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Abstract—In less-than-truckload terminals arriving trucks
have to be allocated to a gate and to a time slot for unloading.
The allocation to a specific gate results in different transporta-
tion volumes for the forklift trucks inside of the terminal,
depending on the destinations of the truck’s loads. While
minimizing these transports the time for trucks waiting to be
ordered to a gate also has to be minimized. For the first time this
problem has been tackled as a 2-objective optimization problem
and was solved by an (1+1)-evolution strategy. We developed a
model which is derived from real freight forwarder’s data and
represents a small company’s terminal on an average workday.

I. INTRODUCTION
In logistical terminals it is to be decided at which gate and

at what time a truck should be unloaded. The goods have
different destinations inside of the terminal and the distance
from the gates to these destinations is different for each gate
as illustrated in Fig. 1. It is important to minimize the waiting
time for trucks and keep the transportation volume inside
of the terminal low. Goods with a total weight under three
tonnes, which are often placed on a pallet for further transport
activities, are called less-than-truckload (LTL) consignments.
Bermudez & Cole (2001) were one of the first tackling

this kind of problem. They used a genetic algorithm to min
In their model they assume that a single gate does serve only
a single truck, which means just the allocation of trucks to
gates is considered and no time constraints exist. Another
approach by Stickel & Furmans (2005) on crossdocking
terminals concentrates on the time-scheduling aspect and
also takes the vehicle routing for inbound and outbound
routes into account. The associated mathematical model is
very complex. It was possible to solve the mixed integer
linear program (MILP) with CPlex for very small problem
instances. The processes inside of terminals were solved
by Li & Rodrigues (2004) using an hybrid evolutionary
algorithm.
Chmielewski & Clausen (2005, 2006) developed an

enhanced mathematical model for optimizing less-than-
truckload terminals that is based on a time discrete multicom-
modity flow and supplemented by necessary side constraints.
The resulting MILP was programmed with the optimization
solver CPlex 4.1 and different test scenarios were applied to
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the Branch-and-Cut algorithm implemented in CPlex. On the
one hand the test scenarios show that for small and middle
sized problem instances good solutions can still be found.
But on the other hand—especially for the case of medium
sized problems—finding optimal solutions takes up to 30
minutes or more. Obviously, this time span is prohibitive for
on-line optimization problems. So, exact solution methods
are not relevant for the dynamic allocation of trucks to gates
in logistical terminals. Also the two objectives have so far
only been considered by including a penalty for late docking
into the monocriterial objective function.
In our paper we present an approach that allows to allocate

multiple trucks to the same gate on different timeslots, so
extending the model Bermudez & Cole (2001) used for their
genetic algorithm. Compared to Stickel & Furmans (2005)
we were able to find good solutions for much larger prob-
lem instances, but the underlying model of crossdocking-
terminals is different in many aspects from LTL-terminals.
Therefore, the results are not directly comparable. The un-
derlying model is similar to the one used by Chmielewski &
Clausen (2005), but in our new approach the problem was
tackled as a multiobjective problem for the first time.
We solved the two criteria decision problem of minimizing

the transportation volume inside of LTL terminals and the
waiting time for trucks between arrival at the terminal and
being assigned to a gate. This problem will be referred to
as the LTL-problem in the remainder of this article. The
next section will give a more detailed definition of the
corresponding model, which is very similar to the model used
in Chmielewski & Clausen (2005). Section 3 will introduce
the algorithm we used to solve the problem: a 1+1 evolution
strategy. The experiments are then described in Sect. 4. Next
the experiment’s results are discussed in Sect. 5 and different
variants are being compared. Finally we give a summary in
Sect. 6.

II. PROBLEM

The transport of LTL goods within a country or a region
is organized via a transportation network. The transportation
request of one customer (normally between 1 and 10 pallets)
usually does not suffice to fill the load area of a whole truck
(up to 33 pallets). The network structure allows companies to
use bundling effects by consolidating all consignments with
the same long distance destination on one truck. Therefore,
a transportation network consists of several logistical sites,
which will be referred to as freight forwarding terminals.



