Chapter 14
The Sequential Parameter Optimization Toolbox

Thomas Bartz-Beielstein, Christian Lasarczyk, and Mike Preuss

Abstract The sequential parameter optimization toolbox (SPOT) is one possible
implementation of the SPO framework introduced in Chap. 2. It has been suc-
cessfully applied to numerous heuristics for practical and theoretical optimization
problems. We describe the mechanics and interfaces employed by SPOT to enable
users to plug in their own algorithms. Furthermore, two case studies are presented
to demonstrate how SPOT can be applied in practice, followed by a discussion of
alternative metamodels to be plugged into it. We conclude with some general guide-
lines.

14.1 Introduction

The sequential parameter optimization approach discussed in Chap. 2 is a flexible
and general framework which can be applied in many situations. Here, we introduce
the sequential parameter optimization toolbox (SPOT) as one possible implementa-
tion of this framework. The basic ideas of this approach can be described as follows:

1. Use the available budget sequentially, i.e., use information from the exploration
of the search space to guide the search by building one or several meta models.
Choose new design points based on predictions from the meta model(s). Refine
the meta model(s) stepwise to improve knowledge about the search space.
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2. Try to cope with noise by improving confidence. Guarantee comparable confi-
dence for search points.

3. Collect information to learn from this tuning process, e.g., apply explorative
data analysis (Tukey 1991).

4. Provide mechanisms both for interactive and automated tuning.

We consider SPOT as one of the most effective and efficient tuning procedures
that enables learning from experiments. It was developed over recent years by
Thomas Bartz-Beielstein, Christian Lasarczyk, and Mike Preuss (Bartz-Beielstein
et al. 2005). The main purpose of SPOT is to determine improved parameter settings
for optimization algorithms to analyze and understand their performance. SPOT
was successfully applied to numerous optimization algorithms, especially in the
field of evolutionary computation.

The remainder of this chapter is organized as follows. Section 14.2 presents some
typical examples. Section 14.3 describes goals of the SPOT approach. In Sect. 14.4,
elements of SPOT are explained. Since SPOT requires some statistical considera-
tions, these will be discussed in Sect. 14.5. A case study that performs a regression
analysis of the (1+1)-ES from Chap. 2 is presented in Sect. 14.6. Besides classical
regression, SPOT allows the use of modern models such as tree-based regressions;
pros and cons of these models are discussed in Sect. 14.7. The sequential approach
is reconsidered in Sect. 14.8. Results from this chapter are summarized in Sect. 14.9.

14.2 Applications

This section presents typical applications of the sequential parameter optimiza-
tion toolbox from bioinformatics, water-resource management, mechanical engi-
neering, biogas plant simulation, shipbuilding, and quality control. Bartz-Beielstein
(2010a) lists more than one hundred publications which mention how SPOT can be
applied to evolution strategies, particle swarm optimization, genetic programming,
and many more algorithms.

14.2.1 Bioinformatics

Volkert (2006) discusses results from a sequential parameter optimization approach
for investigating the effectiveness of using EAs for training hidden Markov mod-
els (HMM). She concludes that “this approach not only offers the possibility for
improving the effectiveness of the EA but will also provide much needed insight
into directions for future improvements in the design of EAs for the construction of
HMMs in general.”



14 The Sequential Parameter Optimization Toolbox 339

Fober et al. (2009) adjusted seven exogenous parameters of an EA using the se-
quential parameter optimization toolbox. The EA was used for a structural analysis
of biomolecules.

14.2.2 Water-Resource Management

The aim of a paper by Konen et al. (2009) is the prediction of fill levels in stormwater
tanks based on rain measurements and soil conditions. Different prediction methods
are compared. The sequential parameter optimization is used to find in a comparable
manner the best parameters for each method. Main results of this work are: (i) SPOT
is applicable to diverse forecasting methods and automates the time-consuming pa-
rameter tuning, (ii) the best manual result achieved before was improved with SPOT
by 30% and (iii)) SPOT analyses in a consistent manner the parameter influence and
allows a purposeful simplification and/or refinement of the model design.

14.2.3 Mechanical Engineering

Mehnen et al. (2007) apply SPOT in mechanical engineering for the design of mold
temperature control strategies (MTCS), which is a challenging multi-objective op-
timization task. In this paper an EA is applied to a multi-objective problem using
aggregation. The DACE technique is used to find good multi-objective evolutionary
algorithm (MOEA) parameter settings to get improved solutions of the MTCS prob-
lem. An automatic and integrated software package, which is based on the DACE
approach, is applied to find the statistically significant and most promising EA pa-
rameters using SPOT.

