
Synthese (2008) 163:385–396
DOI 10.1007/s11229-007-9297-z

How experimental algorithmics can benefit
from Mayo’s extensions to Neyman–Pearson theory
of testing

Thomas Bartz-Beielstein

Received: 9 November 2007 / Accepted: 9 November 2007 / Published online: 19 February 2008
© Springer Science+Business Media B.V. 2008

Abstract Although theoretical results for several algorithms in many application
domains were presented during the last decades, not all algorithms can be analyzed
fully theoretically. Experimentation is necessary. The analysis of algorithms should
follow the same principles and standards of other empirical sciences. This article
focuses on stochastic search algorithms, such as evolutionary algorithms or particle
swarm optimization. Stochastic search algorithms tackle hard real-world optimiza-
tion problems, e.g., problems from chemical engineering, airfoil optimization, or bio-
informatics, where classical methods from mathematical optimization fail. Nowadays
statistical tools that are able to cope with problems like small sample sizes, non-normal
distributions, noisy results, etc. are developed for the analysis of algorithms. Although
there are adequate tools to discuss the statistical significance of experimental data,
statistical significance is not scientifically meaningful per se. It is necessary to bridge
the gap between the statistical significance of an experimental result and its scientific
meaning. We will propose some ideas on how to accomplish this task based on Mayo’s
learning model (NPT∗).

Keywords New experimentalism · Experimental algorithmics · Optimization ·
Theory of testing · Mayo’s learning model · Significance

1 Introduction

Optimization problems are of great importance in practice, particularly in engineering
and technology, business and finance. Algorithms to tackle optimization problems

T. Bartz-Beielstein (B)
Faculty of Computer Science and Engineering Science, Cologne University of Applied Sciences,
51643 Gummersbach, Germany
e-mail: bartz@gm.fh-koeln.de

123

386 Synthese (2008) 163:385–396

include classical techniques such as dynamic programming or gradient-based methods,
but also modern techniques such as stochastic search heuristics. Examples of stochastic
search heuristics include simulated annealing, tabu search, evolutionary computa-
tion, iterated local search, particle swarm optimization, and ant colony optimization.
Research on these techniques relies on experimentation, because the applicability of
theoretical results is limited to very special (artificial or simplified) situations.

The term experimental algorithmics will be used as a synonym for approaches in
computer science that require experimental studies. Experimental approaches have
been modified over the years. During the first phase of experimental research (before
1980), which can be characterized as ‘foundation and development,’ a comparison
of different stochastic search algorithms was mostly based on mean values—almost
no further statistics were used. In the second phase (1980–2000), classical statistical
methods such as analysis of variance or regression techniques were introduced. In the
past few years, statistical approaches that consider specific features of the algorithms
became popular. However—even if adequate statistical tools for research in experi-
mental algorithmics are under development—they do not bridge the gap between the
statistical significance of an experimental result and its scientific meaning.

One of the major goals in experimental algorithmics is to demonstrate that and
understand why one algorithm, A, outperforms a related algorithm, B. Researchers
suppose that A and B behave differently, because one algorithm has features the other
one lacks, e.g., an improved variation operator.

In this paper, we propose a methodology to analyze the relationship between
statistical significance and scientific import based on a standard situation in exper-
imental research. Common to all experiments is the need to compare two algorithms,
a task that can be modeled within the framework of hypothesis testing. To test the
hypothesis that algorithm A performs better than B, we first assume that they perform
equally, i.e., there is no difference in means. Therefore, we face a standard situation
from statistics, the comparison of samples from two populations.1 This comparison
applies also to the question of whether different algorithms exploit any ‘systematic
information’ in the data (test problems) equally efficiently and effectively or not.

Neyman–Pearson theory of testing (NPT) defines a well-known framework for per-
forming this comparison. We will take Deborah Mayo’s extension of NPT (Mayo
1983) into consideration. Mayo, an important representative of the new experimen-
talism which is an influential trend in recent philosophy of science, has proposed a
detailed epistemology of how scientific claims are and can be validated by experi-
ment. Her philosophy, which she calls ‘error statistics’ because central to it is the
importance of NPT error probabilities, generalizes and provides statistical methods
to set-up experiments, to test algorithms, and to learn from the resulting errors and
successes based on her concept of severity.