These terminals are spread uniformly over the region or
country and are interlinked by line haul traffic.
The core element of a terminal is the transfer station which

is a building with several gates (depending on the size of
the terminal between 20 and 100 gates). The gates can be
separated in inbound and outbound gates. Inbound gates are
used for discharging trucks and outbound gates for charging.
Some gates, called multi-functional gates, can be used for
both logistical functions (inbound and outbound).
A local area is assigned to each terminal of a transportation

network. The daily transportation requests of all customers
located within this area are collected in local tours during
the day by small trucks. In the afternoon, these trucks arrive
according to a certain timetable with earliest arrival time at
the freight forwarding terminal. Some trucks will be needed
for further tours or transport services and therefore have
to leave the terminal at a certain point of time or at least
as soon as possible. Within its attendance time, a truck is
allocated to an inbound gate to be discharged. The different
goods from that truck are consolidated according to their
long distance destinations. Afterwards, they are transported
by forklift trucks within the building to those outbound gates
where the trucks for the different long distances are loaded.
The long distance trucks leave the site in the late evening

according to a certain timetable that guarantees their over
night arrival on time at a partner terminal. Recapitulating, a
terminal has two main operating periods: the inbound of local
collection tours with subsequent outbound of long distance
(12am - 8pm) and the inbound of long distance trucks with
the outbound of small trucks for delivering goods in the local
area (12pm - 9am).
The assignment of trucks to gates and time slots is also

known as yard management. It is the interface between tours
that are conducted on the road network and the processes and
operations for the transshipment of goods within the terminal
building. It effects the amount of the resulting distances
for the transshipment of all load units between the inbound
gates and the outbound gates. Therefore, one objective of
the planning is to find an optimal allocation that leads to
minimal total distances and a minimal number of resources
needed in operations. A second objective is the minimization
of waiting times. Trucks should be allocated to a gate as soon
as possible after their arrival at the terminal. Each truck has
an individual time table indicating the earliest arrival time
and the latest departure time from the terminal.
The planner has to reserve a time slot within this period

of time that is long enough for discharging and charging the
booked number of load units. If a truck is not allocated right
after its arrival, the driver has to wait in a parking zone until
he gets further information. Therefore, minimizing waiting
times leads to less crowded yards. In addition, trucks should
be charged and discharged as soon as possible to reserve
dock gates for time critical or very late trucks.
Figure 1 shows how the transport volume depends on

both the assigned gate of the inbound tour and the number
of palettes to each outbound tour/gate. In this example the

Fig. 1. Visualization of the decision to make: The transportation volume
depends on the assigned gate and number of palettes to be transported to
the outbound Tours. In this example the inbound tour contains 3 pallets for
outbound tour A, 5 for tour B and 7 for tour C. If the inbound truck is
assigned to the left gate then the average transportation volume is low as
most of the pallets have to be transported to a close destination. If the truck
is allocated on the right gate then the destination C, to which most pallets
have to be transported, is far away so the resulting transportation volume
is higher. One of the objectives of the fitness function described in section
III-D is the total transportation volume for all trucks

left gate results in less transportation volume than the right
gate. As the time available on each gate is limited not every
inbound tour may be assigned to its optimal gate. Also when
the inbound tour arrives at the terminal its optimal gate may
be blocked by another inbound tour - the decision to make
is to either wait until the optimal gate is freed or pick a sub-
optimal inbound gate. Depending on these decisions the two
conflicting objectives of minimizing total transport volume
inside of the terminal and minimizing the total waiting time
for inbound tours have to tackled. The algorithms may also
decide to which gates the outbound tours have to be located
to, so the inbound tours can be assigned best.
In our model we consider a small terminal of rectangular

shape with 25 gates. 50 trucks have to be assigned to these
gates, 10 of the trucks being long distance trucks (outbound).
The position of outbound gates, inbound gates and multi-
functional gates are part of the solution the algorithms create
and just the number of gates is defined beforehand. Each
truck has to be allocated to a gate in an individual time
window between 3pm and 6pm and each truck carries 10
palettes in average for up to 5 different outbound gates. The
model used for our algorithms is derived from real freight
forwarder’s data and represents a small company’s terminal
on an average workday.

