
Chapter 2
The Future of Experimental Research

Thomas Bartz-Beielstein and Mike Preuss

Abstract In the experimental analysis of metaheuristic methods, two issues are

still not sufficiently treated. Firstly, the performance of algorithms depends on their

parametrizations—and of the parametrizations of the problem instances. However,

these dependencies can be seen as means for understanding an algorithm’s behav-

ior. Secondly, the nondeterminism of evolutionary and other metaheuristic methods

renders result distributions, not numbers.

Based on the experience of several tutorials on the matter, we provide a compre-

hensive, effective, and very efficient methodology for the design and experimen-

tal analysis of metaheuristics such as evolutionary algorithms. We rely on modern

statistical techniques for tuning and understanding algorithms from an experimen-

tal perspective. Therefore, we make use of the sequential parameter optimization

(SPO) method that has been successfully applied as a tuning procedure to numerous

heuristics for practical and theoretical optimization problems.

2.1 Introduction

Contrary to intuition, applying and assessing randomized optimization algorithms

efficiently and effectively is usually not trivial. Due to their flexibility, they fail only

gradually, e.g., by using wrong parametrizations, as long as the main principle of

moving towards better solutions remains intact. Statements of practitioners such as

“I tried that once, it did not work” thus appear to be somewhat naïve to scientists but
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simply reflect how the difficulties of a proper experimental evaluation are usually

underestimated.

Despite these difficulties, computer scientists have all the information at hand to

perform experiments. Computer experiments can be planned and randomness can

be controlled, e.g., by using random seeds. This situation differs completely from

the situation in field studies, e.g., in agriculture. The difficulties in the experimental

analysis of randomized optimization algorithms are much more in posing the right

questions than in generating empirical data. Setting up and interpreting experiments

in a meaningful way is especially difficult as the methods under test are “general-

purpose” optimization methods by design.

This chapter concentrates on new approaches, omitting the discussion of the

“good old times” when reporting the mean best fitness value from ten runs of an

algorithm was sufficient for the acceptance of an article in a journal. Looking at the

history of experimentation in computer science, especially in the field of simulation

and optimization, we can see that in former times simple statistics such as mean val-

ues dominated the presentations and discussions. Today, more sophisticated statis-

tics gain more and more importance, and some journals do not accept articles which

lack a sound statistical basis. State-of-the-art publications report statistically mean-

ingful conclusions, e.g., results are based on p-values—which has been a standard

in other disciplines such as medicine for many years.1 The next step, which will be

discussed in this chapter, is related to conclusions which are statistically and scien-

tifically meaningful.

There are also some myths, e.g., statements like “Genetic algorithms are better

than other algorithms (on average)”, that were quoted in the 1980s, and are not heard

any more. Other myths that have become extinct read: “Everything is normal”, “10

is a nice number (to specify the number of runs in a repeated experiment)”, and

“performing good experiments is a lot easier than developing good theories.”

In the meantime, approaches such as algorithm engineering which offer method-

ologies for the design, implementation, and performance analysis of computer pro-

grams, were developed (Demetrescu and Italiano 2000). Although the pen-and-

paper era has been overcome in algorithm engineering (see also the discussion on

p. 132 of this book), our approach differs substantially from algorithm engineering

in several aspects, of which we mention only three (Bartz-Beielstein (2006) presents

a comprehensive comparison):

1. The approach presented in this chapter has its origin in design of experiments
(DOE). Ideas from Fisher (1935) have been refined and extended over recent

decades. Ideas that were successfully applied in agricultural and industrial simu-

lation and optimizations have been applied to problems from computer science.

DOE has an important impact on experimentation in computer science. Most

influential is Kleijnen’s work. His first works go back to the 1960s. Books such

as Statistical Tools for Simulation Practitioners (Kleijnen 1987) provide useful

hints for simulation and optimization practitioners; see also his work on Design
and Analysis of Computational Experiments, Chap. 3 of this book.

1 A formal definition of the p-value is given in the Appendix, see p. 435.
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2. The concept of active experimentation is fundamental to our approach. First, a

very simple model is chosen—a process related to pulling oneself up by one’s

own bootstraps. Since the model induces a design, design points can be chosen

to perform experiments. In the next step, model refinement is applied (or, if the

model does not fit at all, a new model is chosen). This rather simple sequential

approach is a very powerful tool for the analysis of heuristics.

3. Whereas algorithm engineering builds on the existence of theory, this is not a

necessary precondition for our approach. However, obtaining general principles

from experimentation may later on lead to theory. Nevertheless, this is not the

primary goal. Instead, one is striving for “best-case” performance in the sense

that, for a given problem and algorithm, the best possible algorithm configura-

tion is sought.

This chapter is organized as follows: Sect. 2.2 describes specific features of ex-

periments in computer science, especially for the analysis of computer algorithms.

Two major goals are considered, namely, improving the performance of algorithms

and understanding their behavior. Section 2.3 discusses three fundamental problems

of experimental research: problems related (i) to the experimental setup, (ii) the

interpretation of the results, and (iii) developing theories from experiments. Sec-

tion 2.4 introduces the framework of the new experimentalism. Since models are

central for our approach, Sect. 2.5 introduces a hierarchy of models. This section

concludes with a description of sequential parameter optimization (SPO). 2 Pitfalls

that can occur during experimentation are described in Sect. 2.6. Section 2.7 de-

scribes tools to measure and report results. This chapter concludes with a summary

in Sect. 2.9.

2.2 Experimental Goals in Computer Science

Theoreticians sometimes claim that experimentation is a “nice to have” feature, but

not “necessary” in computer science. As discussed in Sect. 1.2.2, there are practical

problems which make experimentation necessary. There are several good reasons to

further develop the methodology for experimental work:

• For many practical problems, including but not limited to black box real-valued

problems, theory is far behind to nonexistent, so that there is no other means to

investigate efficiency other than experiment.

• Metaheuristic optimization algorithms consist of basic working principles: Any

interfaced problem can be solved “in principle.” However, to attain considerable

efficiency in real-world problems, it is generally needed to adapt the metaheuris-

tic towards the problem, using any available specific knowledge about the appli-

2 An implementation of SPO has been developed over the last years. The corresponding software
package will be referred to as SPOT, an acronym which stands for sequential parameter optimiza-
tion toolbox. SPOT is discussed in detail in Chap. 14 of this book.
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cation domain. This process of adaptation is crucial but often ignored in favor

of the final quality. It shall not be undertaken without a guiding methodology.

In order to justify the need for a methodology for the experimental analysis we will

discuss important goals of the experimental approach.

2.2.1 Improving the Performance

Many studies use experiments to show improved algorithm performance. There are

many reasons why we are interested in showing improved algorithm performance.

One reason may be that the algorithm does not find any feasible solution. This task

is related to effectivity. Another reason may be that we want to demonstrate that our

heuristic is competitive to the best known algorithm. This task is related to efficiency.
If our focus of the experimental analysis lies in efficiency, then we are considering

tuning problems.

Effectivity and efficiency require different experimental setups. To analyze effec-
tivity, we consider several problem instances, e.g., different starting points, dimen-

sions, or objective functions. To study efficiency, we are seeking an improved param-

eter set for the algorithm, while keeping the problem instance constant. This leads

to a generic classification of the experimental parameters: the first class comprises

parameters related to the algorithm, whereas the second class consists of parameters

related to the problem.

a) Algorithm parameters are related to the algorithm, which should be improved.

A set of algorithm parameters will be considered as an algorithm design. Note
that an algorithm design is a set, which can be empty or contain infinitely many

algorithm parameters.

b) Problem parameters describe the problem (instance) to be solved by the algo-

rithm. A problem design consists of none, one or several problem parameters.