14.2.4 Biogas

Ziegenhirt et al. (2010) use SPOT to optimize the simulation of biogas plants. There
is a high demand from industry to run these plants efficiently, which leads to a highly
complex simulation and optimization problem. A comparison of several algorithms
from computational intelligence to solve this problem is presented in their study.
The sequential parameter optimization was used to determine improved parameter
settings for these algorithms in an automated manner. They demonstrate that genetic
algorithm and particle swarm optimization based approaches were outperformed
by differential evolution and covariance matrix adaptation evolution strategy. Com-
pared to previously presented results, their approach required only one tenth of the
number of function evaluations.
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14.2.5 Shipbuilding

Rudolph et al. (2009) discuss the optimization of a relatively new ship propulsion
system (a linear jet) which possesses 15 design variables. It consists of a tube with a
rotor and a stator, and several lengths, angles, and thicknesses that can be variated.
The objective function is a very basic fluid dynamic simulation of a linear jet that
takes about 3 minutes to compute, and the task is to reduce cavitation at a predefined
efficiency. A full simulation would take about 8 hours, which is by far too much
to serve as test problem. A surrogate model is used to detect good design points
that can afterwards be validated by the full simulation. The authors conclude: “The
validation experiment is successful, as the SPO-tuned parameter values lead to a
significant performance increase. The tuned MAES resembles a model-enhanced
(4,11)-ES with k = 20 and so may profit from a more globally oriented behavior
than the standard parameter setting with a population size of one.”

14.2.6 Fuzzy Operator Trees

Yi (2008) proposes a method for modeling utility (rating) functions based on a novel
concept called fuzzy operator tree (FOT). As the notion suggests, this method makes
use of techniques from fuzzy set theory and implements a fuzzy rating function,
that is, a utility function that maps to the unit interval, where O corresponds to the
lowest and 1 to the highest evaluation. Even though the original motivation comes
from quality control, FOTs are completely general and widely applicable. Yi (2008)
reports that “several works have shown that SPO outperforms other alternatives,
especially for evolution strategies, we shall apply SPO to determine the parameters
of ES in this section. Sequential sampling approaches with adaptation have been
proposed for DACE, here let us review the basic idea of Thomas Bartz-Beielstein,
which is also used in this section to determine the parameters of ES.”

14.3 Objectives

During the first stage of experimentation, SPOT treats the algorithm A as a black
box. A set of input variables, say x, is passed to A. Each run of the algorithm pro-
duces some output, y. SPOT tries to determine a functional relationship F' between
x and y for a given problem formulated by an objective function f : u — v. Since
experiments are run on computers, pseudorandom numbers are taken into consider-
ation if:

(i) The underlying objective function f is stochastically disturbed, e.g., measure-
ment errors or noise occur, and/or



14 The Sequential Parameter Optimization Toolbox 341

(i1) The algorithm A uses some stochastic elements, e.g., mutation in evolution
strategies.

This situation can be described as follows:

Objective function: u i> v, (14.1)

Algorithm:  x —> y. (14.2)

We will classify elements from (14.1) and (14.2) in the following manner, see also
Sect. 2.2.1:

1. Variables that are necessary for the algorithm belong to the algorithm design,
whereas

2. variables that are needed to specify the optimization problem f belong to the
problem design.

SPOT employs a sequentially improved model to estimate the relationship be-
tween algorithm input variables and its output. This serves two primary goals. One
is to enable determining good parameter settings, thus SPOT may be used as a
tuner. Secondly, variable interactions can be revealed that help to understand how
the tested algorithm works when confronted with a specific problem or how changes
in the problem influence the algorithm’s performance. Concerning the model, SPOT
allows for insertion of virtually every available model. However, regression and
Kriging models or a combination thereof are most frequently used.

14.4 Elements of the SPOT Framework

In this section, we describe SPOT as one possible implementation of steps 3a)-d)
from the general SPO scheme (see Sect. 2.5.5.4) and discuss the different tools of
the framework that may be employed separately or in automated mode. We conclude
by giving a definition and a short introduction to starting and using SPOT.

14.4.1 The General SPOT Scheme

Definition 14.1 (Sequential Parameter Optimization Toolbox). The sequential

parameter optimization toolbox implements the following features:

SPOT-1: Use the available budget (e.g., simulator runs, number of function evalua-
tions) sequentially, i.e., use information from the exploration of the search
space to guide the search by building one or several meta models. Choose
new design points based on predictions from the meta model(s). Refine the
meta model(s)) stepwise to improve knowledge about the search space.

SPOT-2: Try to cope with noise by improving confidence. Guarantee comparable
confidence for search points.
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SPOT-3: Collect information to learn from this tuning process, e.g., apply explo-
rative data analysis.
SPOT-4: Provide mechanisms both for interactive and automated tuning.
O

Algorithm 14.1 presents a formal description of the SPOT scheme. This scheme
consists of two phases, namely the first construction of the model and its sequential
improvement. Phase 1 determines a population of initial designs in algorithm pa-
rameter space and runs the algorithm £ times for each design. Phase 2 consists of
a loop with the following components: By means of the obtained data, the model
is built or updated, respectively. Then, a possibly large set of design points is gen-
erated and their predicted utility computed by sampling the model. A small set of
the seemingly best design points is selected and the algorithm is run k& + 1 times
for each of these. The algorithm is also run once for the current best design point
and k is increased by one. Note, other update rules for the number of repeats, k, are
possible. The new design points are added to the population and the loop starts over
if the termination criterion is not reached (usually a preset budget is granted to the
process). In consequence, this means that the number of repeats is always increased
by one if the current best design point stays at the top of the list or a newly generated
one gets there. Due to nondeterministic responses of the algorithm, it may however
happen that neither of these is found at the top of the list after finishing the loop. In
this case, k may effectively shrink as performance comparisons have to be fair and
thus shall be based on the same number of repeats.