III. ALGORITHM

A. Representation of solutions
A candidate solution I implements an array of lists.

Consider the array of lists for the ith solution Ii =



[Gi1, Gi2, . . . , Gim], where m denotes the number of gates.
Each list Gij = [Tij1, . . . , Tijk] represents one gate. These
list entries represent tours. Each tour Tijl consists of an array
with four integer values:

Tijl = [tourNumber, gateNumber, startTime, endTime].

To accelerate the function evaluation, two additional arrays
to store times and gates were implemented. Within the
framework of evolutionary algorithms, candidate solutions
are also called individuals.

B. Description of the Simple Heuristic
The existing heuristical approach mimics the decisions

of a human planner and follows some simple rules and
classification figures.
First the tours are sorted by a combination of priority

and expected difficulty of being assigned to a gate. The
tour’s priority depends on an assesment based on the user’s
experience and mix/type of loads on the truck, while the
difficulty depends on the size of the time window and time
of arrival. The weight of each figure can be defined by the
user to find a sorted list of tours matching the individual
requirements.
Following this sorted lists each tour is then assigned to a

gate at the earliest possible time. This is done by calculating
the expected waiting time for the truck at each gate and the
resulting transportation volume for the loads on the truck
from that gate to all the load’s destinations inside of the
terminal. These two criterias are used to assign the tour to a
gate and the user may define the weights for combining the
two objectives to find a solution.
By changing a tour’s priority or varying the heuristic’s

weights different solutions can be found focusing either on
optimizing the waiting times for trucks and/or transportation
volume inside of the terminal.
It has to be pointed out, that the heuristic is unable to

optimize the allocation of outbound tours—they have to be
assigned to gates manually beforehand. This is similar to
the real world planning task when in LTL-terminals the
allocation of outbound tours usually is historically grown and
not adjusted regulary. Another drawback is, that the heuristic
is not built to find a set of Pareto-optimal solutions. It has
to be decided beforehand, if waiting times or transportation
volume has to be considered or how these objectives should
be weighted. So a single solution can be found but there
is no further knowledge about the possible solution space
available.
For these reasons, we decided to develop an algorithm

that can tackle the problem in a better way. A multiobjective
approach not only gives a range of solutions so that the
human planner is able to pick one that satisfies his needs—
we also gather knowledge about the solutions possible to
create.
A much more important issue is to develop an algorithm

which is able to estimate the potential benefit when out-
bound tours can be allocated freely. As a result, the current

allocation scheme and processes in LTL-terminals can be
optimized.

C. Description of the Evolution Strategy
Evolutionary algorithms are well suited to satisfy our

needs, as they can easily be implemented to find a set of
Pareto-optimal solutions and work quite well even on very
complex combinatorial optimization problems.
Therefore we have chosen a simple EA, the (1 + 1)-ES.

Schwefel (1995) described this algorithm as “the minimal
concept for an imitation of organic evolution.” Let f denote
a multi-objective function to be minimized. The rules of
an (1 + 1)-ES for MCO can be described as shown in
Algorithm 1.
As already mentioned before, there are two objectives

arising from the problem: minimization of distances within
the minimization of waiting times. Due to this multi-objective
nature of the problem, it was reasonable to apply multi-
objective optimization techniques. The decision to invoke
evolutionary multi-objective optimization techniques is based
on the needs of decision makers (planners) to have a set of
alternative solutions at hand to derive a final decision. Here,
the concept of Pareto dominance comes into play.
A solution one is said to dominate a solution two, iff all

components of the fitness function f of solution one are not
greater that the corresponding components of solution two
and really smaller in at least one component. The set of
non-dominated solutions is called the Pareto set of solutions
while the corresponding pictures under function f are called
the Pareto front.
The appreciated set of alternative solutions, a Pareto set,

to allow an a posterior decision in multi-objective optimisa-
tion problems is offered by evolutionary optimisation tech-
niques (Deb, 2001; Coello Coello et al., 2002). Several other
techniques need an a priori choice of a ranking of objectives
or the definition of weights to start the optimization.