Example 2.1. An algorithm design includes parameters such as population size or

selection strength. A problem design comprises search space dimensions, starting

points, or objective functions. �

Regarding the problem design and its associated budget, at least two different situ-

ations can be distinguished:

a) Real–world settings: In these situations, complex objective functions, e.g., from

simulation, occur. Generally, only a small number of function evaluations is

possible.

b) Theoretical settings: In these situations, simple objective functions are used.

These, partially artificial, functions should provide some insight into the algo-

rithms’s behavior. Generally, many function evaluations are possible.
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2.2.2 Understanding

Until now, we have investigated ways to improve algorithm performance, i.e., im-

proving efficiency (tuning) or effectivity (robustness). In several situations, we are

interested in why an algorithm performs poorly or well. Methods for understanding

its elements, e.g., procedures, which can be modified by parameters, are presented

next.

Screening, e.g., in order to detect the most influential parameters or factors,
is useful in real-world and in theoretical situations. Statistically speaking, we are

interested in the effects of the parameters on the outcome. This is related to im-

portant questions: “Does a parameter influence the algorithm’s performance?” or

“How to measure these effects?” Consider a first model: Y = f(X), where
X = (X1, X2, . . . , Xr) denotes r parameters from the algorithm design, and Y
denotes some output (i.e., the best function value from 1000 evaluations). If the

problem design remains unchanged, we can perform:

1. Uncertainty analysis, i.e., we compute the average output, standard deviation,

and outliers. Therefore, uncertainty analysis is related to the outcome Y .

2. Sensitivity analysis, i.e, we analyze which of the factors are most important in

influencing the variance in the model output Y . Therefore, sensitivity analysis

is related to the input values, i.e., the relationship between Xi, Xj , and Y .

To measure parameter effects, mathematics and statistics provide different ap-

proaches, namely derivation, analysis of variance, and regression. Although these

approaches look different at first sight, they have very much in common as will be

seen later on. SPOT’s screening phase comprises short runtimes, sparse designs, ex-

treme values, and outliers that destroy the SPOT metamodel; see also the discussion

and examples in Chap. 14.

There is no general answer to the question “How many factors are important?”

However, the following rule is observed by many practitioners: The input factor

importance is distributed as the wealth in nations—a few factors produce nearly all

the variance.

2.3 Problems

Now that we have discussed relevant tasks for the experimental analysis of com-

puter algorithms, we consider severe problems related to experimentation. Obvi-

ously, performing an experimental study requires more than reporting results from

a few algorithm runs. Generating scientifically meaningful results is a very complex

task. We will present three fundamental problems that give experimenters a hard

time, namely problems related to:

1. The experimental setup

2. Interpreting the significance of the results
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3. High-level theory

2.3.1 Problems Related to the Experimental Setup

An analysis of recent publications makes evident that there is still space for im-

provement of up-to-date approaches in experimentation. Example 2.2 illustrates our

considerations.

Example 2.2. Can the following be considered good practice? The authors of a jour-
nal article used 200,000 function evaluations as the termination criterion and per-

formed 50 runs for each algorithm. The test suite contained 10 objective functions.

For the comparison of two algorithms, population sizes were set to 20 and 200. They

used a crossover rate of 0.1 in algorithm A, and 1.0 in B. The final conclusion from

their experimental study reads: “Algorithm A outperforms B significantly on test

problem f6 to f10.” �
Problems related to this experimental study may not be obvious at first sight, but

consider the following:

1. Why did the authors use 200,000 function evaluations to generate their results?

Would results differ if only 100,000 function evaluations were used?

2. Why did they use 50 runs for each algorithm? Again, would 10 or 100 repeats

result in different conclusions?

Solutions for the first question are discussed in some publications. Cohen (1995)

presents a comprehensive discussion of so-called floor and ceiling effects, and Hoos

and Stützle (2005) develop statistical tools, so called run-length distributions. Prob-
lems such as mentioned in the second question, the number of repeats, will be

detailed in Sect. 2.3.2. They are related to p-values, or more abstractly, signifi-

cance (Morrison and Henkel 1970). Example 2.2 demonstrates that we need tools to

determine:

1. Adequate number of function evaluations, especially to avoid floor or ceiling

effects

2. Thoughtfully chosen number of repeats

3. Suitable parameter settings for comparison

4. Suitable parameter settings to get working algorithms

2.3.2 Problems Related to the Significance of Experimental Results

In the following, we will focus on comparisons of results from experimental studies.

High-quality tools from statistics are used in recent publications. Nowadays, it is no

problem to generate experimental data and to produce statistics. However, there are

nearly no tools to interpret the scientific significance of these statistical results. The
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reader may claim that more and more authors use statistical tests to validate the

significance of their results. However, results based on tests can be misleading.

We will consider hypotheses testing first. A hypothesis is a statement made about

a population, e.g., with respect to its mean. Acceptance or rejection of the hypothesis

is based on a test statistic T on a sample taken X from the population. Hypothesis

testing is a rule of inductive behavior: Accept/reject are identified with deciding to

take specific actions (Mayo and Spanos 2006a). The process of hypothesis testing

consists on taking a random sample from the population and making a statistical

hypothesis about the population. If the observations do not support the claim pos-

tulated, the hypothesis is rejected. Associated with the decision is the significance

level α. Assuming normal distributed random variables, the procedure for hypothe-

sis testing involves the following five steps:

1. State a null hypothesis,H0. For example,H0: μA−μB = 0, i.e., we hypothesize
that the mean function value μA of algorithm A and the mean function value

μB of algorithmB are the same. IfH0 is true, any observed difference in means

is attributed to errors in random sampling.

2. Declare an alternate hypothesis, H1. For the example under consideration, it

could be H1: μA − μB > 0, i.e., we are considering a one-sided test. Since

smaller function values are preferred (minimization), this indicates that algo-

rithms B performs better than A.
3. Specify a test statistic, T . For claims about a population mean from a population

with a normal distribution, if the standard deviation σ is known, the appropriate

significance test is known as the z-test. The test statistic is defined as

z0 =
x− μ0

σx
, (2.1)

where σx = σ/
√
n is the standard error. In the example under consideration,

T will be based on the difference of observed means, XA −XB . Using (2.1),

the test statistic follows the standard normal distribution (with mean = 0 and

standard deviation = 1).

4. Define a rejection region (the critical region, R) for T based on a pre-assigned

significance level α.
5. Use observed data, e.g., x, to determine whether the computed value of the test

statistic lies within or outside the critical region. The quantity we are testing

is statistically significant at the α% level, if the the test statistic is within the

critical region, see also (A.1) on p. 433. The significance level α indicates how

much we are willing to risk (in terms of probability) an incorrect rejection of

the null hypothesis when the latter is true. Figure 2.1 illustrates this procedure.

In hypothesis testing we use the terms errors of Type I (α) and Type II (β) to
define the cases in which a true hypothesis is rejected or a false hypothesis is ac-

cepted (not rejected), respectively. The complement of β is called the power of the

test of the null hypothesis H0 versus the alternative H1. Using a sample of size n
with mean x and standard deviation σ, the z-statistic, cf. (2.1), can be calculated.

The p-value for a one-sided test is defined as: p-value= Pr(Z > z0). The p-value
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Fig. 2.1: Hypothesis testing. Consider n = 100, σ = 1, μ0 = 0, and α = 0.05. The critical region
is [1.645,∞[, and z0 = x × 10, cf. (2.1). For instance, the testing rule leads to a rejection of the
null hypothesis if the difference of observed means is larger than 0.1645

associated with z0 is compared to α to decide whether or not to reject the null hy-

pothesis. The criteria to use for hypothesis testing is: Reject H0 if the p-value is

smaller than α, otherwise do not reject H0.

