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1 Introduction

This article describes the SPO toolbox. SPO is an acronym for sequential
parameter optimization (Bartz-Beielstein, 2006). The SPO toolbox described
in this article is referred to as SPOT. It was developed over the last years
by Thomas Bartz-Beielstein, Christian Lasarczyk, and Mike Preuß. The main
purpose of SPO is to determine improved parameter settings for optimization
algorithms to analyze and understand their performance. SPO was success-
fully applied to numerous optimization algorithms, especially in the field of evo-
lutionary computation, i.e., evolution strategies, particle swarm optimization,
algorithmic chemistries etc. in the following domains:
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• machine engineering: design of mold temperature control (Mehnen et al.,
2005; Weinert et al., 2004; Mehnen et al., 2004)

• aerospace industry: airfoil design optimization (Bartz-Beielstein and Nau-
joks, 2004)

• simulation and optimization: elevator group control (Bartz-Beielstein et al.,
2005c; Markon et al., 2006)

• technical thermodynamics: non sharp separation (Bartz-Beielstein et al.,
2005b)

• economy: agri-environmental policy-switchings (de Vegt, 2005)

Other fields of application are in fundamental research:

• algorithm engineering: graph drawing (Tosic, 2006)

• statistics: selection under uncertainty (optimal computational budget al-
location) for PSO (Bartz-Beielstein et al., 2005a)

• evolution strategies: threshold selection and step-size adaptation (Bartz-
Beielstein, 2005)

• other evolutionary algorithms: genetic chromodynamics (Stoean et al.,
2005)

• computational intelligence: algorithmic chemistry (Bartz-Beielstein et al.,
2005b)

• particle swarm optimization: analysis and application (Bartz-Beielstein
et al., 2004a)

• numerics: comparison and analysis of classical and modern optimization
algorithms (Bartz-Beielstein et al., 2004b)

Further projects, e.g., vehicle routing and door-assignment problems and the
application of methods from computational intelligence to problems from bioin-
formatics are subject of current research.

2 Requirements

The SPO Toolbox relies on functions provided by the MATLAB Kriging tool-
box DACE developed by Lophaven et al. (2002). MATLAB itself and the
MATLAB statistics toolbox (which is already included in MATLAB) are also
required. SPOT is able to run under di↵erent operating systems. Experiments
described in Bartz-Beielstein (2006) were performed on various Linux Systems
(Debian, Suse).
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Figure 1: resulting direc-
tory structure

3 Installation and Demonstration

3.1 Installation - Make Your System Ready

1. Download the spot.zip file, which includes SPOT from
http://www.gm.fh-koeln.de/~bartz/experimentalresearch/spot.zip

2. Download the MATLAB DACE toolbox, which is freely available from
http://www2.imm.dtu.dk/~hbn/dace/

3. After the two files have been downloaded, create a new directory of your
choice where you want SPOT to be executed from and unzip both tool-
boxes into this directory (in this example we want g:\myspot to be this
directory).

4. SPOT can be used to tune every algorithm that allows (or requires) the
specification of exogenous parameters. Since there are several algorithms
available, we use an Evolution Strategy with Covariance Matrix Adaptation
(CMA-ES) algorithm to exemplify the procedure.
The CMA-ES sourcecode (cmaes.m) is already included in the spot.zip.
For more information and other versions of the CMA-ES package please
visit the o�cial website http://www.bionik.tu-berlin.de/user/niko/
cmaes_inmatlab.html.
Please note, that the CMA-ES package and SPOT can be used indepen-
dently.

5. The resulting directory structure should look like in Fig. 1.

6. Now start MATLAB and add the directory with all subfolders to the
PATH library of MATLAB. This can be done by selecting File ) Set
Path to use the SetPath dialog box or using the functions addpath and
genpath in combination, e.g. addpath(genpath(’g:\myspot’)). Next
you should change your current working directory to g:\myspot.

Adding the directory to the PATH library and changing current directory
can also be automated. The file startup.m will be executed automatically
on MATLAB startup if it exist in the MATLAB startup folder (startup
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folder may be s.th. like this on windows systems: ’%HOMEPATH%\My Doc-
uments\MATLAB’). Content of the startup.m file could look like this:

PATH_STR=’G:\myspot’;
addpath(genpath([PATH_STR]));
eval([’cd ’ PATH_STR]);
clear PATH_STR;

3.2 Demonstration - A first Example (CMA-ES algorithm)

3.2.1 Running the demo

Now, after you followed all steps above, you are able to run a demonstration by
simply calling spotdriver(’demo1000’) from the MATLAB command console.
This will start the SPO for two parameters of the CMA-ES algorithm. The two
parameters to be optimized in this example are named ’NPARENTS’ and ’NU’.
They are used to assign the ’number of parents’ and the ’population size’ for the
used Evolution Strategy algorithm. The number of parents and the population
size are two of the main preferred parameters to play with on Evolution Strat-
egy algorithms. At the beginning spotdriver generates the initial design and
starts the sequential parameter optimization after that. The performance of the
CMA-ES algorithm will be improved sequentially while the SPO algorithm is
running. This demo takes a few seconds or minutes (which is mainly depend-
ing on your System components). While the SPO is running, a plot window
will pop up, which visualizes the improvement of the optimization process until
then. This window is updated after each SPO-loop walk through. After the
SPO has finished its work, several statistical plots are generated automatically
to show the progress of the optimization process. In the following we will go
discuss some of these plots.