Algorithm 1 (1 + 1)-ES
1: t = 1 /* Initialize iteration counter */
2: I(t) ← init() /* Initialize candidate solution */
3: A(t) ← ∅ /* Initialize archive */
4: repeat
5: I

(t)
New ← mutate(I(t)) /* Generate offspring */

6: if (̸ ∃I(t) ∈ A(t) : f(I(t)) ≺ f(I(t)
New)) then

7: I(t+1) ← I
(t)
New

8: A(t+1) ← {I(t)
New} ∪A(t) /* Update archive */

9: else
10: I(t+1) ← I(t)

11: end if
12: t← t + 1
13: until stopping criterium fulfilled

D. Fitness Function
As already mentioned while describing the problem, two

objective functions f1, f2 are considered for minimization.



Ignoring the resources needed for the operations inside the
transfer stations, the first one describes the way of each
pallet:

f1(Ii) :=
m
∑

j=1

k
∑

l=1

s
∑

r=1

d(Gij(Pijlr), Gid(Pijlr)),

with Pijlr being r-th pallet of tour Tijl at gate Gij with
destination gate Gid (d ∈ {1, . . . ,m}). The function d
describes the distance inside the transfer station from one
gate to another. It could also invoke different kinds of
resources for the operations, but we limited ourselves to
distances here.
The second objective function displays the waiting time

for each truck:

f2(Ii) :=
m
∑

j=1

k
∑

l=1

tw(Tijl),

with function tw(Tijl) being the difference between the point
of time the unloading of truck of the corresponding tour
is started and the arrival time at the transfer station. This
time is normally spent in some parking area. For reasons
of simplicity, we neglected a detailed description of all
constraints that can be derived from the problem description.
Of course, all constraints are represented in our algorithm for
the task.

E. Problem Specific Operators for the 1+1-ES
Search points are initialized as follows: Long distance

tours (Tlong) are randomly assigned to long distance gates
(Glong). If all long distance gates are occupied, the remaining
long distance tours are assigned to multifunctional gates.
Short distance tours (Tshort) are assigned to the first available
gate from the set of short distance and multifunctional gates.
The initialization is restarted if a tour cannot be assigned to
any gate.
The mutation operator chooses randomly a tour T ∈

{Tlong∪Tshort}, which will be reassigned. Next, a gate G′ ∈ G
with feasible arrival time is selected randomly. Two mutation
opererators have been implemented:
1) Random Mutation: redistribute tours T ′ that have been
previously assigned to G′ randomly to available gates.

2) Quick Mutation: assign T ′ to the first available gate.
In both cases, the mutation is repeated if a tour cannot be
assigned.

F. Selection
As mentioned above, we utilized a simple (1+1)-ES selec-

tion scheme, but it has to deal with multiple objectives and
therefore differs from the single-objective case, of course.
The selection scheme implemented accepts the offspring
individual to become the parent in the next generation,
iff it is non-dominated by all individuals generated by the
algorithms until now. The set of individuals generated within
the optimization run and non-dominated by each other is
called the current Pareto front PFcur.

In contrast to the simple evolutionary multi-objective op-
timizer SEMO, our approach keeps the parent individual, if
the offspring individual is not selected. SEMO chooses a new
parent in each generation uniformly from PFcur (Laumanns,
2003). The current Pareto front is updated after each gener-
ation, individuals dominated by the new parent are removed.