Next, we consider two typical problems related to the p-value.

2.3.2.1 Misinterpretation

First, we consider a typical problem related to the definition of the p-value. Since
the null hypothesis is either false or true, the p-value is not the probability that H0

is true. The p-value is defined as3

p = Pr{result from test-statistic, or greater | null model is true }. (2.2)

A typical misinterpretation of the p-value reads as follows:

p = Pr{ null model is true | test-statistic }.

However, the p-value has “no information to impart about the verity of the null

model itself” (Gregoire 2001). To illustrate this difference, the reader may compare

Pr{A|B} and Pr{B|A}, where A denotes the event “born on 1st January, 1980”

and B represents “gender female.”

3 See also the description on p. 435 in the Appendix of this book.
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2.3.2.2 The Large n Problem

Second, we will exemplify one typical problem that has direct consequences for the

experimental analysis of optimization algorithms. It is fundamental to all compari-

sons—even to high-level procedures. To perform experiments in computer science,

the following steps are to be done:

1. Select test problem (instance).

2. Run algorithm A, say n times, which results in n function values.

3. Run algorithm B, say n times, which gives n function values.

4. Calculate the difference of the observed means, say X = XA −XB .

This sounds trivial, but there are many implications which arise from the specifica-

tion of n, the number of repeats. Recall, that n was set to 50 in Example 2.2.

Example 2.3 (Hypotheses testing). We perform a comparison of two algorithms A
and B. The null hypothesis H0 : μ = 0 (= μ0), is tested against the alternative

hypothesis, H1 : μ > 0 at a level of confidence of 95%, i.e., α = 0.05, using
a sample of size n = 5 with a difference of the observed means x = 0.1 and

a (known) standard deviation σ = 1.0. Based on this setup, the experimenter is

interested in demonstrating that algorithm B outperforms A. Performing n = 5
runs, the p-value reads p = 0.4115, which is not very convincing. Maybe additional

experiments are helpful? Increasing the number of repeats from n = 5 to 10 gives

p = 0.3759, which is better, but not convincing. However, the direction for further

experimentation is clear: n = 100 gives p = 0.1587, and n = 1000 produces the

desired result: p = 0.0008. The experimenter concludes his article with the words:

“My newly developed algorithm B clearly outperforms the known-best algorithm

A.”
This situation is illustrated in Fig. 2.2, where the p-value is plotted versus the

number of runs. This result is not surprising, since (2.1) depends on n, i.e., the
number of samples. �

We may ask the reader if the result from Example 2.3, i.e., “B clearly outper-

forms A” is:

a) Statistically correct

b) Scientifically meaningful

After introducing the new experimentalism in Sect. 2.4, this problem will be recon-

sidered.

2.3.3 Problems Related to High-Level Theory

In computer science, the Popperian view based on falsification is an, if not the, es-
tablished definition of science (Popper 1959). Once proposed, speculative claims (or

theories) are to be rigorously tested by experiment and observation. If they fail these
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Fig. 2.2: Increasing the number of experiments can reduce the p-value. This figure illustrates the
situation described in Example 2.3. The number of repeats is varied from n = 10 to 5000. For each
setting, n realizations of the random variables YA and YB are generated and the corresponding
p-value is determined

tests, theories must be eliminated and can be replaced by new theories or speculative

conjectures. However, the philosophy of science, i.e., the discipline in which Pop-

per’s ideas were established, has made some progress over the last decades. New

approaches, which strengthen the role of experiments, have gained importance.

Since these discussions have relevant impact on the meaning of experimentation

and its relation to theory in computer science, we will sketch out significant aspects

of this debate. Chalmers (1999) notes, that it “is ironic, . . . , that Popper, who at

times characterized his own approach with the slogan ‘we learn from our mistakes’,

failed precisely because his negative, falsificationist account did not capture an ade-

quate, positive account of how science learns from mistakes (falsifications).” Popper

states that theory formulates hypotheses which we accept as knowledge insofar as

they can withstand severe experiments set up to falsify them (Popper 1959). How-

ever, an important dilemma that arises from the Popperian view can be formulated

as follows:

It is impossible to decide whether an hypothesis itself or its supporting assumption is wrong.
Moreover, meaningful assumptions require additional assumptions, which leads to an infi-
nite regress.

Since we cannot discuss all problems related to the Popperian view, the interested

reader “who wants to obtain a firmer grasp of one of the most important yet simul-

taneously least understood developments of all time” (Champion 2009) is referred
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to Chalmers (1999). However, we can present alternatives and recent approaches.

Therefore, we will clarify the role of experiments in computer science and present

relevant tasks which can be treated by experiments.

2.4 The New Experimentalism

In the previous section, problems related to the experimental setup, significance of

the results, and high-level theory were presented. A debate devoted to these central

questions has not yet started in computer science. The reader may answer the ques-

tion: Obviously, astronomy is considered scientific, and astrology not—but, what

about experimental research? Fortunately, this debate is going on in other scientific

disciplines, e.g., in the philosophy of science. We claim, that in computer science

a similar debate is necessary to provide a scientific foundation for experimental re-

search. Therefore, we will introduce the new experimentalism, which is the most

influential trend in recent philosophy of science (Ackermann 1989). The new exper-

imentalists are seeking a relatively secure basis for science, not in theory or passive

observation, but in active experimentation.

When free from error, experimental results may confirm scientific claims. How-

ever, more than validations of scientific claims can be obtained from experiments.

An experiment which serves to detect an error in some previously stated assertion

serves as a positive as well as a negative function. Experiments do not only serve as

falsifications of certain assertions, they also positively identify previously unknown

effects.

The key idea in this concept, which can be seen as an extension of the Popperian

view, is that a claim can only be said to be supported by experiment if the various

ways in which the claim could be false have been analyzed and eliminated. The new

experimentalists will ask whether the confirmations would have been likely to occur

if the theory were false. Mayo (1996) describes a detailed account of how experi-

mental results can be reliably established using error statistics and error-eliminating

techniques. Many of the ideas presented in this book describe how statistics can be

used to obtain valid experimental results. Considering ideas from the current discus-

sion in the philosophy of science may be inspiring for further research in computer

science and may be helpful to bridge the gap between theory and experiment, hope-

fully leading to—as stated by Chalmers (1999)—a “happy meeting of theory and

experiment.” Since models are the key elements of a scientific framework for exper-

imental research, they will be discussed in the following section.
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2.5 Experimental Models

2.5.1 The Role of Models in Science

The standard interpretation of models is derived from mathematical logic. Scien-

tific reasoning is to a large extent model-based reasoning. Forty years ago, Suppes

(1969) published his much cited paper “A Comparison of the Meaning and Uses of

Models in Mathematics and the Empirical Science.” He claims that the meaning and

the use of models can be interpreted as being the same in the empirical sciences as

it is in mathematics, and, more particularly, in mathematical logic. This view can

be considered as the standard view within science. Giere (1999) claims that this

standard interpretational (or instantial) view of models is not adequate for empirical

science. He proposes a representational view of models which is more suited for

the needs of empirical investigations. To understand why instantial models are not

adequate, we consider Suppes’ definition of models, which is based on the defini-

tion of theories: “A theory is a linguistic entity consisting of a set of sentences and

models are non-linguistic entities in which the theory is satisfied.” A model A is a

set-theoretical structure consisting of a set of objects together with properties, rela-

tions, and functions defined over A. A model enables the interpretation of a set of

uninterpreted axioms.

