
candidate even if its function value is worse [11–13]. The term threshold selec-
tion (TS) subsumes both selection strategies. The hybrid approach presented in



5

this paper analyzes how threshold selection can be integrated into the (1+1)-ES
strategy (Figure 1). Threshold selection provides the opportunity to escape from
local optima and is implemented in many algorithms, for example in simulated
annealing: During the initial iterations of a search algorithm it is advantageous to
accept worse candidate solutions. The probability of accepting a worse candidate
should be continuously reduced as the number of iterations increases. However,
it is a kind of art to choose a suitable annealing schedule [13]. The annealing
schedule can be seen as one instance of a more general acceptance heuristic:
The probability of accepting a worse candidate solution should be adapted during
the search. It should be reduced if a candidate solution is accepted, otherwise it
should be increased. We implemented three variants of threshold selection that
have been integrated into evolution strategies. Table 2 summarizes the factors
used in the threshold selection algorithms.

(TS-1) Constant. To integrate a threshold mechanism into an (1 + 1)-ES,
a non-zero threshold value τ has to be determined. This threshold affects
Equation 2.

(TS-2) Linear. This variant modifies the threshold value linearly. Negative
threshold values values are increased during the search process as follows:
τ (t) = τ(−1 + t/tmax), with τ (t) ∈ [−τ, 0]. If positive threshold values are
specified, the rule τ (t) = τ(1 − t/tmax), with τ (t) ∈ [τ, 0] is used to modify
the threshold.

(TS-3) Self-adaptive. We integrated a self-adaptive annealing schedule into
the algorithm. Although there is no obvious analogy for the “temperature” T
with respect to the optimization problem, we will use T , because it is an es-
tablished term to describe the variation of the acceptance probability during
the search process. Let yi denote the function values as defined in Figure 1.
If the mutation was successful, the temperature T is modified according to
T = T/(1 + bτT ), otherwise T = T/(1 − τT ). The new candidate solution
is accepted with probability exp(δ/T ), with δ = y2 − y1 (Equation 2). Note,
that τ defines how much the temperature (that determines the probability
of accepting a worse candidate solution) is decremented at each step as the
cooling proceeds, and b specifies a balance factor.

Symbol Factor Range Default

τ threshold value R 0
b balance factor R+ 5
σ value of the step size R+ 1

Table 2: Factors of the
threshold selection strategies.
Note, that τ influences the
acceptance probability in
the self-adaptive threshold
heuristic.



6

5 Experiments

Classical experimental approaches in evolutionary computation (i) define a set of
test (standard) functions, (ii) run a certain number of algorithms, and (iii) finally
compare the obtained results. The new experimentalism proposes a different
methodology: (i) Formulate a set of questions (hypotheses or goals), (ii) select
an appropriate set of test functions, (iii) run a certain number of algorithms, and
(iv) search for environments in which these results cannot be repeated. However,
the new experimentalism can benefit from the huge number of test functions
available in the optimization literature. Besides standard measures to determine
the algorithm’s performance such as the average, median, minimum, maximum
function values, and associated standard deviations, we report a measure based
on bootstrap, that reflects the goals of optimization practitioners to select the
best results from several runs and to skip the others:

1. Generate n results.
2. repeat k times:

(a) Select (without replacement) a set Mi of m < n values.
(b) Determine mi := minMi.

end.

3. Calculate
Pk

i mi/k. The resulting value will be referred to as minboot.

The first goal of our experimental analysis is to find a suitable algorithm
design x∗

1+1 for the (1 +1) ES. The next goal is to find environments where this
design does not work. The final analysis tries to find explanations, why special
environments do not permit a generalization of the results found so far. If not
stated otherwise, the methods used in this article do not require any assumption
on the underlying distributions.

5.1 How to Determine a Good Algorithm Design?

Classical designs such as fractional factorial designs are used in this pre-experi-
mental screening phase to eliminate worse algorithm designs. A very simple
configuration, which uses the sphere function

∑d

i x2
i , was chosen first (Table 3).

In the second step, more complex situations have been analyzed (varied starting
points, increased dimension). Forthcoming papers will investigate more com-
plex objective functions that introduce multi-modality or noise. Starting points

Table 3: Problem design for the first
pre-experimental experiments to deter-
mine a fair experimental setup: n de-
notes the number of repeated runs, tmax

is the number of function evaluations,
d the problem dimension, and x(0)is the
starting point.