3.2.2 Understanding the results

The initial console output from the SPOT run (see Fig. 2) can be explained as
follows. First, all files from previous runs are deleted to ensure a clean start
(line 2-8). After that, the user defined region of interest for the (two) factors
to be optimized are diplayed (line 9,10). The initial design consists of 16 points
within the specified regions. The design points are displayed in line 11-26.

The last lines from the console output read as shown in Fig. 3. Line 4 shows
the factor settings from the best configuration and the corresponding function
values.

3.2.3 SPO Plots

Figure 4 shows results from the run demo1000.
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1: >> spotdriver(’demo1000’)

2: Clean up finished.

3: spot/demo1000.des deleted.

4: spot/demo1000.bst deleted.

5: spot/demo1000.res deleted.

6: spot/demo1000.dac deleted.

7: spot/demo1000.bcl deleted.

8: spot/demo1000.fbs deleted.

9: 1 50

10: 2 10

11: 25.347 5.2225

12: 44.583 2.9659

13: 15.108 3.233

14: 26.988 4.2093

15: 34.355 2.4231

16: 43.146 6.2626

17: 29.96 8.1013

18: 37.807 4.8361

19: 18.828 7.9191

20: 8.4869 9.5098

21: 36.572 3.8406

22: 49.363 5.6897

23: 22.198 9.4159

24: 12.448 7.2514

25: 4.6023 6.8547

26: 2.2425 8.7144

27: Initial designs written: Initialization done.................

Figure 2: SPOT generated output.

1: --- SPO step 7 of Inf. ---Algorithm runs: 63 of 50 ---

2: ’NPARENTS’ ’NU’

3: 2 8.7144

4: Min: 9.60936e-07, MinMerged: 4.81543e-05

5: Theta values: 0.5946 2.181

Figure 3: SPOT generated output. Final values.
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Figure 4: left: predicted function values; right: mean squared error

Figure 5: E↵ect plots

5. USER 
ALGORITHM

(e.g. cmaes.m)

1. SPO 8. Output
(plots and textoutput)

2. CONFIG
(e.g. demo1000.m)

3. ROI
(e.g. demo1000.roi)

6. CONFIG
(e.g. cmaesdemo1000.m)

USER-side

SPO-side
(SPO/USER interface)7. RES

(e.g. demo1000.res)

3. DES
(e.g. demo1000.des)

shell
(e.g. cmaesspot.m)

Figure 6: Functional principle of the SPO Toolbox
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4 How SPO works

The SPO can determinate and improve parameter settings for any extern algo-
rithm, which could be written in any programming language. The communica-
tion between SPO and the extern algorithm is transacted via simple structured
text files. To make your algorithm able to interact with SPO it is necessary
to build up a shell around your algorithm, so you don’t need to modify your
algorithm at all. The shell must be able to read parameter settings from a file,
start the algorithm with these parameter settings and finally write the algorithm
result to another file after it has finished.

The following files have to be set up by the user to configure the SPOT and
the algorithm:

CONFIG file for SPO: This file contains important SPO setup parameters.
For detailed parameter information see Table 1

ROI file - Region of Interests for the SPO: This file specifies the value
range of the algorithm parameters which should be optimized.

CONFIG file for external algorithm: This file contains setup parameters
for the external algorithm

Figure 6 clarifies how SPO mainly works and how it interacts with a user defined
algorithm. At startup SPO and the algorithms shell read initial information
from this specified configuration files (2, 3 and 6 in Fig. 6) to initialize SPO
and the algorithm. After that step was done, the optimization sequence begins:
SPO writes a design file (4 in Fig. 6). Afterward the shell runs the algorithm
with the parameter settings read out from the design file and writes the results
to a result file (7 in Fig. 6) after the algorithm has finished. Now the SPO
reads the result file and start the first optimization loop to fit the stochastic
process model and adapt the design file for better results next time. This whole
optimization sequence is running again and again until the enumeration of loops
to walk through is reached.

5 Configuration - Adapting SPOT Settings to
your needs

Based on the example from Sect. 3.2, we demonstrate several features of the
SPOT. Remember, there are three di↵erent configuration files related to SPOT
and CMA-ES (as described in Sect. 4):

SPOT - CONFIG files: e.g., demo1000.m, see Fig. 7

SPOT - ROI files: e.g., demo1000.roi, see Fig. 8

CMAES - CONFIG files: e.g., cmaesdemo1000.m, see Fig. 10.
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algorithmname= ’cmaesspot’;

budget=50;

dacemodelname=’’;

defaulttheta=1;

designtype = ’lhd’;

doecenterpoints = 4;

isotropic=0;

lhdintervals=0;

lhdsamples= 16;

loval=1E-3;

maxsteps=Inf;

maxrepeats=50;

mergetype=2;

meta = 0;

na=40;

new=1;

newdesignsize=2;

npoints=10;

ntestpointsperdim=10000;

repeats=1;

seed=0;

spotdirname=’spot/’;

spotcmodel=’corrgauss’;

%spotpredictor=’tree’;

spotpredictor=’dace’;

spotrmodel=’regpoly0’;

tol=1.e-2;

upval=100;

verbosity=2;

yname=’Y’;

Figure 7: demo1000.m. Table 1 explains these variables.

name low high isint pretty

NPARENTS 1 50 TRUE ’NPARENTS’

NU 2 10 FALSE ’NU’

Figure 8: demo1000.roi specifies the region of interest for two factors.
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Changing the parameter settings in these files will take e↵ect on the whole op-
timization process. But first a few words about these configuration files needed
to be set up by the user for each experimental run. The prefix filename of all
SPO related configuration files have to be the same for each experimental run.
In Section 3.2 ’demo1000’ was used for this filename prefix. The name of the
configuration file related to the user algorithm have to be handled by the user
within the programmed shell, which is responsible for file interaction with the
user algorithm. In section 3.2 the CMAES shell uses ’cmaesdemo1000’ for file-
name prefix. The interface files demo1000.des and demo1000.res are generated
automatically by SPO.