Example 2.4. As an example we consider models used for non-Euclidean geometry,

especially for hyperbolic geometry. Non-Euclidean geometry systems differ from

Euclidean geometry in that they modify the parallel postulate (Euclid’s fifth postu-

late). In general, there are two forms of (homogeneous) non-Euclidean geometry:

Hyperbolic geometry and elliptic geometry.

There are four models commonly used for hyperbolic geometry: the Klein model,

the Poincaré disc model, the Poincaré half-plane model, and the Lorentz model.

These models define a real hyperbolic space which satisfies the axioms of a hyper-

bolic geometry. We will illustrate two of these models in the following, see Fig. 2.3.

1. The Klein model uses the interior of a circle for the hyperbolic plane. Hyper-

bolic lines are chords of this circle.

2. The hyperbolic plane in the Poincaré half-plane model is defined as one-half of

the Euclidean plane, as determined by a Euclidean line h. The line h itself is

not included. Either rays perpendicular to h or half-circles orthogonal to h are

hyperbolic lines.

�

As in this example, logicians consider mainly models that consist of abstract entities,

e.g., lines or circles. In principle, these objects could be physical objects. As shown

in Example 2.4, uninterpreted logic formula may be interpreted using many different

instantial models which are isomorphic. This isomorphism is called an analogy. So,

we can consider many analogue models for one theory, see Fig. 2.4.



2 The Future of Experimental Research 29

h

Fig. 2.3: Two models for hyperbolic geometry. Left: The Klein model. Right: The Poincaré half-
plane model. Hyperbolic lines are chords of the circle in the Klein model; they are rays or half-
circles in the Poincaré half-plane model

theory

model 1

model 2

analogy

map 1

map 2

similaritytown

Fig. 2.4: Left: Analogy interpreted as isomorphism. Right: Similarity as a concept for real-world
(representational) models. Maps, which represent the same geographical area, are similar, not nec-
essarily isomorphic. Consider, e.g., a map which illustrates railway lines and a map which illus-
trates the climate

2.5.2 Representational Models

Computer programs consist of several hundred or thousand lines of code. Several

programs use special features of the operating system, which depends on the under-

lying hardware. Hence, modeling computer programs requires more complex mod-

els than models from logic. Following Giere (1999), we consider representational
models for real-world scenarios. Maps are good examples of representational mod-

els. One object (map) represents another real-world object (geographical region). In

contrast to models in theory, representational objects are similar, not isomorphic.

These similarities are context dependent. At first sight, similarity seems to be a

much weaker property than analogy. This is only relative, because in any particular
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context, we can specify what is said to be similar to what, in what ways, and to what

extent.

Next, we will consider mathematical models which describe properties of com-

puter algorithms. For example, the equation

T (n) =
1

2
(n2 + n) (2.3)

is a linguistic object which describes the (worst-case) time complexity function T
of an algorithm, e.g., quick sort, as a function of the problem dimension n. Nobody
would claim that Eq. 2.3 is the true running time (wall time) of quicksort as nobody

would claim that the equation y(t) = y0 + vt describes the exact position of a

real object, e.g., a car, because no real object can maintain a constant velocity in a

perfect straight line. One possible way to resolve this problem is to introduce error

into Eq. 2.3. Although technically correct, it is not common practice and in many

situations not necessary to use error terms. Error equations are useful to compare the

abstract model with reality. This comparison can be performed at the beginning and

at the end of an experimental study. Then, the error terms can be used to determine

the degree of similarity between the abstract model and the real algorithm.

Mathematical models can provide information about the degree of similarity with

real systems by interpreting error equations as hypotheses about particular algo-

rithms or systems in the real world. These hypotheses may be judged true or false

based on active experimentation. Statistical testing plays a central role in establish-

ing this scientific approach to experimentation.

After considering suitable models for the experimental analysis of algorithms,

we have to bridge the gap between the data obtained by experimentation and the

theory. Obviously, experimental data can constitute only a finite sample of outputs

from the experimental system, whereas scientific hypotheses consider an infinite

number of cases. This leads to the problem of how to link the problem-specific

experimental data to the primary theoretical hypotheses. Introducing a hierarchy of

models can provide a solution to this problem. Testing the fit of a model to the real

object or system, we do not compare the model with data but with a model of data.

Experiments are used to judge the similarity between the higher level and the real

system. These experiments require the specification of models, too. We describe this

framework of models in the following.

2.5.3 A Framework of Models

We obtain a series of conceptual representations or models ranging from the pri-

mary scientific hypotheses to the details of generating data. Mayo (1996, p.129)

introduces:

1. Models of primary scientific hypotheses

2. Models of experiment
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Procedure 2.1: (1+1)-ES ()
t := 0;
initialize(x, σ);
yp := f(xp);
repeat

xo := xp + σ(N (0, 1),N (0, 1), . . . ,N (0, 1))T ;
yo := f(xo);
if yo ≤ yp then

xp := xo;
yp = yo;

end
modify σ according to 1/5th rule;
t := t+ 1;

until TerminationCriterion() ;
return (xp, yp)

3. Models of data

Primary models are means to break down a substantive inquiry into one or more

local questions that can be probed reliably. Experimental models are used to relate

primary questions to canonical questions about the particular type of experiment at

hand. They can be used to relate the data to the experimental questions. Finally, data
models are applied to generate and model raw data so as to put them in canonical

form and to check if the actual data generation satisfies various assumptions of the

experimental models. An adequate account of experimental testing must not begin

at the point where data and hypotheses are given, but must explicitly incorporate

the intermediate theories of data, instruments, and experiment that are necessary

to obtain experimental evidence in the first place. We will present an example to

illustrate these different models.

Example 2.5. We consider a simple evolution strategy (ES), the so-called (1+1)-ES,
see Procedure 2.1. The 1/5th rule states that σ should be modified according to the

rule

σ(t+ 1) :=

⎧⎨⎩σ(t)a, if Ps > 1/5
σ(t)/a, if Ps < 1/5
σ(t), if Ps = 1/5

(2.4)

where the factor a is usually between 1.1 and 1.5 and Ps denotes the success

rate (Beyer 2001). The factor a depends particularly on the measurement period

g, which is used to estimate the success rate Ps. During the measurement period,

g remains constant. For g = n, where n denotes the problem dimension, Schwefel

(1995) calculated 1/a ≈ 0.817. Beyer (2001) states that the “choice of a is rel-

atively uncritical” and that the 1/5th rule has a “remarkable validity domain.” He

also mentions limits of this rule.

Based on these theoretical results, we can derive certain scientific hypotheses.

One might be formulated as follows: Given a spherical fitness landscape, the (1+1)-
ES performs optimally, if the step-sizes σ is modified according to the 1/5th rule as
stated in Eq. 2.4. This statement is related to the primary model.
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In the experimental model, we relate primary questions or statements to questions

about a particular type of experiment. At this level, we define an objective function,

a starting point, a quality measure, and parameters used by the algorithm. These

parameters are summarized in Table 2.1.

Table 2.1: (1+1)-ES parameters. The first three parameters belong to the algorithm design, whereas
the remaining parameters are from the problem design (see Sect. 2.2.1)

Name Symbol Factor name in the algorithm design

Initial stepsize σ(0) S0
Stepsize multiplier a A
History g = n G

Starting point xp

Problem dimension n
Objective function f(x) =

∑
x2
i

Quality measure Expected performance, e.g., E(y)
Initial seed s
Budget tmax

Data from these experiments are related to an experimental question, which can

be stated as follows: Determine a value for the factor a, such that the (1+1)-ES
performs best with respect to the quality measure specified in Table 2.1. And, is
this result independent of the other parameters presented in Table 2.1? Note that

Table 2.1 contains all factors that are used in this experiment.