Sequential approaches are generally more efficient, i.e., require fewer function
evaluations, than approaches that evaluate the information in one step only. Chap-
ter 15 of this book discusses an extension of this sequential framework. Further
extensions were proposed by other authors, e.g., Lasarczyk (2007) integrated an op-
timal computational budget allocation (OCBA) procedure, which is based on ideas
by Chen et al. (2003).

14.4.2 SPOT Tasks

If used for tuning an algorithm, SPOT is not per se envisioned as a meta-algorithm.
We are interested in the resulting algorithm designs, not in the solutions to the pri-
mordial problem. However, it is of course possible to model a problem directly,
without employing an algorithm. SPOT provides tools to perform the following
tasks:

1. Initialize. An initial design is generated and written to a design file. This is usu-
ally the first step during experimentation. The employed parameter region and
the constant algorithm parameters have to be provided by the user. A clean start
can be performed. This is necessary if the user wants to run a new experiment
or delete results from previous steps.
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Algorithm 14.1: Sequential parameter optimization toolbox (SPOT)

// phase 1, building the model:
let A be the tuned algorithm;
generate an initial population X = {Z!,...,#™} of m parameter vectors;
let & = ko be the initial number of tests for determining estimated utilities;
foreach z € X do
run A with Z k times to determine the estimated utility y of z;
end
// phase 2, using and improving the model:
while termination criterion not true do
let @ denote the parameter vector from X with best estimated utility;
let k the number of repeats already computed for a;
build prediction model f based on X and {y!, ..., ylX};
generate a set X’ of [ new parameter vectors by random sampling;
foreach z € X’ do
calculate f(Z) to determine the predicted utility f(z) of z;
end
select set X" of d parameter vectors from X’ with best predicted utility (d < 1);
run A with @ once and recalculate its estimated utility using all k£ + 1 test results;
// (improve confidence)
letk=k-+1;
run A k times with each Z € X"’ to determine the estimated utility z;
extend the population by X = X U X"/
end

2. Run. This is usually the second step. The optimization algorithm is started with
configurations from the design file. The algorithm writes results to the result
file. Information from the design and algorithm problem design files are used in
this step.

3. Sequential step. A new design, based on information from the result file, is
generated. This new design is written to the design file. A prediction model
is used in this step. Several generic prediction models are available in SPOT
already. To perform an efficient analysis, especially in situations when only
few algorithms runs are possible, user-specified prediction models can easily be
integrated into SPOT.

4. Report. An analysis, based on information from the result file, is generated.
Since the report uses information from the result file, new report facilities can
be added very easily. SPOT contains some scripts to perform a basic regression
analysis and plots such as histograms, scatter plots, plots of the residuals, etc.

5. Automatic mode. In the automatic mode, the steps run and sequential are per-
formed after the initialization a certain number of times.

6. Meta mode. In the meta mode, several problem instances can be used for tuning.
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14.4.3 Running SPOT

Previous versions of the SPOT relied on functions provided by the MATLAB
Kriging toolbox DACE developed by Lophaven et al. (2002). Starting with ver-
sion 0.5, an R (Thaka and Gentleman 1996) version is available, too. The fol-
lowing description refers to this R implementation (Bartz-Beielstein 2010b). Of
course, an R-system must be available on your computer. The SPOT package
can be obtained via CRAN, the Comprehensive R Archive Network, see http:
//cran.r-project.org. Therefore, the simplest way to install the package is
to enter

install.packages ("SPOT")

into your R session. SPOT can be loaded via
library ("SPOT")

The formal command to start SPOT tasks reads:
spot ( <configurationfile>, <task>)

where t ask can be one of the tasks described in Sect. 14.4.2, i.e., init, seq, run, rep,
auto, or meta, and configurationfile is the name of the SPOT configuration

SPOT layer
@ y

/ SPOT
0 k

(©)

\ Optimization
(e) Algorithm

Vm
Algorithm layer

Fig. 14.1: SPOT interfaces. The SPOT loop can be described as follows: Configuration (CONF)
and region-of-interest (ROI) files are read by SPOT (a). SPOT generates a design (DES) file (b).
The algorithm reads the design file and (c) extra information, e.g., about the problem dimension
from the algorithm-problem design (APD) file (d). Output from the optimization algorithm are
written to the result (RES) file (e). The result file is used by SPOT to build the prediction model
(f). Data can be used by exploratory data analysis (EDA) tools to generate reports, statistics, visu-
alizations, etc. (g)
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file. SPOT uses simple text files as interfaces to the algorithm to the statistical tools.
A JAVA-based GUI, which simplifies parameter input, is available, too.

1. Files provided by the user:

(a) Region of interest (ROI) files specify the region over which the algorithm
parameters are tuned. Categorical variables such as the recombination op-
erator in ES, are encoded as numerical values, e.g., “1” represents “no re-
combination” and “2” stands for “discrete recombination.”

(b) Algorithm design (APD) files are used to specify parameters used by the al-
gorithm, e.g., problem dimension, objective function, starting point or ini-
tial seed.

(c) Configuration files (CONF) specify SPOT specific parameters, such as the
prediction model or the initial design size.

2. Files generated by SPOT:

(a) Design files (DES) specify algorithm designs. They are generated automat-
ically by SPOT and will be read by the optimization algorithms.