5.1 Modifying the ’Region Of Interest’

The ROI (region of interest) file contains the interesting value ranges of the
algorithm parameters that should be optimized. These ranges are specified by
two design points each (high and low limit value). The content of the ROI file
used in the example from section 3.2 is shown in figure 8. The file structure is
comparable with an array which elements are separated by blanks. First line acts
as a headline for the specified regions of interest which are listed below. Each
remaining line contains ROI information for one parameter to be optimized.
The values, that have to be set up for each parameter are explained below:

1. name - factor name to be tuned

2. low - specifies the lower limit value for this factor

3. high - specifies the upper limit value for this factor

4. isint - exclusive use of integer for values of this factor? (could be TRUE
or FALSE)

5. pretty - pretty print variant of the factor name, e.g., for axes labeling

The regions of interest can be modified to have a look on the performance
with other parameter value ranges. To adjust the regions of interest, the ROI
file can be modified using a simple text editor, or Matlab’s editor. This change
is related to the SPO (and not to the user’s algorithm), therefore changes are
performed in the file demo1000.m. Our general philosophy is to generate repro-
ducible results. This can be achieved by assigning each experimental setup one
unique experiment number. In our first example, we started with demo1000.
Thus, the next experiment will be demo1001. This experiment requires the
following files:

demo1001.m: SPOT related setup

demo1001.roi: Names and regions of interest of the factors to be tuned

cmaesdemo1001.m: Setup of the user defined optimization algorithm. We
use cmaes.m and add the prefix cmaes to the names of the configuration
files.
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name low high isint pretty
NPARENTS 1 10 TRUE ’NPARENTS’
NU 2 20 FALSE ’NU’

Figure 9: Region of interest file demo1001.roi

Change the ROI file content like shown in figure 9 and run SPOT by calling

>> spotdriver(’demo1001’)

to see how it a↵ects the SPO result.

5.2 Modifying the SPO configuration

5.2.1 Changing the predictor

The predictions used in the demo1000 setup are based on the DACE model.
Other models, e.g., classical regression or tree based models can be used, too.
Next, we discuss how to use a tree-based regression model. Again, this change
is related to the SPO (and not to the user’s algorithm), therefore changes are
performed in the file demo1001.m. Our general philosophy is to generate repro-
ducible results. This can be achieved by assigning each experimental setup one
unique experiment number. In our previous example, we used demo1001. Thus,
the next experiment will be demo1002. This experiment requires the following
files:

demo1002.m: SPOT related setup

demo1002.roi: Names and regions of interest of the factors to be tuned

cmaesdemo1002.m: Setup of the user defined optimization algorithm. We
use cmaes.m and add the prefix cmaes to the names of the configuration
files.

5.3 Modifying the CMAES configuration

5.3.1 Modifying the Problem Dimension

The experimenter might be interested in the question if similar algorithm designs
are beneficial for di↵erent problem dimensions. Therefore, he has to modify the
problem design. The problem design subsumes information about the objective
function, e.g., the problem dimension, and specifies the available budget, e.g.,
time, number of function evaluations etc. To modify the problem dimension,
the file cmaesdemo1000.m (Fig. 10) has to be edited. For example, using a text
editor, you can change dim = 10 to dim =100 to analyze a 100 dimensional
problem.
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Table 1: detailed information about parameters in SPOT Configuration files
(e.g. demo1000.m)
algorithmname Call to the algorithm to be tuned. A script or batch file that calls

the optimization algorithm has to be specified here.
budget Maximum number of runs of the heuristic. Can be set to “Inf” if

other termination criteria should be used.
defaulttheta Only for spotpredictor = ’dace’: Default theta values in the

DACE model
designtype Set this to “lhd” in order to use space filling (Latin hypercube de-

signs) or to “doe” to use classical desing of experiments.
doecenterpoints Only for spotpredictor = ’doe’: Number of center points for the

DOE
isotropic Define number of theta values, default is # of factors, which defines

anisotropic models. Set nTheta to 1 to use isotropic models.
lhdintervals Lower and upper bound for the LHS. Used for the ROI.
lhdsamples Number of initial configurations (initial sample size) of the heuristic

to be performed.
loval Only for spotpredictor = ’dace’: lower bound for theta values in

the DACE model
maxrepeats Maximum number of repeats for one algorithm parameter setting.

