
21

SPOT—A Toolbox
for Visionary Ideas

Thomas Bartz-Beielstein

Abstract

We present SPOT, an open-source toolbox
for the experimental analysis of optimiza-
tion algorithms. Evolution strategies (ES)
have been severely criticized before they
started their triumphal procession as opti-
mization algorithms. Schwefel discussed
ideas which appeared to be provocative at
the first sight. SPOT provides a modern
framework to test these ideas. The extreme
programming methodology was used to im-
plement the toolbox. Schwefel’s idea that
forgetting is as important as learning, which
laid the cornerstone for comma-strategies
in ES, is analyzed.

1. Introduction

Schwefel proposed innovative ideas that
have “been laughed at“ first. For example,
Beyer and Schwefel (2002) wrote: “Had the
�ȝ���-ES already been laughed at because
it makes use not only of the so far best in-
dividual to produce an offspring, but also of
WKH� VHFRQG� EHVW�� HYHQ� WKH� ZRUVW� RXW� RI� ȝ�
parents, ...”

However, many of these ideas belong to
the standard repertoire of modern optimiza-
tion practitioners. We present a framework
to test new ideas and to derive interesting
conclusions: SPOT (sequential parameter
optimization toolbox), a toolbox for testing
new ideas in simulation and optimization.

Extreme programming is presented as a
valuable tool for testing stochastic algo-
rithms. As an example, Schwefel’s idea that
survival of the best ancestor is not always a
good advice is analyzed. SPOT was able to

reproduce results from Schwefel’s original
experiments.

2. The Sequential Parameter Optimiza-
tion Toolbox

SPOT has been developed as a toolbox for
the experimental analysis of algorithms. It
consists of three modules:

1. optimization

2. prediction

3. report and analysis

Each module is extensible and can be used
separately. Interfaces are kept as simple as
possible.

The optimization module contains an im-
plementation of an evolution strategy as
presented in Beyer and Schwefel (2002).
Optimization algorithms require the specifi-
cation of exogenous strategy parameters,
e.g. population size in ES, before they can
be started. One parameter setting is con-
sidered as a design point. The prediction
module generates design points that might
improve the algorithm’s performance. It us-
es the sequential parameter optimization
(SPO) framework (Bartz-Beielstein 2006),
which combines classical and modern sta-
tistical techniques such as DOE (design of
experiments) and DACE (design and anal-
ysis of computer experiments). The third
module is a collection of report generators
and visualization routines for the analysis of
the results.

Before we discuss the applicability of SPOT
to analyze new ideas in simulation and op-
timization, the implementation of the ES in
the optimization module is presented.

22

3. Extreme Programming

Because ES are stochastic search algo-
rithms, it is difficult to test their correctness.
Extreme programming (XP) tools have
been proven to be valuable for our imple-
mentation. In contrast to waterfall-
development approaches, XP demands
tests should be automated and performed
continuously. Code does not consist of sol-
id blocks, it is in a liquid state: it can be re-
factored or even completely thrown away
and rewritten. “Everything flows, nothing
stands still” (Fig.2).

Figure 2: Heraclitus, Detail of Rafaello Santi's "The
School of Athens" (1510), Vatican collection, Rome.
For Heraclitus everything is "in flux", as exemplified
in his famous aphorism “Everything flows, nothing
stands still". Fb78, Wikimedia Commons, lizenziert
unter CreativeCommons-Lizenz by-sa-2.0-de,URL:
http://creativecommons.org/licenses/by-
sa/2.0/de/legalcode

XP comprehends four basic techniques:
Coding, testing, listening, and designing
(Beck 1999). Features of the software do
not exist until they are verified and validat-

ed by tests. We take a glance at testing,
because it is a key practice in XP.

Each part of the program is isolated in XP.
The goal of the so-called unit testing is to
show that these individual parts are correct.
Unit tests are pieces of source code written
by a programmer to test a small and clearly
specified part of software (Hunt and Thom-
as 2003). Assertions indicate that the
source code behaves as expected. The fol-
lowing assertion assertTrue tests wheth-
er the condition is true. Figure 3 presents a
simple example in JAVA. If the condition is
not fulfilled (Fig. 4), a program terminates.

public void assertTrue (boolean cond){
if (!cond){

abort();
}

}

Figure 3: A simple assertion. The program is aborted
if the test fails

The concepts discussed so far consider de-
terministic computer programs—evolution
strategies are by definition stochastic
search algorithms. The deterministic behav-
iour of the test in Fig. 4 can only be guaran-
teed if the value 2 is assigned deterministi-
cally to the variable a. The test would pro-
duce nonsense if a is a random variable.