(b) After the algorithm has been started with a parametrization from the algo-
rithm design, the algorithm writes its results to the result file (RES). Re-
sult files provide the basis for many statistical evaluations/visualizations.
They are read by SPOT to generate prediction models. Additional predic-
tion models can easily be integrated into SPOT.

Figure 14.1 illustrates SPOT interfaces and the data flow. Note, that the problem
design can be modified too. This can be done to analyze the robustness (effectivity)
of algorithms.

SPOT can be run in an automated and an interactive mode. Similarities and
differences of the automated and the interactive process are shown in Fig. 14.2.

14.5 Statistical Considerations

14.5.1 Sequential Models

To introduce SPOT’s functionality, we describe a case study that analyzes the evolu-
tion strategy introduced in Chap. 2. Starting from scratch, we do not know anything
about the functional relationship F' from (14.1). This situation can be characterized
as a chicken-and-egg problem: The experimenter has to decide which comes first: a
design for the data x or the specification of a model, i.e., by defining a functional
relationship F'? For example, assuming a linear relationship F', we should use facto-
rial designs to specify x. However, in order to validate linearity, we need some data
X.

We prefer the following approach: Select a simple model (functional relation-
ship) F{y and a related design x, generate some data y, fit the (simple) model Fy,
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User Pre-experimental planning
q q _— . 5 q
interaction? determine region of interest

select predictors/models,

quality measures, etc.

Design
generate experimental design
spot init

v

Observations

’ perform simulator runs
spot run
¢ Visualization/EDA
comprehend effects
e o [
interaction?
yes adapt ROI
spot rep
no
Termination? > ‘
yes
Construct/Improve model(s)
generate new design points

spot seq

Fig. 14.2: The sequential parameter optimization process. White font color indicates elements that
are used in the interactive process only. A typewriter font indicates the corresponding SPOT com-
mands. To start the automated mode, simply use the task auto. Note that the interaction points
are optional, so SPOT can be run without any user interaction
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predict a few new design points x; based on Fj;, generate further data y;, refine
the model (F}), and continue. The chicken-and-egg problem defines a sequential
approach in a natural manner, which improves F' and y at the same time. This ap-
proach motivated the term sequential parameter optimization. In many situations, it
can be shown that sequential approaches are much more efficient than one-at-a-time
approaches (Armitage 1975).

We will discuss the basic output from the R analysis during the sequential ap-
proach. The analysis is not complicated and requires only basic knowledge of statis-
tics. The reader will get interesting insights into the working mechanism of his al-
gorithms by executing a few lines of R code. SPOT comes with some elementary R
scripts which can be easily extended.

First, we will focus on fitting a linear regression model. The model

k
y=PBo+ Y Biwj+e (14.3)

Jj=1

is called a multiple linear regression model with k regression variables and response
y. The regression variables represent algorithm parameters, e.g., initial step size s,
multiplier for step sizes a, and size of the memory g. A variable that can be used to
predict the value of another variable is also called an “input variable,” “prediction
variable,” or “regressor.” Response variables are also called “output variables.” The

corresponding predictive equation reads
y = bX. (14.4)

The small roman letter b denotes a vector of the estimates of the parameters

Bo, - -+ s B

R uses Wilkinson—Rogers notation to describe models, e.g.,
y ~ x1,

where y denotes the response, “~” can be read as “is modeled by,” and 1 is the
explanatory variable. Two or more explanatory variables can be incorporated into
the model as shown in

y ~ x1 + x2.

There are more advanced ways of generating models, e.g., A:B for interactions,
where A : B is a shorthand notation for A+B+A*B, etc.

Equation (14.3) describes a hyperplane in the k-dimensional space of the regres-
sor variables x; (j = 1,..., k). Assuming that all remaining independent variables
x; were held constant, the parameter 3; describes the expected change in y (re-
sponse) per unit change in z; (¢ # 4).! We will discuss some considerations which
are useful in the SPOT framework. The approach presented in this chapter relies on
standard regression techniques only. Other models can be integrated into SPOT as
well, e.g., tree-based regression or Kriging.

' A comprehensive introduction to regression is given in the appendix of this book.
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Until now, no statistical assumptions that involve probability distributions have
been made at all. In many situations, the following assumptions, which can be used
to examine the regression coefficients, are made:

(a) the residual ¢; is a random variable with mean zero and unknown variance o2,

ie., E(e;) =0and V(e;) = 02,

(b) the €’s are uncorrelated, i.e., Cov(e;, €;) = 0.

(c) € ~ N(0,0?), i.e., ¢; is a normally distributed random variable, with mean
zero and variance 2.

Assuming that the errors ¢; are all from the same normal distribution, the following
test can be performed: The null hypothesis, i.e., £1 equals 519, especially S10 = 0,
can be tested against the alternative that f3; is different from S;9 by calculating
t= bslezbﬁl 1)0 (where se(b; ) denotes the standard error of the estimate of the parameter
B1) and comparing [¢| with t(n — 2,1 — a/2), where t(n, 1 — «) is the 100(1 — «)
percentage point of a ¢-distribution with n degrees of freedom.