“Inf” if other termination criteria should be used. See also: budget,
maxsteps.

maxsteps Maximum number of runs of the SPO. Can be set to “Inf” if other
termination criteria should be used. See also: budget, maxrepeats.

mergetype Determines how results from one run configuration should be aggre-
gated.Can be one of the following: “1”: mean, “2”: median

meta Set this value to “1” if meta runs should be performed, see Sect. ??.
Otherwise choose “0” (default).

na Only for spotpredictor = ’dace’ or if a dacemodel is plotted: Grid
size for the dace model plot. Default “40”.

new To start a new run, especially with filenames that have been used
for other runs and these files should be overwritten, set this value
to ”1”. To continue an existing experiment, choose ”0”.

newdesignsize Number of algorithm configurations to be evaluated by the algo-
rithm (should be small). Default “2”.

npoints number of points for e↵ect plots
nsteps Number of sequential optimization steps to be performed.
ntestpointsperdim Number of testpoints (huge!) genereted by the predictor.
repeats Number of repeats in the inital design. Default “1”.
seed Initial seed for the SPOT functions. Default “0”.
spotcmodel Only for spotpredictor = ’dace’: correlation model in the DACE

model
spotdirname Directory where the optimization algorithm reads configuration and

writes results files (use a closing \ or /). Default: Directory where
the spot files reside.

spotpredictor Specifcy the SPOT predictor: “dace”uses Kriging (slow, but exact),
“tree” uses regression trees (fast, can handle categorical factors as
well)

spotrmodel Only for spotpredictor = ’dace’: regression model in the DACE
model

tol tolerance for e↵ect plots
upval Only for spotpredictor = ’dace’: upper bound for theta values in

the DACE model
yname name of the value to be optimized (minimization). Default “Y”.

Will be written in the res and desfiles.
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%Algorithm design:
nparents = 1;
nu = 1;
%Problem design:
fname = ’fsphere’;
tmax = 1000;
startpoint = 10;
lb = 10;
ub = 100;
stepinit = ’detmod’;
delta = 0;
dim = 10;
% Technical stuff
userdirname=pwd;
%
%The following parameters might be useful for future releases:
%
init = ’nunirnd’;
termcriteria = ’iterations’;
noisetype = ’noNoise’;
noisedistribution = ’noNoise’;
noiselevel = 0;
testset = ’gert’;
gm = 0;
xopt = 0;
successlimit = 0.01;
showrun = 0;
showpoints = 0;
showendpoints = 0;
showsuccessfullstartpoints = 0;
showunsuccessfullstartpoints = 0;
interval = 0;
intervalsize = 100;

Figure 10: cmaesdemo1000.m

Table 2: detailed information about parameters in CMAES Configuration file
(e.g. cmaesdemo1000.m)
userdirname Path to the *des and *res-files

13



5.3.2 Modifying Factors that Remain Constant (Algorithm Design)

Factors that are varied during the sequential parameter optimization are speci-
fied in the ROI file. Many algorithms have factors that remain constant during
the sequential parameter optimization. They are specified in the cmaesdemo1000.m
file. By default, every factor of the optimization algorithm is specified in the
cmaesdemo1000.m file and SPO overwrites these values with values generated
in the ROI file.

5.3.3 The file getuseroptions.m

The file getuseroptions.m can be found in the subdirectory useroptions.
Users can specify default factor settings and some rather technical information
such as directory names. It has to be modified if new factors are added to the
algorithm design as explained in Sect. 5.4

5.4 Adding Factors to the Algorithm Design

5.4.1 Overview

In this section we consider how new factors can be added to the algorithm
design. The example presented in section 5 uses two factors: NPARENTS and NU.
The related experiment will be referred to as demo1002. The following files have
to be modified to include a new factor:

cmaes.m: Since CMA-ES does not provide an interface for factors, we have
to change the source code of cmaes.m. This is against our philosophy,
because we usually do not change the source code. Future releases of the
CMA-ES might provide an interface.

cmaesspot.m: Here we add the additional factor which is passed to cmaes.m.

getuseroptions.m: This function has to be modified, because it assigns a de-
fault value to the new factor.

cmaesgenerateresfile.m: This function writes results from the CMA-ES runs.
Here we have to add the new factor, too.

demo1002.roi: Here we specify the additional region of interest for the new
factor.

demo1002.m: Here we specify the settings (number of algorithm runs, predic-
tor, etc.) of the SPO.

5.4.2 The new Factor: CS (TCCS)

We consider the time constant for cumulation for step-size control (tccs 2]0, 1]).
Since cs is already used by MATLAB, we changed the variable name from cs
to tccs in the cmaes.m file (Hansen and Ostermeier, 2001). Unfortunately,
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CMA-ES does not provide an interface for this factor. Therefore, we added the
following lines to the cmaes.m source code:

defopts.tccs = ’0.5 % time constant for cumulation for step-size control’;
...
%qqq hacking of a different parameter setting, e.g. for ccov or damps,
% can be done here.
% ccov = 0.0*ccov; disp([’CAVE: ccov=’ num2str(ccov)]);
%TBB (Feb, 12th 2008):
tccs = opts.tccs;

Now we can use the opts structure to handle the tccs parameter. Modifications
of the cmaes.m file are documented in the source code.

The next file we have to consider is cmaesspot.m. Here we add the lines

tccs = spotgetdesignvalues(a, b, ’TCCS’);
...
if ismember(’TCCS’, b)

useroptions.ad.tccs = tccs(i);
opts.tccs = tccs(i);

end;

Since cmaesspot.m calls getuseroptions.m, we have to modify this func-
tion, too. We have to add one line to the algorithm design:

’ad’, struct(... % algorithm design from Table 6.3 in [Bart06a, p.97]
’designfactorname1’, ’’,... %factors to be tuned
’nparents’, nparents, ... % population size [cmaes]
’tccs’, tccs, ... % time constant for cumulation for step-size control
’designfactornamen’, ’’), ... %n-th factor to be tuned
...