Finally, we consider the data model. A common practice in statistics is to seek

data models that use similar features and quantities of the primary hypothesis. For

example, if the primary model includes questions related to the mean value μ of

some random variable X , then the data model might use the sample mean x. Here,
we are interested in the expected performance of the (1+1)-ES. Thus, we can use

the average from, say fifty, repeats, yi, to estimate the expected performance. In

addition, standard errors or confidence intervals can be reported. So, in the data

model, raw data are put into a canonical form to apply analytical methods and to

perform hypothesis tests. How one scientific claim, which is related to the primary

model, can be broken down into local claims, is illustrated in Fig. 2.5. �

Based on these models, we can apply statistics to draw conclusions and learn from

experimental results. The refined relationship between theory and model is shown

in Fig. 2.6.

2.5.4 Mayo’s Learning Model

The classical approach in statistical inference can be interpreted as a means of de-

ciding how to behave. To contrast her formulation testing with this behavioristic
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Scientific Claim:
Given the 10 dimensional  

objective function y=x^2, the 
(1+1)-ES performs optimal, if

the step-size  is modified 
according to the 1/5th rule

Scientific Claim:
Given a spherical fitness 
landscape, the (1+1)-ES 

performs optimal, if
the step-size  is modified 

according to the 1/5th rule

Statistical 
Hypothesis:

A value of a=1.1 for 
the multiplier gives 

optimal 
performance

Experiment 1:
result independent of starting 

point

Experiment 2:
result independent of memory 

vector length

Experiment k:
result independent of the k-th 

factor

...

Statistical 
Hypothesis:
Difference in 

means is 
significant

Severity

Scientific Claim:
The (1+1)-ES performs optimal, 

if the step-size  is modified 
according to the 1/5th rule

Scientific Claim:
Given a non-spherical fitness 

landscape, the  1/5th rule    does 
not lead to an optimal 

performance of the (1+1)-ES

Experiment:

m runs of each configuration

Scientific Claim:
Given the n dimensional  

objective function y=x^2, the 
(1+1)-ES performs optimal, if

the step-size  is modified 
according to the 1/5th rule

Scientific Claim:
Given the n dimensional  

objective function y=ax^2+bx+c, 
the (1+1)-ES performs optimal, if

the step-size  is modified 
according to the 1/5th rule

...further claims ...further claims ...further claims

Fig. 2.5: Primary scientific hypothesis broken into local hypotheses. Rectangles denote elements
from the primary model, elements from the experimental model use parallelograms, and ellipses
are used to represent elements from the data model
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algorithm
theory

implementation 1

implementation 2

similarity

primary
model

experimental
model

data
model

Fig. 2.6: Refining the theory–model relation from Fig. 2.4 by introducing a model hierarchy

model, Mayo (1983) introduces the term learning model. The distribution of the test
statistic is used to control error probabilities. Statistical tests are seen as “means of

learning about variable phenomena on the basis of limited empirical data.”

Consider a statistical model with some unknown parameter θ. Mayo (1983) in-

troduces tools for specifying tests that “will very infrequently classify an observed

difference as significant (and hence rejectH) when no discrepancy of scientific im-

portance is detected, and very infrequently fail to do so (and so acceptH) when θ is
importantly very discrepant from θ0.” A discussion of the severity interpretation of

acceptance and rejection can be found in Mayo and Spanos (2006b). They demon-

strate how error-statistical tools can extend commonly used pre-data error probabili-

ties (significance level and power) by using post-data interpretations (severity) of the

resulting rejection or acceptance. Regarding the (1+1)-ES described in Example 2.5,

we have to ensure that the recommended value for the factor a is independent of the

initial stepsize, problem dimension, seed, etc.

Figure 2.7 gives an overview of effects which should be considered in the exper-

imental approach. It represents factors which are a) expected to have an effect, b)

should have no effect with a high probability, and c) which should have no effect at

all.

2.5.5 Sequential Parameter Optimization

2.5.5.1 Definition

Now that we have introduced primary, experimental, and data models, we are ready

to introduce the SPO framework, which is built on these elements.
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Java version

hardware

color of experimenter's socks

weather

EXPECTED

algorithm design

POSSIBLE, UNWANTED

UNEXPECTED

problem design

operating system

room temperature

Fig. 2.7: Classification of factors in the experimental approach. a) Factors which belong to the
algorithm and problem design should have an effect on the experimental outcome. b) Sometimes,
side-effects or unwanted effects occur during experimentation. The experimenter should eliminate
the influence of these factors. If this is not possible, these factors should be included in the set
of factors used for active experimentation (algorithm or problem design). The experimenter can
determine their (error) probabilities. c) Finally, there are infinitely many factors that “obviously”
have no effect on the result, e.g., the color of the experimenter’s socks. Since these are infinitely
many factors, it is impossible to test all of them. However, sometimes it may be interesting to
include one factor into the experimental design—or, as the physicist George Darwin used to say,
“every once in a while one should do a completely crazy experiment, like blowing the trumpet to
the tulips every morning for a month. Probably nothing would happen, but what if it did?”

Definition 2.1 (Sequential Parameter Optimization). Sequential parameter opti-
mization (SPO) is a framework for tuning and understanding of algorithms by active

experimentation. SPO employs methods from error statistics to obtain reliable re-

sults. It comprises the following elements:

SPO-1: Scientific questions

SPO-2: Statistical hypotheses

SPO-3: Experiments

SPO-4: Scientific meaning

�

These elements can be explained as follows.

2.5.5.2 Scientific Questions

Starting point of the investigation is a scientific question which is related to the

primary model. This question often deals with assumptions about algorithms, e.g.,

influence of parameter values or new operators.
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2.5.5.3 Statistical Hypotheses

This (complex) question is broken down into (simple) statistical hypotheses for test-

ing. Mayo (1996, p. 190) writes:

Our approach to experimental learning recommends proceeding in the way one ordinarily
proceeds with a complex problem: break it into smaller pieces, some of which, at least, can
be tackled. One is led to break things down if one wants to learn [. . . ] Setting out all possible
answers to this one question becomes manageable, and that is all that has to be “caught” by
our not-H.

2.5.5.4 Experiments

Using the experimental model, the following steps are performed. For each hypoth-

esis:

a) Select a model (e.g., regression trees) to describe a functional relationship.

b) Select an experimental design.

c) Generate data. This step is related to the data model.

d) Refine the model until the hypothesis can be accepted/rejected.

In Chap. 14 we will present an implementation of steps a) to d), which can be per-

formed sequentially. The corresponding software programs will be referred to as

SPOT.

2.5.5.5 Scientific Meaning

To assess the scientific meaning of the results from this experiment conclusions

are drawn from the hypotheses. Here, the concept of severity suggested in Mayo

(1996) comes into play: “Stated simply, a passing result is a severe test of hypothesis
H just to the extent that it is very improbable for such a passing result to occur,
were H false.” Severity provides a meta-statistical principle for evaluating proposed

statistical inferences. It tells us how ’well probed’ (not ’how probable’) hypotheses

are and is an attribute of the test procedure as a whole. Once the data x0 of the test

T are available, they enable us to evaluate the severity of the test and the resulting

inference.

Consider μ1 = μ0 + δ, where δ is the discrepancy that is warranted. The experi-

mental result is denoted as x. Mayo and Spanos (2006a) present an explicit formula

for determining the severity with which test T passes μ1 > μ in case of a statisti-

cally significant result, i.e., reject H0 with data x0. The severity can be determined

as

SEV (μ > μ1) = Pr(T (X) ≤ T (x0);μ > μ1 false)

= Pr(T (X) ≤ T (x0);μ ≤ μ1).