14.5.2 Residuals and Variance

The considerations in this section are not restricted to linear models only; they apply
to any situation when a model is fitted. Residuals are, per definition, differences
between values from actual observations and predictions by the regression equation.
They describe the amount that the regression equation has not been able to explain.
The residuals can be interpreted as the observed errors if the model is correct. We
discuss graphical methods to examine residuals, especially plots of residuals versus
fitted values, which could indicate that there should be a curve rather than a line,
and normal probability plots of the residuals.

The mean square about the regression, s2, will provide an estimate of the vari-
ance about the regression. If the regression equation (14.3) were estimated from an
infinitely large number of experiments, the variance about the regression would pro-
vide a measure of the error with which any observed value of Y could be predicted
from a given value of X using (14.3).

14.5.3 Standardized Variables and Transformations

The magnitude of the regression coefficients can be used to measure the effect of a
variable. Problems can occur, because the regression coefficients depend on the un-
derlying scale of measurements. For example, the coefficient for t ime measures the
expected difference in response for each hour of difference in t ime. If t ime were
measured in seconds instead of hours, the regression coefficient would be multiplied
by 3,600, although the change in units does not change a variable’s importance.
To solve the problem of units of measurement, standardized regression coefficients
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can be used. We consider regression models with parameters § and standardized
variables, i.e., each x; ranges between —1 and +1. Although standardization ap-
pears appealing at the first sight, its usage is controversial; see, e.g., the discussion
in Kleijnen (1987).

We have applied transformations on the function values, especially log-transfor-
mations, to improve the model fit. In general, we recommend using the raw data,
e.g., to improve the interpretability of the results. In some situations, lack of fit was
determined, to determine the most adequate model (linear versus quadratic etc.).

14.5.4 Design Considerations and the Region of Interest

Several designs can be used to generate initial data. Principally, two design types
can be distinguished:

* Factorial designs, which are commonly used in classical regression to fit linear
models, place design points at the border of the region of interest (Kleijnen
1987).

* Modern approaches such as Kriging use space-filling designs, e.g., Latin hyper-
cube designs, which place design points in the interior of the region of inter-
est (Santner et al. 2003).

The selection of an optimal design depends on the model which will be used for
prediction. The pre-experimental planning phase includes test runs in a situation
where no information about the model is available and no optimality conditions from
DOE, e.g., as described in Pukelsheim (1993), are applicable. The main goal of this
phase is to detect intervals for experimentation, i.e., the region of interest (ROI). As
a rule of thumb, we can state that these intervals should be chosen courageously,
because SPOT should be able to guide the search into promising regions of the
search space. For some settings, the experimenter has to set up rules for the treatment
of infeasible factor settings, e.g., by defining a penalty function or by introducing
rounding mechanisms to ensure integer values.

Draper and Smith (1998, p. 86) discuss practical design-of-experiment implica-
tions of regression. They describe the influence of experimental arrangements for
obtaining data for fitting a simple linear model. The question reads: At what values
(sites) should how many experimental runs be performed? The relationship between
lack of fit, pure error, sd(b1 ) /o, and the number of sites is presented. They consider
a situation in which n experiments can be performed and o2 is unknown. Performing
n experiments at n. different sites is a poor choice, because o2 cannot be estimated.
On the other hand, performing |n/2| repeats at only two design sites results in no
degrees of freedom left for estimating the lack of fit. On the basis of the sd(b1)/o
values, configurations with many repeats are preferable. The best choice lies in ar-
rangements that allow testing for lack of fit and minimization of the sd(b; ) /o values.

Example 14.1. Suppose 14 runs are possible to fit a straight line. The range is the
interval [—1, +1] of the coded predictor. Variance o2 is unknown. Choosing 14 de-
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Table 14.1: Regions of interest used in the pre-experimental planning phase. SO and A denote real
variables, whereas G is an integer value

Factor Low High Type
SO 0.1 5 FLOAT
A 0 2 FLOAT
G 1 100 INT

sign points with only one repeat at each point is a poor choice, because o cannot
be estimated. However, also the use of seven repeats at two design points is not rec-
ommended, because lack of fit (to test the adequacy of a linear model) cannot be
checked (Draper and Smith 1998). O

14.6 A Case Study: Simple Regression Applied to Evolution
Strategies

Classical response surface methods (RSM) use three steps: screening, modeling, and
optimization (Kleijnen 1987, Montgomery 2001). Design complexity is increased
during the RSM process, so complex models can be fitted in the last phase of the
RSM process. SPOT is closely related to RSM. Because SPOT includes rules to
analyze the scientific relevance (severity) of results from the statistical analysis and
specifies rules for learning from error, it can be seen as an extension of the classical
RSM framework.

14.6.1 Pre-experimental Planning

This section describes how basic ideas from regression analysis can be applied to
analyze evolution strategies. SPOT allows the specification of:

a) upper and lower limits of the region of interest (experimental region),
b) the number of repeats for the initial design, and
c) the type of design to be generated, e.g., LHD.