The new factor can be read by the CMA-ES, but it not written to the result-
file. Therefore we modifify the function cmaesgenerateresfile.m as follows:

function cmaesgenerateresfile(options)
a = exist(options.file.resfilename,’file’);

if (a == 0)
fid = fopen(options.file.resfilename,’w’);
fprintf(fid,’%s %s %s %s %s %s %s %s %s %s %s %s %s %s’,...

’Y’,’SUCC’,’NPARENTS’,’NU’,’TCCS’,’FNAME’,’ITER’,...
’DIM’,...
’CONFIG’,’SEED’);

fclose(fid);
end
fid = fopen(options.file.resfilename,’a’);
fprintf(fid,’\n%g %d %d %g %g %s %d %d %d %d’,...

options.obj.y,...
options.obj.succ, ...
options.ad.nparents,...
options.ad.nu,...
options.ad.tccs,...
options.pd.fname, ...
options.pd.tmax,...
options.pd.dim,...
options.vars.configurationnumber,...
options.obj.thisseed);

fclose(fid);
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Figure 11: Results from the SPOT run with TCCS included.

name low high isint pretty
NPARENTS 1 50 TRUE ’NPARENTS’
NU 2 10 FALSE ’NU’
TCCS 0 1 FALSE ’TCCS’
DAMPS 0.25 0.99 FALSE ’DAMPS’

Figure 12: ROI file for 4 factors of the CMA-ES.

And, we have to set up the region of interest in the demo1002.roi file for
this factor:

name low high isint pretty
NPARENTS 1 50 TRUE ’NPARENTS’
NU 2 10 FALSE ’NU’
TCCS 0 1 FALSE ’TCCS’

Finally, we have to specify the file for the SPO demo1002.m (here we simply
copy the file demo1000.m, and add the following line to the file demo1000.m
which will be save as tt demo1002.m):

%CMAES:
%Algorithm design:
nparents = 1;
nu = 1;
tccs = 0.5;

Now we are ready to perform the experiments:

spotdriver(’demo1002.m’)

The plots from these run are shown in Fig. 11.

5.4.3 The new Factor DAMPS

A fourth factor of the CMA-ES, called damps, can be tuned in the current SPOT
version. The corresponding ROI file is shown in Fig. 12. Modifications presented
in this documentation are already implemented in the SPOT version. So, if you
want to try out the tuning process for 4 factors of the CMA-ES, you can use
the setting from experiment demo1003, i.e., simply enter
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>> spotdriver(’demo1003’)

in the command window.

5.5 Summary

SPO requires the specification of the following parameters:

1. Algorithm parameters to be tuned and varied. They are specified in the
ROI file, e.g., demo1000.roi.

2. SPOT specific parameters, e.g., (demo1000.m)

In addition, the algorithm which should be tuned requires the specification of
the following parameters:

1. Algorithm parameters that remain constant

2. Problem specific parameters

In our example (cmaesdemo1000.m) was used to specify these parameters.

6 Implementing Interfaces for the CMA-ES

6.1 Overview

In the following section, details of the SPOT implementation will be explained.
We present examples, how SPOT can be adapted to your needs. This section
will present some guidelines so that SPOT can be used for new algorithms.

6.2 The SPOT interface to the CMAES program

cmaes.m should be able to read SPO design files and write SPO resfiles. There-
fore we write a MATLAB function called cmaesspot.m.

6.2.1 cmaesspot.m

function cmaesspot(filename)
clear useroptions;
useroptions = getuseroptions(filename);
opts.MaxFunEvals=useroptions.pd.tmax;
clear A;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% 2. Load design file data
[a,b] = autotextread(useroptions.file.desfilename);
CONFIG = (eval(strcat(’a.’,’CONFIG’)));
REPEATS = (eval(strcat(’a.’,’REPEATS’)));
SEED = (eval(strcat(’a.’,’SEED’)));
nofexp = length(CONFIG); %number of experiments

% Assign vectors of algorithm design values:
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nparents = spotgetdesignvalues(a, b, ’NPARENTS’);
nu = spotgetdesignvalues(a, b, ’NU’);
%
for i=1:nofexp

useroptions.vars.numberofruns = REPEATS(i);
for j=1:REPEATS(i) %each experimental setting is repeated REPEAT(i) times

useroptions.vars.repeatcounter = j;
%opts=cmaes;
opts.StopFitness=1e-10;
% Overwrite default values with algorithm design values.
if ismember(’NPARENTS’, b)

useroptions.ad.nparents = round(nparents(i));
opts.ParentNumber = useroptions.ad.nparents;

end;
if ismember(’NU’, b)

useroptions.ad.nu = nu(i);
opts.PopSize = round(nparents(i)*nu(i));

end;

% Run specific settings:
useroptions.vars.configurationnumber = CONFIG(i);

% SEED
useroptions.obj.thisseed = SEED(i)+j;
% the following is performed in cmaes.m:
%rand(’state’,useroptions.obj.thisseed);
%randn(’state’,useroptions.obj.thisseed);
opts.Seed = useroptions.obj.thisseed;

% Start one CMAES run:
opts.Display = ’off’; opts.Plotting = ’off’;
opts.VerboseModulo = 0;

%objectivefunctionhandle = str2func();
[XMIN, FMIN, COUNTEVAL, STOPFLAG, OUT, BESTEVER]=cmaes(useroptions.pd.fname,5*ones(10,1), 1.5, opts);
useroptions.obj.y = FMIN;
fprintf(’.’);
cmaesgenerateresfile(useroptions);
% End of one CMA-ES run

end
end

We recommend the adaption of the function getuseroptions.m, which specifies
a generic options structure.