A scientific claim can only be said to be supported by experiment if that experiment
provided a severe test of the claim and it passed. A severe test of a claim is one in
which the claim would be unlikely to pass, if it were false. Mayo developed methods to

1 There is no unique ‘best’ algorithm which performs better than any other algorithm on every test prob-
lem (Wolpert and Macready 1997). However, this theorem has only minor impact on practical problems
(Bartz-Beielstein 2006).

123

Synthese (2008) 163:385–396 387

set up experiments that enable the experimenter, who has a detailed knowledge of the
effects at work, to learn from error. This paper is an attempt to transfer recent results
from the error statistics to computer science, especially to experimental algorithmics.

Severity is introduced in Sect. 2. This introduction is based on concepts and methods
presented in Mayo (1983) and Mayo and Spanos (2006). They are used to derive
metastatistical rules to test whether statistically significant results are scientifically
relevant. Section 3 summarizes the sequential parameter optimization which defines
a standardized framework in experimental algorithmics. We discuss how severity can
be integrated into this framework and how it bridges the gap between statistical results
and their scientific meaning. This article concludes with a short summary and outlook.

The results presented in this paper are based on experimental analysis of stochastic
search heuristics. They can be transferred easily to other kinds of algorithms.

2 Severity

2.1 NPT and Mayo’s learning model

Neyman–Pearson theory can be interpreted as a means of deciding how to behave. A
metastatistical problem is how to relate an empirical scientific inquiry to the statistical
models of NPT. To contrast her reformulation of NPT with this behavioristic model,
Mayo (1983) introduces the term learning model, or simply NPT∗, for the former.
NPT∗ goes beyond NPT, it uses the distribution of the test statistic to control error
probabilities. Statistical tests are seen as ‘means of learning about variable phenomena
on the basis of limited empirical data.’

Consider a statistical model with some unknown parameter θ . Mayo (1983) claims
that NPT∗ provides tools for specifying tests that ‘will very infrequently classify
an observed difference as significant (and hence reject H) when no discrepancy of
scientific importance is detected, and very infrequently fail to do so (and so accept H)
when θ is importantly very discrepant from θ0.’

2.2 Neyman–Pearson tests and the severity function

The major goal introduced in Sect. 1 can be formulated in the context of Mayo’s
learning model. To stay consistent with Mayo’s seminal text, we use the same notation
found in Mayo and Spanos (2006). We consider a sample X = (X1, . . . , Xn), where
each Xi is assumed to be normal, i.e., Xi ∼ N (µ, σ 2), independent and identically
distributed (NIID). Furthermore, we assume a known standard deviation σ .

In error-statistical testing, the primary hypothesis is posed as a question related to the
data-generating mechanism. This question is formulated as a statistical hypothesis H0
(null hypothesis), which assigns a probability to each possible outcome x . Since it gives
the ‘probability of outcome x under H0’, this probability is denoted as P(x; H0). To
incorporate alternatives, a second hypothesis H1 (alternative hypothesis) is formulated,
so that the parameter space of the statistical model is entirely partitioned. Null and

123

388 Synthese (2008) 163:385–396

alternative hypotheses concerning the mean µ are formulated as:

H0: µ ≤ µ0 vs. H1: µ > µ0.

The experimental test statistic reads

d(X) = (X − µ0)

σ/
√

n
,

where X denotes the sample mean. Under the null hypothesis, d(X) is distributed as
standard normal, i.e., d(X) ∼ N (θ, σ 2). For a given probability α, the type I error is
defined as

Type I (or α) error probability = P(d(X) > cα; H0) ≤ α,

where the cut-off point cα defines the rejection region

C1(α) = {x : d(x) > cα}.