IV. EXPERIMENTS

An experimental design has to be specified before the ex-
perimental analysis can be started. Our experiments are based
on the experimental methodology from Bartz-Beielstein
(2006). A hypervolume can be used to judge the performance
of algorithms for multiobjective optimization problems. To
calculate the hypervolume value S(PFcur) the objective
function values of each individual of the Pareto-front are
considered. The hypervolume is the space covered by the
solutions of the Pareto front calculated with respect to a
chosen reference point xref :

S(PF) = ∆

(

⋃

I inPF

{x ∈ IRn|f(I) ≺ x ≺ xref}

)

,

with ∆ being the Lebesque measure of the hypercube
spanned by the solutions from the Pareto-front and the
reference point. For the two-dimensional case studied here,
this can be simplified to:

S(PF) = ∆

(

⋃

I inPF

[xref
1 − f1(I)]× [xref

2 − f2(I)]

)

.

As the door-assignment problem was introduced as a new
problem class, no representative results (as for TSP instances)
are available. To overcome this difficulty, we proceeded as
follows: The problem was solved with several algorithms that
used a similar budget, i.e., number of function evaluations.
The upper 10% quantile of the function values from all
results was chosen to characterize “good” algorithms. Run-
length distributions (Fig. 2) as proposed by Hoos (1998)
were used to determine an adequate number of function
evaluations for the final comparisons.
They are reliable tools to avoid floor- and ceiling effects.

These effects occur if problem instances that are chosen,
which are too hard, or too easy, respectively, for the algo-
rithms under consideration.
As can be seen from Fig. 2, 300,000 function evaluations

are a good compromise to detect differences between algo-
rithms and to enable a fair comparison.
One main research topic in evolutionary computation is the

design of problem-specific evolutionary algorithms (Beiel-
stein et al., 2003). The aim is to systematize the design of
evolutionary algorithms for problems with nonstandard rep-
resentations. Especially nonstandard, problem-specific repre-
sentations and variation operators are of great importance.
Therefore, it is an important step to develop and analyze
mutation operators for the LTL-problem. Two mutation (vari-
ation) operators, which were introduced in Sect. III-E, are
subject of our experimental analysis. Our comparison is
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Fig. 2. Run-length distribution to determine the computational budget, i.e.,
the number of function evaluations for the comparisons. The graphs illustrate
the RLD of the (1+1)-ES with quick mutation and with random mutation,
respectively. Based on these distributions, 300,000 function evaluations were
chosen

TABLE I
RESULT TABLE OF THE FUNCTION VALUES (×1.0e + 06) FROM n = 50

RUNS FOR THE LTL-PROBLEM. BETTER VALUES ARE PRINTED boldface

Design Min Mean Median Max SD
Quick 7.6587 8.6733 8.7182 9.3124 0.2967
Random 8.1642 8.8457 8.8562 9.4976 0.2380

based on the LTL-problem with 300,000 function evalua-
tions. Each run was repeated 50 times. Results from these
runs are shown in Table I. Histograms (Fig. 3) visualize the
numerical values from Table I. Outliers and variation of the
function values can easily be compared.

V. ANALYSIS

Experiments were performed to tackle the following tasks:
• Validation. Is the simulation model correct?
• Comparison. Is an evolutionary approach better than a
practical heuristic?

• Operators. Is it beneficial to implement problem-
specific operators for the ES?