6.2.2 getuseroptions.m

The function getuseroptions calls the function cmaesdemo1000.m which spec-
ifies the default settings for the algorithm and problem design. Based on these
values, getuseroptions generates the structure useroptions, which is used
during the optimization runs.

function useroptions = getuseroptions(filename)
userprefix = ’cmaes’;
userfhandle = str2func(strcat(userprefix,filename)); % add es specific prefix for the configuration file
userfhandle();
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useroptions = struct(...
...
... % ALGORITHM DESIGN
’ad’, struct(... % algorithm design from Table 6.3 in [Bart06a, p.97]
’designfactorname1’, ’’,... %factors to be tuned
’nparents’, nparents, ... % population size [cmaes]
’designfactornamen’, ’’), ... %n-th factor to be tuned
...
... % PROBLEM DESIGN
’pd’, struct(...
’fname’, fname, ... % objective function
’startpoint’, startpoint,... % starting point (see also dim)
’lb’, lb, ... %Lower bounds of Initialization
’ub’, ub , ... %Upper bounds of Initialization
’stepinit’, stepinit, ... % initialization of the step sizes
’delta’, delta, ...% (machine precision) determine border for success
’dim’, dim, ... % problem dimension
’init’, init,... %initialization method
’tmax’, tmax, ... % maximum number of iterations
’termcriteria’, termcriteria,... % ’iterations’, ’xDistance’, ’yDistance’
’noisetype’, noisetype, ... %noise type to use. Either noNoise, additive or proportional
’noisedistribution’, noisedistribution, ... %noise Distribution to use. Either noNoise, normalDistributed or uniformDistributed
’noiselevel’, noiselevel), ... %noise level of the distribution function
...
... % OPERATING SYSTEM
’system’, struct(...
’unix’, isunix),... %are we running Windows ("0") or Unix ("1")
...
... % file AND I/O
’file’, struct(...
’dirname’ , userdirname,...
’filename’ , filename),...
...
... % TECHNICAL OBJECTIVE FUNCTION OPTIONS
’obj’, struct(...
’testset’, testset, ...%set of test functions
’moren’, 2, ...%variable n for the More test set
’morem’, 2, ...%variable m for the More test set
’moreopt’, 1, ...%variable option for the More test set
’fhandle’, @Sphere,... %function handle (use makeHandle.m to change handle
’gm’, gm, ... %Value of Global Minima (Required if Error goal is a termination criteria).
’xopt’, xopt, ...% x value of Global Minima, default value: repmat(Dim,xOpt)
’successlimit’, successlimit, ...% function values smaller than SuccessLimit are treated as successful
’yreal’, Inf, ... % best objective function value (YREAL) without noise
’y’, Inf, ... % best objective function values (Y) with noise
’yalltime’, Inf, ... % all time best function value (noisy)
’succ’, 0, ... % run terminated successfully (SUCC)
’ybestlist’, [],... %list of best function value from every generation (for one run only)
’thisseed’, 0), ... % seed used for this run
...
... % DISPLAY OPTIONS
’disp’, struct( ...
’showrun’, showrun, ... % Display best function value when the run is finished
’showlogrun’, showlogrun, ... % Display best function value when the run is finished
’showcities’, showcities, ... % Display best function value when the run is finished
’showpoints’, showpoints, ... % Display starting and end points
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’showendpoints’, showendpoints, ... % Display starting and end points
’showsuccessfullstartpoints’, showsuccessfullstartpoints, ... % Display starting and end points
’showUnsuccessfullstartpoints’, showunsuccessfullstartpoints, ... % Display starting and end points
’interval’, interval, ... %Notify about the progress after these many iterations (Default = 0 = OFF)
’intervalsize’, intervalsize, ... % interval length around the best
’figurenumber’, 1) ... %figure
);

useroptions.ad.noffspring = round(nu*nparents);%number of offspring individuals

useroptions.file.dirname= strcat(useroptions.file.dirname,’/’,’spot04/’);
useroptions.file.desfilename = strcat(useroptions.file.dirname,useroptions.file.filename,’.des’);
useroptions.file.bestfilename = strcat(useroptions.file.dirname,useroptions.file.filename,’.bst’);
useroptions.file.resfilename = strcat(useroptions.file.dirname,useroptions.file.filename,’.res’) ;
useroptions.file.dacemodelname = strcat(useroptions.file.dirname,useroptions.file.filename,’.dac’);
useroptions.file.bestconfiglistname = strcat(useroptions.file.dirname,useroptions.file.filename,’.bcl’);
useroptions.file.xbestfilename = strcat(useroptions.file.dirname,useroptions.file.filename,’.xbst’);
useroptions.file.finalbestfilename = strcat(useroptions.file.dirname,useroptions.file.filename,’.fbs’);

useroptions.obj.ffandle = spotmakehandle(useroptions.pd.fname);
useroptions.pd.startpoint = useroptions.pd.startpoint * ones(1,useroptions.pd.dim);

6.2.3 cmaesdemo1000.m

The file cmaesdemo1000.m is a classical configuration file. It defines the settings
for the algorithm and problem design. For example, if you want to change the
problem dimension, you do not have to change the MATLAB code, but the
settings in this configuration file.