Design n tmax d x(0)

x
(0)
sphere 50 1000 1 100

x
(1)
sphere 50 1000 1 10:100

x
(2)
sphere 50 250 2 10:100

x
(3)
sphere 100 1000 {1, 2, 5, 10} 100

x
(4)
sphere 100 106 10:10:60 100



7

have been initialized deterministically (DETEQ), the run terminated after tmax

function evaluations (EXH), and the mean best function value from n runs was

reported (MBST) [14]. The problem design x
(0)
spherefrom Table 3 was used to gen-

erate run length distributions (RLDs) [15]. The RLDs gave valuable hints to
determine tmax, the maximum number of function evaluations for the compar-
isons and thereby to avoid floor and ceiling effects. These effects occur if the
problem is too easy or too hard, respectively. The success limit was set to 10−6,
that means an optimization run was classified as successful, if it was able to
determine a candidate solution x with f(x) < 10−6.

The (1 + 1)-ES with algorithm design x
(0)
1+1 from Table 4 was chosen for

this analysis. Designs from this table are used during the screening phase to
detect outliers that can disturb the analysis. Note, interactions between factors
can be more important than main factor effects [14]. An analysis of the RLDs

from experiments that are based on algorithm design x
(2)
1+1 and problem design

x
(0)
spherereveals that a budget of tmax = 500 function evaluations is sufficient. After

1000 function evaluations, only 50 percent of the runs with sa = 1 attained
the pre-specified function value (here: 10−6), whereas 100 percent of the runs
with sa = 0.9 attained this border already after 300 function evaluations. This
is a positive effect of the step-size adaptation on the performance: a step-size
adjustment factor sa of 1 keeps the step-width constant, whereas sa = 0.9 enables
an adaptation that is based on the success rate.

Design sn sr sa

x
(0)
1+1 {10, 20, 100} {2, 5, 10} {0.5, 0.75, 0.9}

x
(1)
1+1 10 5 0.75

x
(2)
1+1 {10, 25} 5 {0.9, 1}

x
(3∗)
1+1 2 7.25 0.758

Table 4: (1 + 1)-ES: Algo-
rithm designs to calibrate the
experimental design and to
avoid floor or ceiling effects.
Threshold τ = 0 and initial
step size σ(0) = 1 have been
used.

SPO suggests to vary settings of problem design to guarantee that the ob-
served effect was not caused by one specific situation. Therefore, we analyzed
how algorithm designs scale with the problem dimension. Figure 2 depicts the
relationship between problem dimension and the empirical cumulative density
function of the number of function evaluations to reach a pre-specified goal. In
a similar manner as the dimension was varied, different starting points have

been used. The design x
(5)
sphere with tmax = 500, d = 2, and x(0) = 100 has been

determined in this pre-experimental phase and will be used for the following
experiments.

5.2 A Comparison of Different Heuristics

The algorithms will be fine-tuned in this section to generate results that enable a
fair comparison. In the first experiments, the algorithm with constant step-sizes



8

Fig. 2: Run-length distributions for 10-60
dimensional sphere functions. Increasing
the problem dimension from d to d + 1 re-
quires approximately 100 additional func-
tion evaluations to obtain a similar solu-
tion. Algorithm design x

(1)
1+1 and problem

design x
(4)
sphere.

0 2000 4000 6000 8000 10000
0

0.2

0.4

0.6

0.8

1
Empirical CDF

Number of function evaluations

F
(X

)

10

20

30

40

50

60

(xconst) has been analyzed (Figure 3). Two variants of problem design x
(5)
sphere

have been used: x
(6)
sphere varies problem dimensions (d=1:1:10), whereas x

(7)
sphere

uses different starting points x(0) ∈ {100, 300, 700, 1000}.

0 2 4 6 8 10
10

−5

10
0

10
5

Step size (constant)

F
u

n
c
ti
o

n
 v

a
lu

e

dim = 1

dim = 10

10
−1

10
0

10
1

10
2

10
−2

10
0

10
2

10
4

10
6

10
8

Step size (constant)

F
u

n
c
ti
o

n
 v

a
lu

e

 x
(0)

100

300

700

1000

Fig. 3: Constant step length. Sphere function. Dimensions and starting points modified.