Consider a value µ1 in the rejection region: µ1 > µ0. The type II error probability
is defined as

Type II (or β) error probability at µ1 = P(d(X) ≤ cα; H1) = β(µ1).

We have defined a Neyman–Pearson test (N–P test) T (α) with significance level α

which rejects H0 with data x0 if and only if d(x0) is greater than cα (Mayo and Spanos
2006). The power of this test can be determined as

POW(T (α);µ1) = P(d(X) > cα;µ1),

for µ1 > µ0. Note, that power is always calculated with respect to the cut-off point
cα . Power does not depend on the outcome x0. Mayo and Spanos (2006) propose two
conditions for a severe test:

A statistical hypothesis H passes a severe test T with data x0 if

(S-1) x0 agrees with H , and
(S-2) with very high probability, test T would have produced a result that accords

less well with H than x0 does, if H were false.

They define a severity function which has three arguments: a test, an outcome, and
an inference or claim:

SEV(Test T, outcome x, claim H).

For reasons of simplicity, we will use SEV(µ;µ1) throughout the remainder of this
article.

123

Synthese (2008) 163:385–396 389

2.2.1 Severity interpretation of acceptance

Mayo and Spanos (2006) introduce the following formula for evaluating severity of
test T (α) in the case of a statistically insignificant result (H0 is accepted):

SEV(µ ≤ µ1) = P(d(X) > d(x0);
µ ≤ µ1 false) = P(d(X) > d(x0);µ > µ1).

Setting severity and power in contrast with each other may be useful to clarify
similarities and differences:

POW(T (α);µ1) = P(d(X) > cα;µ = µ1),

SEV(T (α);µ1) = P(d(X) > d(x0);µ = µ1).

To discuss severe testing as a concept for post-data inference, we will present a
numerical example from experimental algorithmics.

Example 1 (Population size) Analyzing stochastic search algorithms, e.g., an evolu-
tion strategy (ES), we are interested in testing whether or not the population size has
a significant influence on the performance of the algorithm. A minimization task was
chosen as a test problem.2 The population size was set to sA = 20 and sB = 40. The
corresponding parameterizations of the ES will be referred to as A and B, respectively.
The question is whether an increased population size improves the performance of the
ES. Our inquiry can be formulated as a scientific claim:

Scientific Claim 1 (C) The algorithm’s performance is not affected by population size.

Let X A and X B denote the average performance of A and B, respectively. Each
algorithm is run n = 100 times. The sample difference between X A and X B is denoted
as X and d(X) = (X − µ0)

√
n/σ is the experimental test statistic. For simplicity, we

assume a known standard deviation σ = 2. With α = 0.025, we can formulate the
following test:

H0: µ ≤ 0 vs. H1 > 0.

Reject H0 iff d(x0) > 1.96, i.e., iff x ≥ 0.4.

The optimization practitioner considers a difference in means γ ∗ = 0.2 substan-
tially important.

A random sample is drawn from A and B, i.e., the ES is run with 20 and 40
individuals. The average performance x A of n = 100 runs of A is 56, whereas the
average performance x B of n = 100 runs of B is 56.3. The sample difference between
x A and x B is x = 0.3, so we have obtained a non-significant result: d(x0) = 1.5.

How can we determine if it was not a rash decision to take this non-significant
result as reasonable evidence that an important difference in means is absent? And,

2 Note, we are considering only one specific instance of this minimization task here. A more general
approach is discussed in Sect. 3.

123

390 Synthese (2008) 163:385–396

what if the outcome is much smaller than d(x0) = 1.5, say, d(x0) = −1? Power is
a well-known and commonly used tool to determine the ‘quality’ of statistical tests.
However, it is identical for both outcomes, e.g., considering a difference γ ∗ = 0.2 as
meaningful, power can be calculated as:

POW(T (α, γ ∗ = 0.2) = 0.169.

Mayo and Spanos (2006) argue that the relevant threshold, post-data, is not the
cut-off point cα , but the standardized outcome d(x0).

SEV(T (α), d(x0), µ ≤ µ1) = P(d(X) > d(x0);µ = µ1).