int a=2;
xxxx xxxx
xxx xxxx
assertTrue(a == 2);
xxx xxxxxx xx
xxxxxxxxxx x

Figure 4: This program terminates if the test fails

Randomness is a fundamental concept for
evolution strategies. Randomness compli-
cates testing, because the arguments for

23

the assertions are not deterministic, their
results are not predictable. However, re-
sults are certain if the random stream
seeds are set deterministically. One can go
even one step further: replace ES-functions
(methods) with deterministic functions. This
concept is referred to as “de-randomization”
in the following. De-randomization here is
loosely related to techniques in complexity
theory, but not to the de-randomized step-
size adaptation in ES. De-randomization
generates mock objects from random ob-
jects. Mock objects have dummy behaviour,
they replace domain objects. In JAVA,
Mock objects implement an interface (Fig.
5).

public interface IMutation {
public Individual mutate(Individual

x);
}

Figure 5: Mock objects implement an interface. They
are used in our example to imitate the behaviour of
mutation operators

To give an example, we consider the muta-
tion operator in ES. The real mutation op-
erator is implemented as shown in Fig. 6,
whereas the mock implementation is shown
in Fig. 7. The code can be tested if the ES-
mutation operator is initialized with a Mock-
Mutation object. The real code uses the
Mutation operator.

public class Mutation implements IMuta-
tion{
public Individual mutate(Individual x){
//the real mutation which uses
// randomness
xxxxxxxxxxx…
xxxx
xxxxxxxx
}
}

Figure 6: The real mutation operator can be imple-
mented without any modification. It does not “see”
the mock routines

Further ES operators, e.g., recombination
or selection, can be implemented and test-
ed in a similar manner. The reader is re-
ferred to the SPOT documentation for de-
tails. To show that SPOT can be applied to
analyze new ideas, we now investigate one
idea from "Natural Evolution and Collective
Optimum-Seeking".

public class MockMutation implements
IMutation{

private Individual b;

public void setMutationRsult(Individual
x) {

// method to control the deterministic

// behavior during the test

b=a;

}

public Individual mutate(Individual x){
// the mock mutation which produces
// deterministic results
return b;
}

}

Figure 7: The mock mutation operator returns deter-
ministic results

4. Forgetting and Learning: Schwefel’s
Results

The idea "forgetting is as important as
learning" (Schwefel 1992) sounds provoca-
tive at the first sight. Why should we skip
available information in decision making? Is
there any context where forgetting is bene-
ficial?

Schwefel wrote: " 'Survival of the fittest', of-
ten taken as Darwin's view, turns out to be

24

a bad advice. Forgetting, i.e. individual
death, and even regression show up to be
necessary ingredients of the life game."

He described the (1+1)-ES as a represen-
tation of Darwin's 'survival of the fittest' se-
lection principle (Schwefel 1992):

"According to a given selection criterion, a
descendant is rejected if its vitality is less
than that of its ancestor, the ancestor oth-
erwise. This scheme may be called a (1+1)
or a two-membered evolution strategy [...],
resembling the "struggle for life" between
one ancestor and one descendent."

The (1+1)-scheme can be extended to
���Ȝ��� �ȝ����� RU� HYHQ� �ȝ�Ȝ�� VHOHFWLRQ�
schemes—all these plus schemes use the
survival of the best. Schwefel introduced
the so-called comma-VWUDWHJLHV�� WKH� �ȝ�Ȝ��
versions: parents are no longer included in
the selection. This ES version requires a
birth-surplus. Note, that information con-
cerning the best found position so far (ob-
ject parameters) is forgotten. However, in-
formation concerning “good” internal mod-
els (strategy parameters) are inherited.
Formulated as a hypothesis, Schwefel's
idea reads:

(H) Survival of the best ancestor is not al-
ways a good advice.

Schwefel used the following experimental
setup (experimental design in the jargon of
statistics) to test (H): An (1,10)-ES is com-
pared to an (1+10)-ES on the 30-
dimensional sphere function f1 = �xi

2. The
progress rate was measured as log¥(F0/Fg),
where F0 denotes the start value, and Fg
the current value at generation g. Schwefel
demonstrated that the (1,10)-ES performs
better than the (1+10)-ES (Fig.8).

He explained this behaviour as follows
(Schwefel 1987):

“If an ancestor happens to arrive at a supe-
rior position, this might be - by chance - in

spite of a non-optimum step size, or a step
size which is not suitable for further genera-
WLRQV��7KH����Ȝ��VFKHPH�SUHVHUYHV� Whe un-
suitable step size as long as with it a further
success is placed. This leads to periods of
stagnation. Within a (1,Ȝ) ES the good posi-
tion, occasionally won with an unsuitable
step size, is lost, together with the latter,
during the next generation. This short term
regression, however, enhances the long
term velocity of the whole process by a
stronger selection with respect to the suita-
ble step size (strategy parameter). In other
words: Forgetting is as important as learn-
ing, the former must be seen as a neces-
sary integral part of the latter. One might in-
terpret the fact of an inherent finite life time
of living beings (preprogrammed maximum
number of cell divisions) as an appropriate
measure of nature to overcome the difficul-
ties of undeserved success - or, in a chang-
ing environment, of forgetting outdated
`knowledge'.”