It follows:
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SEV (μ > μ1) = Pr

(
Z ≤ x− μ1

σx

)
(2.5)

= 1− Pr

(
Z >

x− μ1

σx

)
with Z ∼ N (0, 1).

2.5.5.6 Example

Typical SPO steps are shown in Example 2.6.

Example 2.6. SPO-1: Scientific question: The (1+1)-ES performs optimal, if the

step-size is modified according to the 1/5th rule. This scientific claim can

be divided into subclaims, e.g., the general term “spherical functions” is

replaced by one instance, say “sphere function.” This is done until a clearly

specified experiment is defined and statistical hypotheses can be formu-

lated.

SPO-2: Statistical hypotheses can be formulated as follows:

H1: Consider the (1+1)-ES on the 10-dimensional sphere function with pa-

rameters from Table 2.1. A value of a = 1.1 for the multiplier gives op-

timal performance. Note that each hypothesis requires the specification

of the related algorithm and problem designs to enable reproducibility.

The full specification includes also the selection of an appropriate per-

formance measure. We have chosen the average function value from

n = 50 repeats, but other measures are possible. The corresponding

null hypothesis (H0) reads: There is no such effect (optimal perfor-

mance) for a = 1.1.

SPO-3: For hypothesis H1:

a) A regression model is chosen.

b) Since experimentation is not expensive, a space-filling design with two

repeats of each design point is selected as the initial design in this case.

c) Algorithm runs are performed with parameter settings from the initial

design.

d) Sequential runs are performed until the model allows statements about

the effects of parameters (of the algorithm design in Table 2.1) on the

function value predictions.

SPO-4: Similar results from different hypotheses, etc. indicate the scientific rel-

evance of the results. The reader is also referred to Mayo and Spanos

(2006b) and Bartz-Beielstein (2008).

�
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2.5.6 The Large n Problem Revisited

Based on (2.5), the large n problem, which was introduced in Sect. 2.3.2.2, can be

reconsidered. In the following, a difference in means of δ = 0.25 is considered

scientifically meaningful. The same setting as in Example 2.3 is analyzed.

Example 2.7 (Hypotheses testing and severity). We test the null hypothesis H0 :
μ = 0 (= μ0), against the alternative hypothesis,H1 : μ > 0 at a level of confidence
of 95%, i.e., α = 0.05, using a sample of size n = 5 with a mean x = 0.1 and

a (known) standard deviation σ = 1.0. Based on this setup, the experimenter is

interested in demonstrating that B outperforms A. Performing n = 1000 runs, the

p-value reads p = 0.0008. How severely does test T pass μ > 0.25 with this result?
The answer is SEV (μ ≥ μ1) = 0.0. �

Note, SEV (μ ≥ μ1) = 0.0668 for n = 100, i.e., severity increases for smaller val-

ues of n. An α-significant difference with large n passes μ1 > μ less severely than

with a small n. Mayo and Spanos (2010) conclude: “ With this simple interpretive

tool, all of the variations on ’large n criticisms’ are immediately scotched.”

We have presented the SPO as one possible framework for an experimental anal-

ysis of computer algorithms. Next, we will discuss problems that are not restricted

to SPO, but also relevant to other experimental approaches for the analysis of algo-

rithms. The issues treated are related to data generation, namely tasks and setups of

experiments, and to organizational aspects of meaningful experimentation.

2.6 Pitfalls of Experimentation with Randomized Algorithms

Experimentation in algorithm engineering deals mostly with deterministic methods.

It seems reasonable to argue that this type of experiment has fewer “degrees of free-

dom” than is usual in randomized optimization algorithms, namely metaheuristics.

However, one can still make many different types of mistakes, leading to explicit

guidelines for experimentation such as the one provided by Johnson (2002).

When using randomized optimization techniques as evolutionary algorithms,

several more problems emerge which do not exist for deterministic methods. First

of all, the metaheuristic perspective is somewhat reversed compared with the per-

spective used in algorithm engineering:

• In algorithm engineering, the focus is on solving a specific problem or problem

class. For this purpose, existing algorithms are modified or new ones designed.

The performance is experimentally compared with the predictions made by the-

ory. Where necessary, the algorithms are modified, the theory adapted, and the

algorithm engineering cycle is started anew. In any case, one is usually most

interested in provable algorithm properties, namely convergence speed. The es-

tablished algorithms are not designed to perform well on different problems.
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• In metaheuristics, one designs algorithms for very general (often black-box)

problems and then investigates for which problem classes the algorithms per-

form well. Modifications may be in order for any specific application, but the

main algorithmic frame remains unchanged. One may also start with a concrete

problem to solve, take a metaheuristic “off the shelf,” and improve its perfor-

mance by means of intuition and iterated experimentation, using available or

experimentally obtained problem knowledge. Theory is not available in many

cases, as the problems treated and algorithms employed are often too compli-

cated and the stochastic algorithm behavior makes it very difficult to grasp it

theoretically. Where not possible, one may however try to develop theory on a

reasonable simplification of the original algorithm—this could be termed “algo-

rithm reengineering” (Jägersküpper and Preuss 2008). The main focus however

is on the ability of the algorithms to approximate concrete real-world or bench-

mark problems well enough in reasonable time, not on provable algorithm prop-

erties.

In the following, we mainly deal with the specific pitfalls experienced in ran-

domized optimization algorithms and neglect the ones already described by John-

son (2002). Experimentation on heuristics and metaheuristics got a wakeup-call by

Hooker (1996), who criticized purely competitive testing as it was—and often still

is—fairly common in metaheuristics papers. Instead, one should do scientific test-

ing and investigate the effects which lead to high or low performance. These factors

may be hidden in the algorithms, the problems, or the overall experimental setup. It

is therefore most important for any experimental analysis on randomized optimiza-

tion algorithms to set up a proper goal for the investigation (Sect. 14.3). This done,

there are still several possibilities to fail. In the following, we list the most popular

ones.

2.6.1 Floor and Ceiling Effects

In a paper known as the Rosenberg study (Gregory et al. 1996), the consequences

of a floor effect on the outcome of an experimental work was impressively demon-

strated. Two algorithms, a very simple one and a more sophisticated one, were com-

pared concerning their ability to balance the load on a ring of processing elements.

A large number of incoming jobs had to be distributed in order to maximize the

throughput of the whole system. The expectation was that the more sophisticated

scheme would obtain a clear advantage, but the results indicated that this was not

the case. Both algorithms performed almost equally well. Further analysis revealed

that the test case had been too hard: The number of incoming jobs was so high that

neither algorithm could do very well. All processing elements were busy all the

time, so that no improvement was possible. Thus, the test case was too hard to mea-

sure the expected effect. Depending on the perspective, this may also be interpreted

as a ceiling effect. The trivial task of putting all processing elements to work was

too easy to show any performance differences between the algorithms.
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Both effects render an experimental study worthless and should be avoided. If

observed in the results of a first experiment, the task has to be adjusted and the

experiment repeated. In the context of optimization algorithms, a floor effect means

that the contestants largely fail to attain the required task. A ceiling effect happens

if they nearly always hit the required task, again with not much difference between

the compared algorithms. A result table with all success rates near 100% would be

a frequently observed example case.

2.6.2 Confounded Effects

When adapting flexible algorithms such as metaheuristics towards a problem or

benchmark set, one is often tempted to change many operators or parameters at

once because they are appealing to intuition after the first results are in. However, it

is important to experimentally analyze not only the combination of new components

but also the single effects of every change. Otherwise many unnecessary modifica-

tions may enter the algorithm despite the lack of evidence of their positive effect.