This formula enables us to answer the question: ‘How severely does µ ≤ µ1 pass
with x = 0.3 (d(x0) = 1.5)’? Figure 1 illustrates the situation in case of a statistically
insignificant result, i.e., ‘Accept H0’.

The assertion:

‘We may infer that any discrepancy from 0.0 is absent or no greater than 1.0.’

can be calculated as SEV(µ ≤ 1) = 0.9997.
However, if we are too demanding, severity warns us about too extreme conclusions.

For d(x0) = 1.5, (x = 0.3) the severity of the assertion:

‘We may infer that any discrepancy from 0.0 is absent or no greater than 0.1.’

can be calculated as SEV(µ ≤ 0.1) = 0.16. Even if a discrepancy of 0.1 from H0
exists, an insignificant result would occur 84% of the time.

Note, that SEV(µ ≤ 0.2) = 0.309 and SEV(µ ≤ 0.3) = 0.5. ��

−0.2 0 0.2 0.4 0.6 0.8 1 1.2
0

0.2

0.4

0.6

0.8

1

values of µ

po
w

er
/s

ev
er

ity

0.1
0.2
0.3
power

Fig. 1 Case ‘Accept H0’—power versus severity. The severity for µ ≤ 0 with different outcomes x0.
Power curve is the solid line. Similar figure as in Mayo and Spanos (2006)

123

Synthese (2008) 163:385–396 391

A small probability of detecting a given discrepancy γ ∗ from µ0 provides poor
evidence that so small a discrepancy is absent.

In practice, there is no unique γ ∗. Severity enables experimentalists to determine as
small a discrepancy from the null hypothesis as possible. Plots like the one shown in
Fig. 1 can be useful in establishing the smallest discrepancy from the null via post-data
analysis. For a certain level of severity, e.g., γ = 0.95, the experimenter can determine
the discrepancy γ that is related to this level. Figure 2 in Mayo and Spanos (2006)
perspicuously illustrates this procedure.

Since severity and power correspond if d(x0) is close to the critical point cα , severity
can be seen as a refinement of power calculations. Severity also sheds some light on
the so-called large n problem:

In the context of a statistical test, does a given p-value convey stronger evidence
about the null hypothesis in a larger trial than in a smaller trial, or vice versa?
(Gregoire 2001)

Severity solves this problem directly: An α-significant differences with larger sample
size n passes µ > µ1 less severely than with a smaller n (cf. also Fig. 4 in Mayo and
Spanos (2006)).

A similar discussion of the severity interpretation of rejection can be found in
Mayo and Spanos (2006). They demonstrate how error-statistical tools can extend

0 2000 4000 6000 8000 10000 12000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

function evaluations

F
n(

x)

Fig. 2 Run length distribution to determine an adequate number of function evaluations. The algorithm
to be analyzed is run n times with different seeds on one problem instance. For each successful run, the
number of function evaluations m is recorded. If the run fails, m is set to infinity. Both curves illustrate
results of one algorithm on one problem instance but with different algorithm parameters. The empirical
cumulative distribution shows that 2000 function evaluations are adequate, because approximatively 50% of
both configurations were able to reach the goal. Both parametrizations of the algorithm are able to reach the
goal in nearly every run, if 10,000 function evaluations are chosen. Therefore, 10,000 function evaluations
may result in ceiling effects

123

392 Synthese (2008) 163:385–396

commonly used pre-data error probabilities (significance level and power) by using
post-data interpretations of the resulting rejection or acceptance.

3 Sequential parameter optimization

Example 1 describes a typical situation from experimental algorithmics: a comparison
of two algorithms. This is a simple one-shot scenario where NPT∗ can be profitably
applied. We claim that combining well-established techniques from experimental
planning with NPT∗ will lead to new knowledge and scientific progress. Sequential
parameter optimization (SPO) is one possible step in this direction (Bartz-Beielstein
2006).