%CMAES:
%Algorithm design:
nparents = 1;
nu = 1;
%Problem design:
fname = ’fsphere’;
tmax = 1000;
startpoint = 10;
lb = 10;
ub = 100;
stepinit = ’detmod’;
delta = 0;
dim = 100;
% Technical stuff
userdirname=pwd;
%
%The following parameters might be useful for future releases:
%
init = ’nunirnd’;
termcriteria = ’iterations’;
noisetype = ’noNoise’;
noisedistribution = ’noNoise’;
noiselevel = 0;
testset = ’gert’;
gm = 0;
xopt = 0;
successlimit = 0.01;
showrun = 0;
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showpoints = 0;
showendpoints = 0;
showsuccessfullstartpoints = 0;
showunsuccessfullstartpoints = 0;
interval = 0;
intervalsize = 100;
%
mutation = ’standard’;
cities = ’loadst70’;
showlogrun = 0;
showcities = 0;

6.2.4 cmaesgenerateresfile

The cmaesspot.m function calls the function cmaesgenerateresfile.m to write
data in the resfile format.

function cmaesgenerateresfile(options)
a = exist(options.file.resfilename,’file’);

if (a == 0)
fid = fopen(options.file.resfilename,’w’);
fprintf(fid,’%s %s %s %s %s %s %s %s %s %s %s %s %s’,...

’Y’,’SUCC’,’NPARENTS’,’NU’,’FNAME’,’ITER’,...
’DIM’,...
’CONFIG’,’SEED’);

fclose(fid);
end
fid = fopen(options.file.resfilename,’a’);
fprintf(fid,’\n%g %d %d %g %s %d %d %d %d’,...

options.obj.y,...
options.obj.succ, ...
options.ad.nparents,...
options.ad.nu,...
options.pd.fname, ...
options.pd.tmax,...
options.pd.dim,...
options.vars.configurationnumber,...
options.obj.thisseed);

fclose(fid);

6.2.5 The Objective Function

For this demo, we have chosen the following objective function: fsphere.m
which is located in the directory objectivefunctions.

function f=fsphere(x)
f=sum(x.^2, 1);

6.2.6 The Design File

Each line in the design file contains one run configuration. Note, each configura-
tion can be repeated several times (with di↵erent seeds). Configuration 1 from
the file demo1000.des is repeated twice, whereas configuration 2 is repeated
only once:
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NPARENTS NU REPEATS CONFIG SEED STEP
2 2 2 1 123 1
7 4 1 2 123 1

6.2.7 Testing the Interface

Now we are ready for testing the interface. We can call the cmaesspot.m func-
tion as follows:

cmaesspot(’demo1000’)

6.3 Parameter Tuning With SPO

Until now, we have implemented the interface for the algorithm. The algorithm
is able to read manually created design files and write results to result files.
Next, we will show how to generate design files automatically and how to use
data from the result files to perform statistical analyses.

6.3.1 Specifying the Region of Interest File

We specify the regions of interest for the design. The designs will be written to
the design files. As we have chosen NPARENTS and NU, we write the demo1000.roi
file which is located in the directory myspot04:

name low high isint pretty
NPARENTS 1 50 TRUE ’NPARENTS’
NU 2 5 FALSE ’NU’

6.3.2 Specifying the SPO configuration file

Finally, we have to define the SPO predictor, the number of SPO runs etc.,
i.e. SPO specific parameters. These are written to the file demo1000.m which is
also located in the directory myspot04:

meta = 0;
new=1;
designtype = ’lhd’;
spotpredictor=’tree’;
%spotpredictor=’dace’;
defaulttheta=1;
loval=1E-3;
upval=100;
spotrmodel=’regpoly0’;
spotcmodel=’corrgauss’;
isotropic=0;
repeats=1;
maxrepeats=50;
mergetype=1;
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ntestpointsperdim=10000;
seed=0;
na=40;
newdesignsize=2;
lhdsamples= 16;
doecenterpoints = 4;
lhdintervals=0;
budget=1000;
maxsteps=Inf;
spotdirname=’spot04/’;
dacemodelname=’’;
npoints=10;
tol=1.e-2;
algorithmname= ’spotga’;
yname=’Y’;
verbosity=1;

6.3.3 Starting SPOT

We are ready for the SPOT process. It can be called via

spotdriver(’demo1000’)

Please note, that myspot04 has to be chosen as the working directory and all
subdirectories have to be included in the MATLAB path.

Summarizing, the following files are necessary for the SPOT, where xxx
denotes the experiment name, e.g. demo1000:

xxx.roi: Region of interest.

xxx.m: SPOT configuration file.

cmaesxxx.m: CMA-ES configuration file. Optimization problem configura-
tion.

cmaesspot.m: Interface to the cmaes.m algorithm. Read design file.

getuseroptions.m: Read configuration from the cmaesxxx.m file and generate
the options structure.

cmaesgenerateresfile.m: Generate the result file.

7 Documentation of SPOT Interfaces

The SPOT concept is very simple and can be used for any optimization algo-
rithm that can read and write ASCII files.