In the worst case, it may happen that one of two newly incorporated operators is

advantageous, while the second is disadvantageous, and the overall result is only

slightly improved. Thus we recommend to do the following in the case of multiple

algorithm modifications:

• Compare each change on its own with the default and the combined method. In

case of more than two new additions, a factorial design (Chap. 3) may be useful.

• Document all the results at least in short whenever another researcher could

possibly learn from this, even for cases which are not successful.

2.6.3 Fairness in Parameter Settings

When comparing different parametrizable algorithms, the employed parameter set-

tings are extremely important as they largely define the obtained performance. De-

pending on the availability of code for the algorithms under scope and time for

parameter searches, there are different possibilities to make a fair comparison:

• In the best case, the code for all methods is available. It is then possible to

perform a parameter search for each problem and each algorithm via a tuning

method (e.g., SPOT). Taking the best parameter sets for each method for each

problem ensures comparing the algorithms at their peak performance.

• If algorithm runs on the chosen problems take too long for a full tuning pro-

cess, one may however perform a simple space-filling design on the parameter

space, e.g. a Latin hypercube design (LHD) with only a few design points and

repeats. This prevents misconfigurations of algorithms as one probably easily

gets into the “ball park” (De Jong 2007) of relatively good parameter settings.
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Most likely, neither algorithm works at its peak performance level, but the com-

parison is still fair.

• If no code other than for one’s own algorithm is available, one has to resort

to comparing with default parameter values. For a new algorithm, these could

be determined by a common tuning process over the whole problem set. Note

however, that such comparison deliberately abstains from setting good param-

eters for specific problems, even if this would be attempted for any real-world

application.

It goes without saying that comparisons of tuned versus untuned algorithms are

not fair and should be avoided. This also applies to manual (one factor at a time)

tuning. However, several tuning methods are available, including but not limited to

REVAC (Chap. 12), the F-Race (Chap. 13), and SPOT (Chap. 14), all documented

in this book. As the tuning (parameter optimization) problem poses a nondetermin-

istic objective function without even approximate knowledge of global optimal per-

formance, the question of the effort necessary (in algorithm runs) to “solve” it is

difficult to answer. However, we advocate the use of fair conditions for the tuning as

for the algorithm runs themselves and suggest an affordable medium-sized budget

(for benchmark problems, 103 is an often used value)—the same for all algorithms.

2.6.4 Failure Reasons and Prevention

There are certainly many ways to fail when performing an experimentally supported

investigation. One of these occurs when the original scientific goal—not the specific

task in a derived experimental setup—cannot be reached because the experiments

reveal that it is much harder to attain than expected, or not possible at all. This

resembles a large-scale floor effect without the possibility to be cured easily as re-

fining the overall task gradually can be very difficult. Another type of failure would

happen if the assumptions about how things work or how components of algorithms

combine are actually fundamentally wrong. The overall goal may be reachable, but

not with the approach or techniques chosen.

Failures are surely unavoidable in experimental research, as it is the heart of

scientific investigations that previously unexplored areas are tackled. However, it is

specific to metaheuristics or other randomized algorithms that one has to cope with

a lack of theory for many questions of practical importance. This puts an additional

weight on the choice of the original research question that one tries to answer with

an investigation. With the obtained negative results at hand, one may either try to

refine the research question into one that is still interesting but easier to answer, or

decide to learn as much as possible from the experiments and publish a well-founded

negative paper. The following hints may be useful for avoiding failures:

• Experimentation should start as early as possible, even if not all features of the

desired software are available yet. This reduces the danger of a complete failure

and is well in line with recommendations in other sciences that strongly rely on
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experiments, such as those given by Thomke (2003) for innovation research in

economics.

• Avoid watching a running experiment, and especially iterated manual parameter

tuning or algorithm refinements. The impression obtained from seeing a few

runs only can be highly misleading. It is therefore advisable to start interpreting

the data only after the experiment is finished.

• Instead of only looking at the final summarizing performance values, it is highly

recommendable to visualize what happens during the runs as well as to review

the final results from different perspectives (e.g., multiple performance mea-

sures, several single runs, deviations from normal behavior, result distributions)

to obtain as much insight as possible into the algorithm behavior.

• It is neither feasible nor desirable to beat the state-of-the-art algorithms on their

own terrain by inventing a new algorithm in every publication, as is often at-

tempted in metaheuristics. Instead, it may be much more rewarding to deter-

mine which algorithm is good on what kind of problem and to establish some

guidelines for generalizing existing performance results to unknown problems

or at least problem instances.

• Even for established algorithms, many interesting questions remain open which

can be tackled only experimentally. Finding out more about the inner mecha-

nisms of these algorithms may later help to refine them.

2.7 Tools: Measures and Reports

In the previous sections, we assumed that the experiment is done and may be in-

vestigated by means of various statistical techniques. However, given that we want

to compare different algorithms or detect, e.g., the meaning of different parameter

settings, several decisions have to be taken. The first is what to measure, and the

others relate to the means of visually and textually displaying the results so that

experimenter and audience benefit most from it.

2.7.1 Measures

When trying to outperform another algorithm which has been tested and docu-

mented on some benchmark functions, one often “inherits” the measure employed

by other authors. However, considering the measure itself inevitably leads to the in-

sight that much of the measuring process as exercised in stochastic optimization is

fairly arbitrary.

A few measures are omnipresent in the stochastic optimization literature, pos-

sibly under different names, but with the same meaning. These are the mean best
fitness (MBF), the average evaluations to solution (AES), the success rate (SR),

and the best-of-n or best ever.
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While the MBF is easy to apply, it has two shortcomings. Firstly, by taking the

mean one loses all information about the result distribution, rendering a stable algo-

rithm with mediocre performance similar to an unstable one coming up with very

good solutions often, but also failing sometimes. Secondly, especially in situations

where the global optimum is unknown, interpreting the obtained differences is dif-

ficult. Does an improvement of, e.g., 1% mean much, or not? In benchmarking, one

usually observes a progression of the best solution on a logarithmic scale, evoked

by the more and more exact approximation of the achieved optimum in later phases.

In many practical settings, attaining a good local optimum itself is the hardest step

and one would not be interested in infinitesimal improvements.

The latter situation may be better served by success rates or the AES as a per-

formance measure. However, one has to set up meaningful quality values to avoid

floor and ceiling effects. The AES holds more information as it measures the “time

factor,” whereas the SR may be easier to understand. However, the AES is ambigu-

ous if the desired quality is not always reached. Auger and Hansen (2005) suggest

the success performance measures SP1 and SP2, which deal with the unsuccessful

runs in different ways depending on how they are stopped. The measures resemble a

multistart extension of the AES and yield the number of function evaluations needed

until the quality is finally reached, even if multiple runs are needed to get there.

The best-of-n value is most interesting in a design problem, as only the final best

solution will be implemented, regardless of the number of runs n to get there. How-

ever, this measure strongly depends on n, rendering it unfeasible for comparisons

on a benchmark level.

Whatever measure is used, one should be aware that it establishes only one spe-

cific cut through the algorithm output space. Bartz-Beielstein (2006) and Hansen

et al. (2009) discuss this as the horizontal (fixed quality) and vertical (fixed time / eval-

uations) view. Every single measure can be misleading, e.g., if algorithmA1 is good

for short runs but algorithmA2 usually overtakes it on long runs. Another set of con-

flicting criteria may be the performance on large problem instances against on small

ones, see also (Eiben and Smith 2003). For the experimental analysis, the single

measurement problem may be rectified by measuring several times on a horizontal

scale, as suggested by Hansen et al. (2009). The obtained result is more accurate,

but also more difficult to interpret. Nevertheless, rating algorithm performance with

a single measured value needlessly oversimplifies the situation, at least in a bench-

mark environment where no external pressure enforces a specific measure.