Left: x
(6)
sphere and x∗

const. Right: x
(7)
sphere and x∗

const. Constant step-sizes of σ = 1 or σ = 1.5
appear to be useful.

The second series of experiments have been performed to analyze the influ-
ence of the success-rate determination scheme on the performance of the two-

membered evolution strategy (problem design x
(5)
sphere and the algorithm designs

from Table 5). SPO will be used to fine-tune the algorithm design detected during
the pre-experimental phase. A comparison of the RLDs shows only minor differ-

ences between the variants x
(4∗)
1+1 and x

(5∗)
1+1, e.g. minboot= 5.30e-40 and 1.28e-42

respectively (Table 6). A plot of the observed difference [14] was used to analyze
the statistical significance of their difference (Figure 4). We can conclude that
there is a difference in means. If 50 (500) samples are drawn, this hypothesis
would be wrong in 10 (1) out of 100 experiments. However: when A and B are
different treatments with associated means µA and µB , µA and µB are certain
to differ in some decimal places so that µA − µB = 0 is known in advance to be



9

false. The observed difference is very small and large sample sizes (e.g. 500) are
necessary for its statistical significance (i.e. to obtain a small p-value). Therefore
we conclude that the observed difference is not scientifically meaningful. This is
Step (S-12) as described in [4].

0 2 4 6 8

x 10
−7

0

0.2

0.4

0.6

0.8

1

Difference δ

O
b
s
e
rv

e
d
 s

ig
n
if
ic

a
n
c
e
 L

e
v
e
l α

n=10

n=50

n=500

Fig. 4: Comparing the difference
in the mean between success-rate
schemes intv and cont. Designs
x

(5)
sphere, x

(4∗)
1+1 , and x

(5∗)
1+1 (Table 5).

500 samples are necessary to indi-
cate that the hypothesis “there is a
difference in means as large as 2 ·
10−7” would be wrong only in one
out of 100 experiments. See [14] for
a discussion of OSL-plots.

Why do the algorithms with the tuned designs x
(4∗)
1+1 and x

(5∗)
1+1 perform better

than the default design? This means that algorithms with a very small memory,
only two or seven bits, outperform algorithms with larger sn values. Obviously, it
takes sn iterations to fill the memory vector. During this initial phase, no step-
size adaption can occur. If the budget provides only tmax = 250 iterations, a
memory vector with more than 100 entries appears to be prohibitive. However,
these considerations would explain small sn values, but not extremely small
values like sn = 2. How the size of the memory vector affects the performance
can be seen in Figure 5. It indicates that the (1 + 1)-ES is a well-scaled hill-
climber. When big steps are advantageous, the algorithm takes big steps, and
it takes little ones while approaching the optimum. The graph of the step size
illustrates this behavior. A larger memory vector reacts too slowly, step-sizes
should be adapted immediately.

Design sn sr sa s1/5

x
(4)
1+1 1 : 20 1 : 20 0.5 : 0.99 cont

x
(5)
1+1 1 : 20 1 : 20 0.5 : 0.99 intv

x
(4∗)
1+1 7 2.40 0.83 cont

x
(5∗)
1+1 2 2.92 0.58 intv

Table 5: (1 + 1)-ES: Al-
gorithm design to compare
two success-rate determina-
tion schemes. Problem design
x

(5)
sphere, τ = 0 and σ(0) = 1 for

all experiments.

Hybrid approaches have been considered next: Two factors, that are held
constant during the optimization run, are necessary to specify the algorithm de-
sign of the first hybridization, that uses constant step-sizes and constant thresh-
old values (xcsct): the step-size σ and the threshold τ . The experiments reveal



10

0 100 200 300 400 500
10

−50

10
−40

10
−30

10
−20

10
−10

10
0

10
10

Function evaluations

F
u
n
c
ti
o
n
 v

a
lu

e
; 
S

te
p
 s

iz
e

 Sn:7, Sr:2.4 Sa:0.83 Tau:0, startStep:1

function value

step size

0 100 200 300 400 500
10

−10

10
−5

10
0

10
5

Function evaluations

F
u
n
c
ti
o
n
 v

a
lu

e
; 
S

te
p
 s

iz
e

 Sn:50, Sr:2.4 Sa:0.83 Tau:0, startStep:1

function value

step size

Fig. 5: The memory effect: the influence of different memory vector sizes on the search
process. sr = 2.4, sa = 0.831, and sn = 7 (left) or sn = 50 (right). The plot of the
logarithm of the function value over time in the left figure shows a straight line. The
problem design x

(5)
sphere was used for these experiments.

that algorithms with zero threshold values perform best. Step sizes about 1
are preferred for the hybrid metaheuristic with constant step-sizes and constant
threshold (xcsct). Results from the other hybridizations (constant step-sizes, lin-
ear threshold (xcslt) and constant step-sizes with self-adaptive threshold (xsann))
indicate that non-zero threshold values worsen the algorithm’s performance.