SPOT proposes algorithm designs for the algorithm. The algorithm is run
with these designs, results from these runs are written to result files (res-files).

23



SPOT reads the res-files and builds a stochastic process model. Based on this
model, new algorithm design points are generated and written to the design file
(des-file). See also Bartz-Beielstein et al. (2005b).

7.1 Design Files

Design files are ASCII files which store information columnwise. They consist of
two parts: Header and body. The first line of a design file, the header, describes
the variable names. Entries are separated by blanks. Each of the following lines
contains information from one algorithm run. A minimum design file has two
lines. It might contain the following information:

A REPEATS CONFIG SEED
2 3 1 123

“A” denotes the name of algorithm parameter to be tuned, e.g., NPARENTS.
Each run is repeated three times with di↵erent random seeds, the first run uses
seed 123. This is configuration 1.

Based on the values from the des-file the optimization algorithm is run. Its
results are written to the res-file.

The header has to be the first line while the order of the other lines (rows) is
arbitrary. The order of the columns is arbitrary, too. The example from above
could be written as:

REPEATS CONFIG SEED A
3 1 123 2

7.2 Result Files

The structure of result files is the same as for design files: They are des-files with
one additional column which contains the result from the optimization runs. A
minimum result file contains the following information:

Y A REPEATS CONFIG SEED
0.2 2 3 1 123

This might be one result from an experiment which is based on the des-file from
above. The algorithm run yields an function value of Y = 0.2.

Based on the values from the res-file SPOT will fit a stochastic process
model to predict promising design points.

8 Common Errors

Table 3 lists errors, possible causes, and solutions.
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Table 3: Common errors.
Error message Possible cause Solution
Unable to open
file.
??? Undefined
function or
variable ’Y’.

Wrong MATLAB
working directory

Change the MATLAB
working directory.
The MATLAB cd
command changes the
working directory. Al-
ternatively you can use
the Current Directory
field in the MATLAB
desktop toolbar.

Batch file/shell script is
not executed correctly

Test the script (per-
missions etc.) in a
DOS/UNIX shell sep-
arately. If it works
fine, you can execute it
in the MATLAB com-
mand window.

??? Error using
==> dacefit
least squares
problem is
underdetermined

Not enough design
points

Increase the number
of design points by
modifying the value of
SpotOptions.Design.
LHDSamples
Reduce the model com-
plexity.

??? Error using
==> textread File
not found.
Error in ==>
spotreadroi at 6
[factornames, lb,
ub, whole, pp] =
textread(spotoptions.File.roifilename,...
Error in ==>
demoSpotJava at
18 SpotOptions =
spotreadroi(SpotOptions);

Wrong spotdirname Select the correct value
for spotdirname in
demoSpotJava.m or
related files.

??? Error using
==> eval Undefined
function or
variable ’Y’.
Error in ==>
demoSpotJava at 64
Y=eval(SpotOptions.Vars.yname)

Wrong dir for external
batch file (shell script)

Select the correct set-
ting in external files,
e.g., runJava.bat

??? Error using
==> predictor
DMODEL has not been
found
Error in ==>
demoSpotMatlab
at 147 [yLhd0,
dy0, mse0] =
predictor(xLhd(i,:),
dmodel0);

Result file contains non
numerical results (Y
values), e.g., Inf

1. Modify algorithm
or problem designs
to avoid divergent
behaviour or 2. Replace
”Inf” with large values
(not recommended)
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9 FAQ

• Where can I find more information about the DACE toolbox?
Check: http://www2.imm.dtu.dk/˜hbn/dace/

• My optimization algorithm was written in JAVA, C, C++,... Can I use
SPOT?
You can use any language if your algorithm is able to handle des- and
res-files.

• Does SPOT run without MATLAB?
No.

• My optimization algorithm is written in MATLAB. Is there a generic
method to read des-files?
Yes. Reading des-files from MATLAB can be done as follows.

1. Specify the algorithm design variables from your algorithm, e.g., mu
and nu:

factornames = {’MU’, ’NU’};

2. Read the des-file:

tdfread(designfilename, ’ ’);

3. Overwrite default values with values from the des-file:

for i=1:length(factornames)
A(i)=factornames(i);

end
for i=1:length(eval(A{i})) %number of experiments

for j=1:REPEATS(i) %each experimental setting is
% repeated REPEAT(i) times.

% Overwrite default values with algorithm
% design values.
if ismember(’MU’, A)

mu = MU(i);
end
if ismember(’NU’, A)

nu = NU(i);
end
...
RUN YOUR ALGORITHM
...
WRITE RESULT FILE

end
end
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• How can I evaluate an initial design specified in the ROI file without per-
forming any sequential parameter optimization?
Set the value maxsteps=0; in the spot configuration file.

• I found a bug in the toolbox.
Please report bugs and suggestions for improvement to
thomas.bartz-beielstein[at]fh-koeln.de.

• Is there any support available?
Currently we cannot provide any support.

• Is SPOT free?
Yes. SPOT is published under the GPL.

• Where can I find more information about experimental research, design
of experiments (DOE), and design and analysis of computer experiments
(DACE)?
Bartz-Beielstein (2006) and Santner et al. (2003) are good starting points.

• How can I quote this article?
Please mention Bartz-Beielstein et al. (2006) if you have used the SPO
toolbox.
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