However, if parameter tuning is considered, deriving an ordering of the tested

algorithm designs cannot be avoided so that one has to select a specific performance

measure. The tuning process should improve the algorithm performance according

to the given measure, thus a strong influence of this measure on the resulting best

algorithm design is highly likely. Whenever the standard measures do not deliver

what is desired, one may be creative and design a measure that does, as suggested

by Rardin and Uzsoy (2001).
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2.7.2 Reporting Experiments

As indicated by the problems connected to experimental research we enumerated in

the previous sections, setting up a good experiment is obviously not trivial. How-

ever, after conducting it, reporting on it constitutes another challenge. Article length

requirements impose a limit on the level of possible detail. However, stating only

results is useless; the description should rather deliver on three issues:

Replicability: One must be able to repeat the experiment, at least to a high degree

of similarity.

Results: What is the outcome? Does it correspond to expectation? Are estab-

lished differences statistically significant and scientifically meaningful?

Interpretation: Can the original research question be answered? What do the

results mean regarding the algorithms, and the problems? Is it possible to gener-

alize? Where do the observed effects originate from?

In contrast to in the natural sciences, there is no generally accepted scheme of

how an experimental log should look in computer science. This may be partly due

to the volatility of results. In a benchmark setting, it is technically easy and fast to

run an experiment, and thinking about what to compare and how can take much

longer. Additionally, there is no long tradition of empiricism in computer science.

Many important works date from the 1980s and 1990s, e.g., McGeoch (1986), Sacks

et al. (1989), and Barr et al. (1995).

However, for scientific readers as well as for the experimenters, a well-defined

report structure could be beneficial: It provides standard guidelines for readers, what

to expect, and where. Experimenters are regularly reminded to describe the impor-

tant details needed to understand and possibly replicate their experiments. They are

also urged to separate the outcome of fairly objective observing from subjective

reasoning. Therefore, we propose organizing the presentation of experiments into

seven parts, as follows:

ER-1: Research question
Briefly names the matter dealt with, the (possibly very general) objective,

preferably in one sentence. This is used as the report’s “headline” and related

to the primary model.

ER-2: Pre-experimental planning
Summarizes the first—possibly explorative—program runs, leading to task

and setup (ER-3 and ER-4). Decisions on employed benchmark problems

or performance measures should be taken according to the data collected

in preliminary runs. The report on pre-experimental planning should also

include negative results, e.g., modifications to an algorithm that did not work

or a test problem that turned out to be too hard, if they provide new insight.

ER-3: Task
Concretizes the question in focus and states scientific claims and derived

statistical hypotheses to test. Note that one scientific claim may require sev-

eral, sometimes hundreds, of statistical hypotheses. In case of a purely ex-
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plorative study, as with the first test of a new algorithm, statistical tests may

not be applicable. Still, the task should be formulated as precisely as possi-

ble. This step is related to the experimental model.

ER-4: Setup
Specifies problem design and algorithm design, including the investigated

algorithm, the controllable and the fixed parameters, and the chosen perfor-

mance measuring. The information provided in this part should be sufficient

to replicate an experiment.

ER-5: Results/Visualization
Gives raw or produced (filtered) data on the experimental outcome and ad-

ditionally provides basic visualizations where meaningful. This is related to

the data model.

ER-6: Observations
Describes exceptions from the expected, or unusual patterns noticed, with-

out subjective assessment or explanation. As an example, it may be worth-

while to look at parameter interactions. Additional visualizations may help

to clarify what happens.

ER-7: Discussion
Decides about the hypotheses specified in ER-3, and provides necessarily

subjective interpretations of the recorded observations. Also places the re-

sults in a wider context. The leading question here is: What did we learn?

In our view, it is especially important to divide parts ER-6 and ER-7, to facilitate

different conclusions drawn by others, based on the same results/observations. This

distinction into parts of increasing subjectiveness is similar to the suggestions of

Barr et al. (1995), who distinguish between results, their analysis, and the conclu-

sions drawn by the experimenter.

Note that all of these parts are already included in current good experimental

reports. However, they are usually not separated but wildly mixed. Thus we only

suggest to insert labels into the text to make the structure more obvious.

We also recommend to keep a journal of experiments with single reports accord-

ing to the above scheme to enable referring to previous experiments later on. This

is useful even if single experiments do not find their way into a publication, as it

improves the overview of subsequent experiments and helps to avoid repeated tests.

2.8 Methodology, Open Issues, and Development

As detailed in this chapter, we can consider SPO as a methodological step forward

for experimenting with parameterizable algorithms. Model building and tuning un-

doubtedly plays an important role here. However, there are some issues which cur-

rently remain less clear and should be tackled in the future. One of these is how to

tune if runs take a very long time, so that only a few of them are affordable? This

especially applies to many real-world applications, where tuning would probably



46 T. Bartz-Beielstein and M. Preuss

greatly help but is rather difficult with the currently available methods. Another im-

portant issue concerns the amount of tuning to use: Where do we compare: After

500 algorithm runs, after 1000, or even more? Does this make a big difference at

all? And in which cases? This is related to the adaptability of algorithms (Preuss

2009). Some algorithms may have a large tuning potential as they react sensitively

to parameter changes, others largely stay at the default parameter performance. Both

behaviors can be advantageous in different situations. The cited paper lays out only

a first step in this direction by defining a measure for the empirical tuning poten-
tial (ETP). However, many methodological questions have to remain unresolved for

now and invite further research.

2.9 Summary

Goals for the experimental analysis of computer algorithms were introduced in the

first part of this chapter. Of great practical relevance is the improvement of an al-

gorithm’s performance and its robustness. Parameters of the algorithm were distin-

guished from problem parameters. This classification goes in line with the classi-

fication of the reasons why experiments are performed: Variation of the algorithm

design can be applied in experimentation to improve, compare, or understand algo-

rithm efficiency (tuning), whereas variation of the problem design might be helpful

to analyze the effectivity (robustness) of an algorithm. Understanding of its working

mechanism is another important task.

However, while performing experimental studies to accomplish these tasks, many

problems can occur. We have considered problems related to the experimental setup,

significance of the results, and building high-level theories. Models were considered

as useful components for building a framework for experimentation. Starting from

a discussion of model definitions in science, we claim that the representational view

of models can be useful to bridge the gap between theory (linguistic objects, formu-

las) and experiment (computer programs, real-world optimization problems). These

considerations are based on ideas presented by Giere (1999). A hierarchy consisting

of primary, experimental, and data models was introduced. This hierarchy was de-

veloped in the framework of the new experimentalism, especially by Mayo (1996),

who also developed tools for evaluating the scientific meaning of experimental re-

sults based on error statistics. SPO, as one possible framework to establish these

goals, was introduced in this chapter.

In the later parts of the chapter, we discussed several practical issues of experi-

mentation with randomized algorithms. Common pitfalls such as floor and ceiling

effects and confounded effects were taken into account as well as fairness issues

if applying tuning methods for comparing algorithms. We have highlighted some

of the reasons why an experimental investigation can fail and then reviewed some

important problem design issues: How do we measure, and how do we write up the

results? Concerning the latter issue, we have introduced a seven-part result scheme

that helps experimenters to structure their reports and also hinted at the use of an ex-
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perimental journal. Additionally, we have named some still open problems, holes in

the current methodology, which should be filled by future research. Concluding, we

have shed some light on how experimentation might look in the future. Hopefully,

correct statistics will be employed and correct conclusions drawn.
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