Mayo’s seminal discussion of Brownian motion (Mayo 1996) can be used as a
guideline on how to set up a hierarchy of models and strategies for arriving at severe
tests. In contrast to the experimental analysis of Brownian motion, computer scien-
tists are able to control every cause of an algorithm’s behavior. Unfortunately, there
are many parameters influencing the algorithm’s behavior. The first step is to make
these parameters explicit. By designing experiments and systematically varying these
parameters, we can detect important factors and interactions.

Before experiments can be performed, a scientific question or goal has to be
formulated. As an example, we consider particle swarm optimization (PSO). PSO
uses a communication structure or social network, which assigns neighbors for each
individual to interact with. It is of great interest to determine in which situations fully
informed swarms, i.e., swarms with global social networks, are superior to swarms
that use local information only. There is no general answer to this question. However,
a comparison can be performed in certain environments. Mathematically speaking,
we consider a special type of mathematical optimization problem, e.g., quadratic pro-
gramming (QP) problems. Quadratic programming problems can be formulated as:
minimize (with respect to x) f (x) = 1

2 xT Qx+cT x, where Q denotes a symmetric n×n
matrix, and c is any n × 1 vector. The whole class of QP problems cannot be analyzed
in one step. Therefore, we consider a simple QP instance first, e.g., f (x) = xT x.
Even this simple optimization problem requires the specification of several factors
before experiments can be started. The term problem design subsumes these factors.
In addition to the objective function f , the starting point, the problem dimension, the
available time (budget) for running the algorithm and the stopping criterion belong to
the problem design.

The selection of an adequate problem design is complicated. Consider the following
pitfalls in choosing among available algorithms, which occur in several studies from
experimental algorithmics.

Example 2 (Floor and ceiling effects) Choosing a problem instance which cannot
be solved by any algorithm produces the statistically meaningful result that ‘there
is no difference in performance’ for every algorithm. This is a floor effect. Alterna-
tively, problem instances which are far too easy produce similar problems (ceiling
effects). NPT∗ and severity provide adequate tools to avoid floor and ceiling effects.
Mayo and Spanos (2006) state: ‘If a test has a very low probability to detect the

123

Synthese (2008) 163:385–396 393

existence of a given discrepancy from µ0, then such negative result is poor evidence
that so small a difference is absent.’ ��

How can floor or ceiling effects be avoided? Run length distributions (Fig. 2) are
useful tools in this context.

In addition to factors from the problem design, there are also factors related to the
algorithm design that need to be considered. In addition to the communication structure
mentioned above, we have to consider the swarm size and two parameters called
‘cognitive coefficients’ (Clerc and Kennedy 2006). All in all there are nine factors:
five factors related to the problem design and four factors related to the algorithm
design.

Systematic variation of these nine factors may shed some light on the question of
required information exchange between particles. But how can we determine whether
the fully informed swarm is superior to the local variant? To judge the performance
of different algorithms, a performance measure is needed. The choice of an adequate
performance measure is not trivial.3 Based on the run length distributions from Fig. 2,
the best function value from 2000 function evaluations was chosen as a performance
measure for the experiments. Because PSO is a stochastic algorithm, i.e., similar
starting conditions may lead to different results, we consider the average function
value from 100 repeats. Note that this choice is not generic; other measures such as
the median, the minimum or the standard deviation (or combinations of these) are
possible.

The experimental goal is formulated as a scientific claim C, e.g., ‘For the objective
function f (x) = x2, PSO with global information outperforms PSO which uses local
information.’ This scientific claim is then broken into several statistical hypotheses as
illustrated in Fig. 3.

To give an example, we present one typical hypothesis.

Example 3 (Statistical hypothesis) A linear regression model can be used to determine
the effects of the algorithm factors on performance. Since there are four factors, the
model can be formulated as: y = β0 + β1x1 + β2x2 + β3x3 + β4x4 + ε, where
y represents the performance, x1 represents the number of particles informed, x2
represents the swarm size, x3 and x4 represent the cognitive coefficients (ε denotes the
error term). The hypotheses we wish to test are H0: β1 = 0 against H1: β1 �= 0. ��

Each statistical hypothesis is tested experimentally. Results from the design and
analysis of (computer) experiments guide the decision how to vary the factors system-
atically (Kleijnen 1987; Montgomery 2001). Important factors are screened out, e.g.,
by stepwise regression. Now it is important to see whether the information exchange
between particles has a significant effect on the performance.