A. Validation
Our simulation model is more than just an abstraction

developed by an analyst or theoretician working in isolation.
It is based on representative data. Comparisons with similar
studies and with expected results from real world data
support the assumption that our model is valid. Results have
been reported to practitioners who confirmed their validity.
However, this is the first step in a very complex validation
procedure. A detailed statistical comparison of output data
from our model and real-world data (which may take a year
or more) was not performed yet. Hence, we can state that the
validation performed so far gave no evidence that the model
is wrong.
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Fig. 3. Histograms comparing distributions of function values from runs
with random mutation and quick mutation schemes as introduced in Sect. III-
E. Larger values are better. Quick mutation outperforms random mutation
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Fig. 4. Comparison of results from the heuristic described in the text and
from two simple (1+1)-selection scheme. The presented Pareto fronts were
received from two runs with the (1+1)-Algorithm while the three points were
received with the heuristic featuring different weights. The left Pareto front
was created with flexible outbound tours while the right Pareto front has the
same fixed allocation of outbound tours to gates as the heuristic. It can be
seen that allowing to reallocate outbound tours has a major impact on the
solution and the size of the gap shows the potential of reallocating outbound
tours to gates. The three solutions of the heuristic have been created with
three different settings of how to weight the two objectives. It can be seen
that the (1+1)-Algorithm is better than all of the three single results and
that also more alternative solutions along the found Pareto front exist

B. Comparison
Results from the heuristic introduced in Sect. III-B are

compared to results from the multi-objective (1 + 1)-ES.
Figure 4 compares Pareto fronts after 300,000 function
evaluations of the (1 + 1)-ES with three solutions from the
heuristic.
It can be clearly seen, that the results from the heuristic

are outperformed by the solutions from the (1 + 1)-ES by
far. Nearly all points from the Pareto front dominate at
least one of the solutions from the heuristic. Many points
even dominate all three such solutions. Therefore, it can
clearly be stated, that the (1+1)-ES works much better than



Fig. 5. Two individuals of the left Pareto front from Fig. 4. It can be seen
that if waiting time for trucks is the main objective, then at least one truck
has been assigned to each gate and trucks are docking to gates very early
in general (right chart). On the other extreme if mainly the transportation
volume inside of the terminal is considered then some of the gates are not
used at all while some - probably generally good gates - are very crowded
and some trucks are assigned to gates on a very late time slot (left chart)

the heuristic designed by experts on this special problem.
Furthermore, the generation of the Pareto front with the
(1+1)-ES required only a few seconds CPU time. Compare
this value to the time required by the deterministic algorithm
used in Chmielewski & Clausen (2005, 2006). Therefore we
can state that the (1 + 1)-ES significantly outperforms state-
of-the-art approaches with respect to solution quality and
time to obtain this solution.

C. Operators

The quick mutation operator assigns tours to gates and
considers the time slots, whereas the random mutation op-
erator does not consider arrival times. Results presented
in Table I and Fig. 3 clearly demonstrate the usefulness
of problem specific knowledge for evolutionary algorithms.
Furthermore, experiments with a multimembered evolution
strategy which uses standard mutation and recombination
operators were performed. The (1 + 1)-ES outperformed the
multimembered-ES, too.

D. Interpreting solutions

A more detailed look at the solutions generated by the (1+
1)-ES might provide some insight that is helpful for further
improvements and can guide the development of enhanced
variation operators or representations. From two solutions of
the Pareto front, Gantt charts of the distribution of tours to
gates are presented additionally in Fig. 5.
These Gantt charts represent one gate in each row and the

blocks give a tour, that is assigned to the corresponding gate
and point of time. Therefore, the Gantt charts also display
the distribution of tours in time. Within all presented Gantt
charts, a block allocating a whole row (a gate for the whole
time) means the corresponding gate is allocated by a long
distance tour. This implies, that the gate is an outbound or a

multi-functional gate. In Fig. 5, two Gantt charts illustrating
solutions from the Pareto front are detailed:
1) A Gantt chart for the solution from the upper left
flank of the Pareto front, where the distances inside
the transfer station (f1) are minimized without caring
too much about waiting times.

2) A Gantt chart for the solutions from the lower right
flank of the Pareto front. Here, the focus lies on the
the minimization of the waiting time (f2) instead of
the distances.