We have chosen a Latin hypercube design for the first experiments, see Table 14.1.
This design consists of three factors with different types. Although factorial designs
are recommended for DOE (see also the discussion in Sect. 14.5.4), a space-filling
design was chosen for the pre-experimental planning phase. This design was cho-
sen because we expect interesting model features in the center of the experimental
region, and we are interested in using other models, e.g., tree-based regression mod-
els, or Kriging, in parallel. These models require space-filling designs. So, choosing
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Fig. 14.3: Scatter plots from the pre-experimental planning phase to determine the region of in-
terest. Left: A range from O to 2 for the multiplier a was chosen. Values smaller than 1 invert the
1/5th rule (2.4). As can be seen from the figures, values smaller than 1 worsen the performance of
the (1+1)-ES. Right: If a is chosen from the interval between 1 and 2, the (1+1)-ES performs quite
reasonably. These results support the recommendations given in (2.4)

an LHD can be seen as a good compromise, especially if we do not know whether
linear regression models are adequate.

A scatter plot was used to analyze results from the first design. It is based on
ten design points, where each design point represents one algorithm configuration.
Each run was performed once. Figure 14.3 clearly illustrates that the multiplier for
the step length should be larger than 1.0. This supports the assumption that step sizes
should be increased if the success rate is larger than 1/5. Values smaller than 1.0
are excluded from the following investigations. By repeating the same configuration
as in the first study, but with values for A chosen from the interval [1, 2], significant
improvements can be observed. The algorithm performs quite well with parameters
chosen from these ROI. Therefore, we decided to start the analysis with a multiplier
of the step width chosen from the interval [1, 2].

14.6.2 Performing the First Regression Analysis

To regress fitness, y, on the these quantitative predictors, we obtain the output in R
as shown in Fig. 14.4.

The R output gives a numerical summary of the residuals and a table of the re-
gression parameters. For example, the coefficient b, is the change in the response y
when z; is changed by one unit. Besides estimated regression coefficients and their
standard errors, t-statistics and p-values for the individual tests of the hypotheses
are included. Here, we see that the intercept of the fitted line is by = —28.0456
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Call:
Im(formula = log(Y) ~ log(S0) + log(A) + log(G), data = df0002)
Residuals:
Min 1Q Median 30 Max
-3.6093 -1.7175 0.7059 1.4426 3.0768
Coefficients:
Estimate Std. Error t value Pr(>|t])
(Intercept) -28.0456 5.6820 -4.936 0.00261 *x
log (S0) 0.4115 0.9836 0.418 0.69022
log (R) 27.2698 4.8056 5.675 0.00129 *=
1.2219 -0.747 0.48346

1og (G) -0.9124

Residual standard error: 2.791 on 6 degrees of freedom
Multiple R-squared: 0.8671,Adjusted R-squared: 0.8006
F-statistic: 13.05 on 3 and 6 DF, p-value: 0.004872

Fig. 14.4: Output from the first regression model in R.

with se(by) = 5.6820, and the estimated regression coefficient by is 0.4115 with
se(b1) = 0.9836. The multiplier A has the largest effect, because its value reads
27.2698. The memory G has only minor impact on the performance of the ES.
The table reports also t-statistics and p-values for individual tests of the hypothe-
ses that the true intercept is zero and that the true slope is zero. The Residual
standard error is an expression of the variation of the observations around the
fitted line. It can be used to estimate 0. Multiple R-Squaredand Adjusted
R-Squared are reported as well. The values related to the F—statistic de-
scribe an F'-test for the hypothesis that the regression coefficients are zero.

In addition, an analysis of variance (ANOVA) table can be generated. Based on
an ANOVA table we can compare two models:

(a) Model M7, which includes S0, A, and G
(b) Model M>, which includes the parameter with the highest significance, namely
A

As expected, this indicates that there is no significant improvement of the model
once S0 and G are included. Removing the parameters SO and G from the model is
recommended. R has a built-in function which adds parameters one at a time to the
current model. The add1 function adds parameters one after another from a list and
shows the resulting statistics. The default output table reports the Akaike informa-
tion criterion (AIC), defined as minus twice the log likelihood plus 2p, where p is
the rank of the model (the number of effective parameters). For performing model
searches by AIC, R provides the st epAIC function. Since selection and adjustment
of information criteria is a difficult task (and beyond the scope of this introduction),
we simply show the output from stepAIC applied to our example in Fig. 14.5.

The final model, suggested by stepAIC, includes the parameter A only.

Residual plots can be used to check model assumptions. Common checks in-
clude:
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Call:
Im(formula = Y ~ A, data = df0002normlogy)
Residuals:

Min 1Q0 Median 30 Max
-3.7071 -2.6383 0.2352 2.4411 3.8783
Coefficients:

Estimate Std. Error t value Pr(>|t])

(Intercept) -20.6070 0.9672 -21.305 2.48e-08 *x*
A 8.1253 1.4940 5.439 0.000617 #*x*x*

Residual standard error: 3.059 on 8 degrees of freedom
Multiple R-squared: 0.7871,Adjusted R-squared: 0.7605
F-statistic: 29.58 on 1 and 8 DF, p-value: 0.000617

Fig. 14.5: Output from the model based on R’s st epAIC function

a) A plot of residuals versus fitted values
b) Normal probability plots of residuals

In addition, visual inspections, e.g., on the basis of added-variable plots (Fig. 14.6)
can be performed. Added-variable plots focus on one variable at a time and take into
account the influence of the other predictors (Draper and Smith 1998, Fox 2002).
To determine the influence of predictor x; on the response y, added-variable plots
are generated as follows. Let z_; denote the set of regressors

{xl,xg, e ,xi_l,xi_H, e ,l‘n}.