Finally, the algorithm with global information exchange is compared to the variant
that processes only local information. This comparison uses techniques described in
Example 1 and can be supported by graphical tools such as box-plots.

SPO comprehends a discussion of the experimental result: although statistically sig-
nificant, it can be scientifically meaningless. An objective interpretation of rejecting or

3 While discussing Brownian motion, Mayo (1996) presents an example of ‘measuring the wrong thing.’

123

394 Synthese (2008) 163:385–396

Scientific Claim:
Fully informed PSO outperforms
locally informed PSO on sphere

function y=x^2

Scientific Claim:
Fully informed PSO outperforms

locally informed PSO on
quadratic functions y=xQX+cx

Statistical
Hypothesis:
Number of

informants has
significant effect on

y

Experiment 1:
result independent of starting

point

Experiment 2:
result independent of problem

dimension

Experiment n:
result independent of factor n

...

Statistical
Hypothesis:
Difference in

means is
significant

Severity

Scientific Claim:
Fully informed PSO outperforms

locally informed PSO on some
functions and vice versa

Scientific Claim:
Locally informed PSO

outperforms fully informed PSO
on highly multimodal functions

Experiment:

100 runs of each configuration

Scientific Claim:
Fully informed PSO outperforms

locally informed PSO on
quadratic function y=xQx

Stat.
Hyp:

Stat.
Hyp:

Exper.

Exper.

Stat.
Hyp:

Exper.

Fig. 3 Dividing a scientific claim into multiple statistical hypotheses. General scientific claims are for-
mulated as specific scientific claims. These are formulated as statistical hypotheses, which can be tested
experimentally. The figure illustrates a few elements of this procedure

accepting statistical hypotheses should be presented. Here NPT∗ comes into play. Con-
sequences that arise from this decision to accept or reject should be discussed as well.
The experimenter’s skill plays an important role for this decision. The experimental
setup should be reconsidered at this stage and questions like ‘Have suitable test func-
tions or performance measures been chosen?’ must be answered.

SPO has been applied in several domains such as machine engineering, aerospace
industry, elevator group control, graph drawing, technical thermodynamics, vehicle

123

Synthese (2008) 163:385–396 395

routing and bio-informatics. It is also a useful tool to determine improved algorithm
designs (tuning). A sequential technique is utilized to perform this tuning very effi-
ciently. This is important for complex real-world optimization tasks, which allow only
a few function evaluations. SPO illustrates how experimental algorithmics can benefit
from concepts developed in philosophy of science.

4 Summary and outlook

We described the current situation of experimental research in computer science, espe-
cially in experimental algorithmics. Several statistical tools that reflect the require-
ments of today’s optimization practitioners are being developed nowadays. However,
almost no tools exist that enable an interpretation of and learning from scientific results.
Mayo’s models of statistical testing bridge this gap. We demonstrated how approaches
introduced in Mayo (1983) and Mayo and Spanos (2006) can be transferred to exper-
imental algorithmics. An example was presented to illustrate this approach. SPO was
presented as an integrated approach for tuning, analyzing, and understanding computer
algorithms.

Commenting on Mayo and Spanos (2006), who, while discussing questions of the
role of error probabilities, state, ‘Not that practitioners are waiting for philosophers
to sort things out’, we conclude this article with a short outlook from the perspective
of an experimenter in computer science. There is a growing interest in—and need
for—sound experimental methodologies as recent workshops such as the ‘Workshop
On Empirical Methods for the Analysis of Algorithms’ (Bartz-Beielstein and Preuss
2006a,b) and a series of tutorials given at GECCO and CEC, the leading conferences
in the field of evolutionary optimization, demonstrate (Bartz-Beielstein and Preuss
2004, 2005).