The next series of experiments have been set up to analyze whether constant
or deterministically modified threshold schemes can improve the performance of
evolution strategies. Experiments clearly indicate that non-zero threshold values
worsen the algorithm’s performance in this situation, too. Even the self-adaptive
threshold scheme (xtemp) does not improve the algorithm’s performance. The
results from the experiments are summarized in Table 6. To improve compa-
rability, results from a Nelder-Mead simplex (NMS) optimization have been
added [16]. The Nelder-Mead algorithm requires the specification of four pa-
rameters (coefficients of reflection, expansion, contraction, and shrinkage), that
have been tuned with SPO. The NMS optimization was able to find a candidate
solution with function value 1.15e-77, a result that is significantly better then
the ES/TS results. However, NMS fails completely on the sphere function in
higher-dimensional cases, e.g. the best function value for d = 50 reads 4.77e+05,
whereas the (1+1)-ES can cope with these problems (Fig. 2). This is an inherent
problem of the NMS and not due to problems with the algorithm design.

Based on local performance measures, it can theoretically be shown that ES
benefits from TS [10, 14] under noise. Additive Gaussian noise has been added

to the objective function from design x
(5)
sphere. The algorithm design x

(5∗)
1+1 , that

has been tuned on the sphere function without noise, was used for the first
experiments. Constant non-zero threshold values (TS-1) were able to improve

the performance significantly. However, after applying SPO to x
(5∗)
1+1 in the noisy

environment, the tuned algorithm design performed better without threshold.



11

Table 6: Experimental results from the hybridizations of ES and TS. Problem design

x
(5)
sphere was used.

Algorithm Mean Median Sd Min Max minboot

x∗

const 1.65e-02 1.05e-02 1.78e-02 1.09e-05 1.46e-01 1.74e-05

x
(4∗)
1+1 9.67e-27 2.07e-32 9.07e-26 4.98e-40 9.06e-25 5.30e-40

x
(5∗)
1+1 2.73e-25 2.52e-34 2.57e-24 2.61e-44 2.57e-23 1.28e-42

x∗

csct 2.18e+03 399.43 4.89e+03 0.4656 1.89e+04 0.9612
x∗

cslt 0.3414 0.0164 2.6340 1.72e-06 25.9286 5.14e-04
x∗

sann 0.0160 0.0099 0.0171 5.38e-04 0.1013 5.82e-04
x∗

τ 0.0484 0.0410 0.0342 9.23e-04 0.1361 0.0012
x∗

τ(t) 0.0474 0.0414 0.0340 8.54e-04 0.2327 0.0014

x∗

temp 7.21e-07 5.24e-07 7.95e-07 1.04e-08 5.67e-06 1.62e-08
NMS 1.15e-77 − 0 − − −

These experiments indicate that there are situations (under noise), in which a
combination of ES and TS might be beneficial.

6 Summary and Conclusion

The paper demonstrated the huge potential for the new experimentalism in
computer science. Good algorithm designs can lead to impressive performance
improvements and to robust algorithms that can be constructed systematically.
SPO provides means for an in-depth understanding and fair comparisons of
algorithms. The framework of the new experimentalism can be used to determine
if statistically significant results are scientifically meaningful.

The SPO approach presented here can easily be applied to other algorithm–
problem combinations. A recent paper discusses three scenarios to demonstrate
its flexibility: (i) to analyze newly developed algorithms, (ii) to compare well-
known algorithms, and (iii) to apply algorithms efficiently and effectively to
complex real-world optimization problems [6]. Or, consider for example binary
search spaces: mutation can be realized by random bit-flips of the position vector

x
(t)
1 . The probability pm of flipping a bit can be regarded as the pendant to

the mutation strength σ. Or, travelling salesperson problems can be regarded
as ordering problems that require combinatorial search spaces. A search step
operator defines the number of states ns that can be reached from a parental
state (neighborhood) within one move step. The number of move steps s can be
seen as a pendant to the mutation strength σ.