The presented Gantt charts show the expected appearance. In
the one assigned to the solution minimizing f1, some gates
are not attended by any truck. This is the major difference
to the Gantt chart assigned to the solution minimizing f2 in
the lower right flank of the figure. Here, a tour is assigned
to every gate right in the beginning. This clearly links to
the minimization of waiting time, that is focused on in this
area of the Pareto front. In the other solution, some gates
are unattended, meaning these are far away from the long
distance trucks and the resulting distances for the pallets
would be too long. Here, a certain time is accepted to
be assigned to a gate nearer to the corresponding long
distance trucks. This clearly indicates the focus on distance
minimization in this area of the Pareto front.
Considering multi-functional gates, the different Gantt

charts emphasize another advantage of the (1 + 1)-ES. In
contrast to the heuristic, this approach is able to assign
different gates to long distance trucks. This can be seen from
the two Gantt charts, where different gates are occupied by
these trucks. The heuristic needs an a priori decision which
gates are assigned to long distance trucks.

VI. SUMMARY AND OUTLOOK
We introduced a simulation model derived from real

freight forwarder’s data. It models a small company’s ter-
minal on an average workday. This model–which is used
for LTL-terminals–differs in several aspects from breakbulk-
terminals and crossdocking terminals. Hence, results are
difficult to be compared. However, the proposed model is
superior to existing models in the following sense: Bermudez
& Cole (2001) did not take into account that multiple trucks
may share the same gate. Stickel & Furmans (2005) did
not include the waiting time for trucks—also the mix of
loads on a truck and the number of possible destinations is
much more complex in LTL-terminals. The model proposed
by Chmielewski & Clausen (2006) is very similar, but the
method is unable to solve larger problems efficiently and the
problem is optimized for a single objective only.
We demonstrated that a (1 + 1)-ES can solve the two-

objective problem. The (1+ 1)-ES outperformed an existing
heuristic. Problem specific operators improve the perfor-
mance of the (1 + 1)-ES. An evolution strategy, which did
not incorporate domain knowledge, failed completely on this
problem.
After the superiority of the (1 + 1)-ES over the simple

heuristic could have been shown, the approach will be



further investigated and compared to other techniques. The
(1 + 1)-ES shares some properties of the SEMO algorithm.
It suggests itself, that these approaches are to be compared
on the current test problem as well as on other ones.
Moreover, the (1 + 1)-ES will be compared to the multi-

membered (µ+λ)-ES. For the selection in the current multi-
objective test case, individuals will be ranked according to
their dominance-rank in comparison to all other µ + λ − 1
individuals. If it has to be decided between different solutions
with the same dominance-rank, this is done uniformly dis-
tributed at random. And, we did not apply the very efficient
and effective sequential parameter optimization technique
to improve the performance of the (µ + λ)-ES, see Bartz-
Beielstein (2006). This tuning procedure will be integrated
into further analyses.
Furthermore, new approaches to solve smaller instances of

the current problem mathematically are under development
and will be investigated and compared to the approach at
hand in the near future. A detailed comparison will be done to
deduce in what strategy should be preferred in which cases.
This is the most important conclusion for operators. But it
leads to more restrictions concerning gates if handled within
the mathematical approach. For a reliable comparison, this
needs to be treated in the evolutionary algorithm as well. On
the other hand side, the evolutionary approach offering more
flexible solutions without the need to fix gates to special tours
is highly appreciated by the operators.
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maler Torbelegungspläne in Stückgutspeditionsanlagen. In
DSOR Contributions to Information Systems, MKWI 2006,
Information Systems in Transport and Traffic.

Coello Coello, C. A., Van Veldhuizen, D. A., & Lamont,
G. B. (2002). Evolutionary Algorithms for Solving Multi-
Objective Problems. Kluwer, New York.

Deb, K. (2001). Multi-Objective Optimization using Evolu-
tionary Algorithms. Wiley-Interscience Series in Systems
and Optimization. New York NY: Wiley.

Hoos, H. H. (1998). Stochastic Local Search—Methods,
Models, Applications. PhD thesis, Technische Universität
Darmstadt, Germany.

Laumanns, M. (2003). Analysis and Applications of Evo-
lutionary Multiobjective Optimization Algorithms. PhD
thesis, Swiss Federal Institute of Technology, Zürich,
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