We suppose that only a handful of researchers in computer science are aware of
some of these fundamental methodological discussions in the philosophy of science.
However, discussing questions like the ‘significance test controversy’ (Morrison and
Henkel 1970) produces interest even in this application oriented research community.
There is a increasing demand for NPT∗ tools that enable practitioners simply to plug
in their data and support the interpretation of their results. Articles such as Mayo and
Spanos (2004) present important examples of how ideas from philosophy of science
can be made popular in other research communities.

References

Bartz-Beielstein, T. (2006). Experimental research in evolutionary computation—The new experimentalism.
Berlin, Heidelberg, New York: Springer.

Bartz-Beielstein, T., & Preuss, M. (2004). CEC tutorial on experimental research in evolutionary compu-
tation. In IEEE Congress on Evolutionary Computation, Tutorial Program. Tutorials given at CEC in
2004 and 2005.

Bartz-Beielstein, T., & Preuss, M. (2005). GECCO tutorial on experimental research in evolutionary com-
putation. In 2005 Genetic and Evolutionary Computation Conference, Tutorial Program. Tutorials given
at GECCO in 2005, 2006, and 2007.

Bartz-Beielstein, T., & Preuss, M. (2006a). Considerations of budget allocation for sequential parameter
pptimization (SPO). In Workshop on Empirical Methods for the Analysis of Algorithms (EMAA), Tutorial

123

396 Synthese (2008) 163:385–396

Program. Held in conjunction with the International Conference on Parallel Problem Solving From
Nature (PPSN IX) (pp. 35–40).

Bartz-Beielstein, T., & Preuss, M. (2006b). Sequential parameter optimization (SPO) and the role of tuning
in experimental analysis. In Workshop on Empirical Methods for the Analysis of Algorithms (EMAA).
Held in conjunction with the International Conference on Parallel Problem Solving From Nature
(PPSN IX) (pp. 5–6). Invited talk.

Clerc, M., & Kennedy, J. (2006). Standard PSO version 2006. http://www.particleswarm.info/Standard_
PSO_2006.c. Cited 11 August 2007.

Gregoire, T. (2001). Biometry in the 21st Century: Whither statistical inference? (Invited Keynote). Proceed-
ings of the Forest Biometry and Information Science Conference held at the University of Greenwich,
June 2001. http://cms1.gre.ac.uk/conferences/iufro/proceedings/gregoire.pdf. Cited 19 May 2004.

Kleijnen, J. P. C. (1987). Statistical tools for simulation practitioners. New York, NY: Marcel Dekker.
Mayo, D. G. (1983). An objective theory of statistical testing. Synthese, 57, 297–340.
Mayo, D. G. (1996). Error and the growth of experimental knowledge. Chicago, IL: The University of

Chicago Press.
Mayo, D. G., & Spanos, A. (2004). Methodology in practice: Statistical misspecification testing. Philosophy

of Science, 71, 1007–1025.
Mayo, D. G., & Spanos, A. (2006). Severe testing as a basic concept in a Neyman–Pearson philosophy of

induction. British Journal for the Philosophy of Science, 57, 323–357.
Montgomery, D. C. (2001). Design and analysis of experiments (5th ed.). New York, NY: Wiley.
Morrison, D. E., & Henkel, R. E. (Eds.) (1970). The significance test controversy—A reader. London, UK:

Butterworths.
Wolpert, D., & Macready, W. (1997). No free lunch theorems for optimization. IEEE Transactions on

Evolutionary Computation, 1(1), 67–82.

123

http://www.particleswarm.info/Standard_PSO_2006.c
http://www.particleswarm.info/Standard_PSO_2006.c
http://cms1.gre.ac.uk/conferences/iufro/proceedings/gregoire.pdf

	How experimental algorithmics can benefitfrom Mayo's extensions to Neyman--Pearson theoryof testing
	Abstract
	Introduction
	Severity
	NPT and Mayo's learning model
	Neyman--Pearson tests and the severity function
	Severity interpretation of acceptance
	Sequential parameter optimization
	Summary and outlook
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