The sphere function has been chosen as a test-function with a calculable
influence on the results. Evolution strategies require only a small memory vector
while optimizing the sphere—too much information (memory) is debilitating. No
difference between the two step-size adaptation schemes (intv and cont) could
be observed. Is this also true for higher dimensions and other test-functions?

ES clearly outperformed TS on the sphere due to its self-adaptiveness. Nev-
ertheless, there may be other environments (problem designs), in which a hybrid



12

approach is beneficial (noise, multi-modality, combinatorial optimization prob-
lems). Following the methodology presented in this paper, we are seeking for
environments in which the step-size adaptation does not work and hybrid ap-
proaches can be improve the performance.

References

1. H. H. Hoos and T. Stützle, Stochastic Local Search—Foundations and Applications.
Elsevier, 2005.

2. D. G. Mayo, Error and the Growth of Experimental Knowledge. The University
of Chicago Press, 1996.

3. T. Bartz-Beielstein and S. Markon, “Tuning search algorithms for real-world appli-
cations: A regression tree based approach,” in Proc. 2004 Congress on Evolutionary
Computation (CEC’04), Portland OR, G. W. Greenwood, Ed., vol. 1. Piscataway
NJ: IEEE Press, 2004, pp. 1111–1118.

4. T. Bartz-Beielstein, K. E. Parsopoulos, and M. N. Vrahatis, “Design and analy-
sis of optimization algorithms using computational statistics,” Applied Numerical
Analysis & Computational Mathematics (ANACM), vol. 1, no. 2, pp. 413–433,
2004.

5. C. Lasarczyk and W. Banzhaf, “Total synthesis of algorithmic chemistries,” in
GECCO 2005: Proceedings of the Genetic and Evolutionary Computation Confer-
ence, 2005, in print.

6. T. Bartz-Beielstein, C. Lasarczyk, and M. Preuss, “Sequential parameter optimiza-
tion,” in Proc. 2005 Congress on Evolutionary Computation (CEC’05), Edinburgh.
Piscataway NJ: IEEE Press, 2005, in print.

7. H.-P. Schwefel, Evolution and Optimum Seeking, ser. Sixth-Generation Computer
Technology. New York: Wiley Interscience, 1995.

8. I. Hacking, Representing and intervening. Cambridge University Press, 1983.
9. I. Rechenberg, Evolutionsstrategie. Optimierung technischer Systeme nach Prinzip-

ien der biologischen Evolution. Stuttgart: frommann-holzboog, 1973.
10. S. Markon, D. V. Arnold, T. Bäck, T. Beielstein, and H.-G. Beyer, “Thresholding

– A selection operator for noisy ES,” in Proc. 2001 Congress on Evolutionary
Computation (CEC’01), Seoul, J.-H. Kim, B.-T. Zhang, G. Fogel, and I. Kuscu,
Eds. Piscataway NJ: IEEE Press, 2001, pp. 465–472.

11. J. Matyáš, “Random Optimization,” Automation and Remote Control, vol. 26,
no. 2, pp. 244–251, 1965.

12. E. C. Stewart, W. P. Kavanaugh, and D. H. Brocker, “Study of a global search
algorithm for optimal control,” in Proceedings of the 5th International Analogue
Computation Meeting, Lausanne, Aug.-Sept. 1967, pp. 207–230.

13. G. Dueck and T. Scheuer, “Threshold accepting: a general purpose optimization
algorithm appearing superior to simulated annealing,” Journal of Computational
Physics, vol. 90, pp. 161–175, 1990.

14. T. Bartz-Beielstein, “New experimentalism applied to evolutionary computation,”
Ph.D. dissertation, University of Dortmund, April 2005.

15. H. H. Hoos, “Stochastic local search – methods, models, applications,” Ph.D. dis-
sertation, Technische Universität Darmstadt, 1998.

16. J. C. Lagarias, J. A. Reeds, M. H. Wright, and P. E. Wright, “Convergence prop-
erties of the Nelder–Mead simplex method in low dimensions,” SIAM J. on Opti-
mization, vol. 9, no. 1, pp. 112–147, 1998.