1. Regress y on z_ , obtaining residuals e(j).
2. Regress x; on predictors z_ , obtaining residuals x(j).
3. Plot e(j) versus z(j).

All ES runs were performed using the same number of function evaluations.
The results clearly indicate that A should be reduced. Smaller values improve the
algorithms performance. The linear model was able to detect this trend. This was
the first step of the analysis. The experimental setup shown in Table 14.1 includes a
systematic variation of three parameters.

Summarizing Results from the Regression Model Analysis

The regression models used in this study illustrate that A should be decreased. Step-
wise regression results in the simplified model

§ = —20.61 + 8.12a,

which indicates that the multiplier for the step sizes should be decreased. A similar
result was obtained from a tree-based regression. The result occurs independently
from the chosen model.
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Fig. 14.6: Added-variable plot based on ten runs from the initial design of ES on the ten-
dimensional sphere function. Smaller y values represent better solutions

How should one proceed if interactions that play an important role in the regres-
sion model might be of interest? We recommend not to apply the method of steepest
descent based on the main factor model if there are significant interactions in the
model. Instead, the optimum predicted by the reduced regression model including
the main effects and the interactions can be used (Mehnen et al. 2004).

14.6.3 Steepest Descent

Results from the regression analysis provide information about the steepest descent
in a natural manner. We proceed with the steepest descent based on the model Y ~
SO0 + A + G. The procedure of steepest descent is performed as follows: Start-
ing from the design center, we move sequentially in the direction of the maximum
decrease in the response. This direction is parallel to the normal of the fitted re-
sponse surface. Usually in RSM, the path of the steepest descent is taken as the line
through the center of the ROI and normal to the fitted surface, i.e., the steps are pro-
portional to the (3;’s (regression coefficients). In general, the following procedure
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Table 14.2: Steepest descent. SO and A denote real variables, whereas G is an integer value, so its
values are rounded to the next integer

SO A G
1 2.54 1.50 52.50
2 2.52 1.45 53.05
3 2.50 1.41 53.60
4 2.49 1.37 54.15
5 2.47 1.32 54.70
6 245 1.28 55.25
7 2.44 1.23 55.80
8 242 1.19 56.35
9 2.40 1.14 56.90
10 2.39 1.10 57.45
11 2.37 1.05 58.01

for determining the coordinates of the points on the path of the steepest descent can
be applied (Montgomery 2001):

1. Select the variable we know most about or the variable that has the largest ab-
solute regression coefficient |b;|.
2. Determine the step size in the other variables as
bi . L,
Axi:Fij 1=1,2,...,k; i j.
J

3. Convert the Ax; stepwidths from the coded to the dz; in the natural variables.

As the largest step size we recommend the value that leads to the border of the ROI.
Data from the steepest descent experiments are shown in Table 14.2. Note that the
steepest-descent experiments do not have to be performed in sequence. For example,
run 10 can be performed before run 2, or a simple interval search can be performed.
We recommend generating a graph of these results to determine the new region of
interest following the direction of the steepest descent, cf. Fig. 14.7. The region of
interest is moved down the response surface.

These settings are used for additional runs of ES. Figure 14.7 plots the yield at
each step along the path of the steepest descent.

Based on visual inspection of the yields in Fig. 14.7, the new central point was
determined to be the tenth point of the steepest descent. This new central point
leaves some space for variation of the A values, say in the interval [1.01, 1.2]. Based
on the best value obtained with the steepest descent, we build a new model with
center point

x. =[50, A, G] = [2.5,1.125,40].

The specification of the new region of interest requires user knowledge. The new
center point was determined by interpreting graphical results which were based on
the steepest descent. Next, we have to determine a new region around X.. Some-
times, especially when a classical factorial design is used during the first step, it can
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Fig. 14.7: Function values f(z) (sphere) versus steps along the path of the steepest descent. Indices
denote the ten steps from the steepest descent. Note, that these values are based on one repeat only,
so variation in the data, e.g., the peak (index 5), is not surprising

be useful to increase the region of interest at this stage. However, we have chosen a
space-filling design for the first step. Therefore, we have to decrease the region of
interest. As a rule of thumb, which is to be reconsidered in any situation, we use at
least + 1/5th of the values at the new central point. For example, if the value of the
new initial step size S0 is 5, we define a new region of interest for this values as the
interval [4, 6]. Here, the new region of interest reads as follows:

S0 € [2,3], A € [1.05,2],G € [20,80].

Latin hypercube sampling with 100 points and three repeats each is used for a
graphical exploration of the ROI. Figure 14.8 displays a fit of the response surface
which is based on the complete data set (320 runs of the target algorithm). A local
regression model based on R’s 1oess () function is fitted to the data.

Summarizing Results from the RSM

Results from this case study support results presented by Beyer (2001). The factor
a should be chosen in the range from 1.1 to 1.5. Further experiments show that this
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Fig. 14.8: Contour plot based on the complete data set (ES-Sphere with 320 function evaluations).
Smaller values are better. Better configurations are placed in the lower-left corner of the panels. A
is plotted versus S0, while values of the factor with the last but one effect, namely G, are varied
with the slider on top of each panel

result is independent of the starting point and problem dimension. The correspond-
ing contour plots indicate that runs of the (1+1)-ES with values for a chosen in the
recommended interval result in good function values. The structure of the contour
plots does not change if starting point or problem dimension are modified.