Figure 8: Self learning of one common mutation step
size for the sphere function f1. a) (1+10) evolution
strategy, b) (1,10) evolution strategy. Higher pro-
gress [rate] values are better (Schwefel 1987).

25

5. Forgetting and Learning: SPOT Re-
sults

We repeated Schwefel’s experiments with
SPOT. The results from the previous sec-
tion could be reproduced (Fig. 9).

Although Schwefel did not specify the exact
experimental design, i.e., starting points, in-
itial step sizes, and other exogenous strat-
egy parameters, his results are reproduci-
ble—at least qualitatively. The curves de-
picted in Figs. 8 and 9 look similar even
though the exogenous parameters were
varied.

Figure 9: Self learning of one common mutation step
size for the sphere function f1. a) (1+10) evolution
strategy, b) (1,10) evolution strategy. Higher pro-
gress rate values are better. This figure was gener-
ated with SPOT, whereas Fig. 8 is the original figure
presented in Schwefel (1987)

6. Summary

We have introduced SPOT, a toolbox for
the experimental analysis of algorithms, to
discuss briefly one visionary idea, Schwe-
fel‘s “forgetting is as important as learning”
principle. SPOT provides a set of modern
software tools to test randomized search
algorithms and to confront visionary ideas
with reality.

SPOT can be used to test further visionary
ideas, e.g. the idea that “many wrongs do
make a right” which is related to recombina-
tion. Schwefel (1992) comments: “If more
than one, i.e. not only the best of the de-
scendants, become parents of the next
generation and recombination by sexual
propagation takes place, i.e. mixing of the
information gathered by different individuals
during the course of evolution, then
over-adaptation and consecutive stagnation
can be overcome. Now the convergence
rate steeply goes up with the population
size.” SPOT enables interested readers to
perform related experiments.

Schwefel propagated many other ideas,
some of them have been “re-invented” sev-
eral decades later, e.g. random search,
asynchronous parallelism, self-adaptation,
varying population sizes, meta-strategies,
the importance of robustness (effectivity),
ageing concepts, neighbourhood models,
prey-predator models, The reader is re-
ferred to Schwefel’s articles, many of them
are freely available on the internet.

The SPOT software and the results dis-
cussed in this article are available for other
researchers to test the huge potential of
evolution strategies.

We close with an anecdote: One of Schwe-
fel’s friends, a researcher who enjoys an
excellent reputation, stayed as a guest in
Dortmund. Inspired by studies in Schwefel’s
famous library he improved his own optimi-
zation algorithm. After the first day had
passed, he proudly presented his improved
algorithm: it used a modified selection op-
erator that worked in a similar manner as
selection in ES. On the next day, his algo-
rithm even worked better, because he mod-
ified a second operator in an ES-like man-
ner. On the third day, he reported that tak-
ing over the real-valued representation from
ES resulted in a significant improvement.

26

This went on until the end of the week. Fi-
nally, he confessed: “Hans-Paul, my algo-
rithm works much better now—but it looks
like your ES.”

Literature

Beck, Kent (1999) Extreme Programming Explained:
Embrace Change. Addison-Wesley, New York.
Hunt, Andrew and Thomas, David (2003) Pragmatic
Unit Testing - in Java with JUnit, The Pragmatic Book-
shelf, Lewisville.
Schwefel, Hans-Paul (1981) Numerical Optimization
of Computer Models. Wiley, Chichester.
Schwefel, Hans-Paul (1987) Collective phenomena in
evolutionary systems. In P. Checkland and I. Kiss, edi-
tors, Problems of Constancy and Change - The Com-
plementarity of Systems Approaches to Complexity,
Proc. 31st Annual Meeting, volume 2, pages 1025-
1033, Int'l Soc. for General System Research, Buda-
pest.
Schwefel, Hans-Paul (1992) Natural evolution and
collective optimum seeking. In A. Sydow, editor, Com-
putational Systems Analysis - Topics and Trends,
pages 5-14. Elsevier, Amsterdam.
Bartz-Beielstein, Thomas (2006) Experimental Re-
search in Evolutionary Computation, Springer, Heidel-
berg.
Beyer, Hans-Georg and Schwefel, Hans-Paul
(2002) Evolution strategies – A comprehensive intro-
duction, Natural computing 1:3-52.