14.7 Additional Model Considerations

The analysis of optimization algorithms requires the investigation of categorical
variables; e.g., in evolution strategies, several variants of the recombination operator
can be used (Beyer and Schwefel 2002). SPOT allows the coding of nonnumerical
variables as factors. Dummy regressors or contrasts can be used to represent levels
of a factor. SPOT can handle the following variables:

1. real values,
2. integers, and



358 T. Bartz-Beielstein, C. Lasarczyk, and M. Preuss

A< 1.215
T
A< 1.16 A< 1.474
A< 1.125 G>=72.5 —23.5J3842 —17J8658
-30.14651 -29.17894 _2g_é4873 —27.16434 n=20 n=9
n=158 n=72 n=15 n=69

Fig. 14.9: Tree-based regression. The same data as in Fig. 14.8 were used. The factor A has the
largest effect. log(y) values were used to grow the tree

3. categorical variables.

SPOT’s ROl file is used to specify this typing. Maindonald and Braun (2003) illus-
trate the treatment of dummy variables for classical regression in R.

Classical regression is only one technique that can be used in the SPOT frame-
work to predict interesting design points. Alternatively, tree-based models can be
used to cope with categorical variables; see also Fig. 14.9. Tree-based methods can
be used for regression as well as for classification (Breiman et al. 1984). Maindonald
and Braun (2003) recommend to use tree-based methods in tandem with paramet-
ric approaches, because tree-based regression may suggest interaction terms that
ought to appear in a parametric model. However, tree-based methods require more
data than classical regression techniques. That is, if only a few runs of the algo-
rithms are possible, it may be necessary to use parametric models. On the other
hand, tree-based methods may be helpful to explore new data sets very quickly: the
experimenter gets on overview of which variables have the greatest effects on the
algorithm’s performance.
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Fig. 14.10: Comparison of two SPOT prediction models with randomly generated configurations
(from fop to bottom). First, the results from randomly generated algorithm designs are shown. We
have chosen the initial design (LHD), which is generated randomly. Next, results from 50 repeats
of the best algorithm design determined with the linear and the tree-based regression model are
displayed

We have mentioned only two prediction models: parametrized regression and
regression trees. Further models, e.g., local regression, Kriging or mixed models as
introduced in Sect. 10.1, are also available.

Example 14.2. To analyze the choice of the prediction model on the prediction qual-
ity and SPOT’s ability to improve optimization algorithms (tuning), we performed
the following study: Results from two different SPOT runs are compared. The first
run uses a tree-based regression model, whereas in the second run the dummy-
variable regression model was used. Both models used exactly the same setting, i.e.,
five SPOT iterations, initial design size of 50 points, and two repeats. An ES, which
optimizes the ten-dimensional sphere function with 1,000 function evaluations was
analyzed. Distributions of the results from these two SPOT runs are compared with
the distribution of the randomly generated initial design in Fig. 14.10. Both mod-
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els were able to find better results than the randomized design. These results are in
line with observations from other studies: Tree-based models can be applied very
easily to unknown explanatory variables. They can cope with categorical and nu-
merical data. Parametrized models perform better than tree-based models; however,
the costs for modeling are higher. |

14.8 The Automated Mode

In the case study in Sect. 14.6 we discussed the initial setup for the SPOT loop
(initial design) and the analysis of one step. SPOT can proceed as follows: Based
on the prediction model, e.g., linear regression or tree-based regression, interesting
algorithm design points are generated. These design points are evaluated, i.e., the al-
gorithm is run with the corresponding parameters. Then, an analysis as described in
Sect. 14.6.2 can be performed. This analysis provides an improved predictor, which
can be used to propose new design points, and so forth. As depicted in Fig. 14.2, this
procedure can be performed in an automated manner. The result from the automated
approach reads
so =4.99,a =1.10,g = 71.

Obviously, the result from the automated approach supports the findings from the
manual approach, i.e., similar values for the parametrization of the (1+1)-ES are
determined.

14.9 Summary

In this chapter, basic elements of the SPOT framework were introduced and dis-
cussed. SPOT is an open-source implementation of the sequential parameter opti-
mization presented in Chap.2. It requires the specification of the region of interest,
the algorithm design, and SPOT-related configuration parameters.

SPOT provides tools to perform the following four elementary tasks: (i) generate
an initial design, (ii) run the algorithm, (iii) generate a new design based on results
from previous runs, and (iv) generate a report. Additionally, these tasks can be run
in an automated mode.

We demonstrated how a simple analysis of the (1+1)-ES can be performed. This
analysis requires the specification of the following elements:

1. Region of interest, i.e., the range of parameter settings of the algorithm.
2. Algorithm- and problem-related parameters.
3. Metaparameters used by SPOT.

A simple regression model, well known in DOE and RSM (Montgomery 2001),
was used to analyze the influence (importance) of three parameters of the (1+1)-ES,
namely, initial stepsize, multiplier for the stepsize, and the length of the memory
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vector. The experimental results support a result which was derived theoretically
by Beyer (2001).

SPOT is being developed, applied, and improved at several research institutes
around the world. By providing an open-source implementation and a graphical
user interface, we hope that SPOT can be a useful tool for the research community.
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