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Does one need more than one optimization method? Or, stated differently, 
is there an optimal optimization method? Following from the No Free Lunch 
theorem (NFL, Wolpert and Macready [1]), in the general case—without clearly 
specified task—there is not. For every single task, creating a specialized method 
would be advantageous.  Unfortunately, this requires (i) a lot of effort, and (ii) 
extensive knowledge about the treated problem, and is thus not practiced. Alter- 
natively, two strategies are usually followed when tackling a ‘new’ optimization 
problem: 

 
– Adapt an existing algorithm to the problem in its current form, and/or 
– model/formulate the problem appropriately for an existing algorithm. 

 
The first strategy modifies the algorithm design, whereas the second strat- 

egy modifies the problem design. These designs will  be discussed in detail in 
the remainder of this article. Whereas ‘traditional’ mathematical optimization 
approaches mostly favor the second approach, it may provoke  unwanted side- 
effects: One has to make sure that the most important features of the original 
problem are taken over into the model. E.g., matching the problem to an exist- 
ing algorithm may obscure its real global or good local optimizers so that they 
become unreachable  for the optimization algorithm. Besides, many existing al- 
gorithms require the problem to fulfill  properties it obviously or possibly does 
not, e.g. continuity and differentiability.  Particularly, in cases where  computing 
the quality  value of a solution candidate requires running a complex simula- 
tion software, one seldomly knows in advance which properties the underlying 
(unknown) objective function possesses. 

When nothing more than quality  determining response values for any set 
of input  variables are known for a problem, we speak of black box  optimiza- 
tion. In the single-objective case, the common notion of an objective function 
and its global optimum/global  optimizers—as given in eqn. 1 for unconstrained 
problems—is still useful. However, global optimizers, the set of input vectors x 
for which f(x) is optimal, cannot be determined analytically. An empirical trial 
and error method is the only way to find them. 

 

f ∗ G = min{f (x)|x ∈  X } (1) 

mailto:thomas.bartz-beielstein@fh-koeln.de


2  

 
 
 
 

The black box concept immediately leads to direct search methods—such  a 
method only utilizes objective  function responses and “does  not ‘in its heart’ 
develop an approximate gradient”, as Wright [2] puts it. As far back as in the 
1960s, many direct search methods have been invented, e.g. the famous Nelder- 
Mead simplex algorithm [3]. At the same time, the first steps into the world 
of evolutionary computation (EC) were taken, presenting very simple versions 
of what is now subsumed under the unified denotation evolutionary algorithms 
(EA). These do not only use bio-inspired heuristics, they also employ random- 
ness. However, the extensive use of random numbers and the fragmentary theory 
supporting EAs may be considered a drawback. Nevertheless, these optimization 
methods have demonstrated their problem solving capability in numerous real- 
world applications. 

Interestingly, in recent years, the mathematical optimization community has 
again shown increased interest in direct search methods, e.g. Kolda et al. [4]. 
This may have to do with (i) the fact that these techniques simply did not go 
extinct on the practitioners side, and (ii) improved theoretical analysis methods 
that  now help tackling heuristic algorithms. In computer science, the growing 
field of randomized algorithms is exclusively dealing with algorithms employing 
random numbers — not only in optimization. Motwani and Raghavan [5] give 
an overview. 

This section targets at introducing the main EA concepts and specialized 
techniques for three important application areas: Multiobjective optimization, 
optimization under uncertainty, and multimodal optimization. These are relevant 
to the topic of this book as they are closely interrelated and often encountered 
conjoined in real-world applications. 

 
 

Historical  roots Although there have been precursors in proposing the utiliza- 
tion of evolutionary concepts for optimization tasks, as e.g. Bremermann [6] (also 
see Fogel’s  fossil record [7]), invention and development of the first evolutionary 
algorithms is nowadays attributed  to a handful of pioneers who independently 
suggested three different approaches. 

 
– Fogel, Owens, and Walsh introduced evolutionary programming (EP) [8], at 

first focused at evolving finite automata, later on modified into a numerical 
optimization method. 

– Genetic algorithms (GAs), as laid out by Holland [9], mainly dealed with 
combinatorial problems and consequentially started with binary strings, in- 
spired by the genetic code found in natural life. 

– Evolution  strategies (ESs) as brought  up by Rechenberg [10] and Schwe- 
fel [11] began with solving experimental engineering problems by hand using 
discrete/integer parameters, but turning to real-valued representations when 
numerical problems had to be solved. 

 
In the early 1990s, a fourth branch of evolutionary algorithms emerged, ex- 

plicitly  performing optimization of programs: Genetic programming (GP), sug- 
gested by Koza [12]. Since about the same time, these four techniques are collec- 
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tively referred to as evolutionary algorithms, building the core of the evolutionary 
computation (EC) field. 

 
 
 

What is an  evolutionary   algorithm?   Today, there is little  doubt about 
components and general structure of an EA. It is understood as population based 
direct search algorithm with stochastic elements that in some sense mimics the 
organic evolution. 

Besides initialization and termination as necessary constituents of every algo- 
rithm, EAs consist of three important factors: A number of search operators, an 
imposed control flow (fig. 1), and a representation that maps adequate variables 
to implementable solution candidates. 

Although different EAs may put different emphasis on the search operators 
mutation and recombination, their general effects are not in question. Mutation 
means neighborhood  based movement in search space that includes the explo- 
ration of the ‘outer space’ currently not covered by a population, whereas re- 
combination rearranges existing information and so focuses on the ‘inner space.’ 
Selection is meant to introduce a bias towards better fitness values; GAs do so 
by regulating the crossover via mating selection, ESs utilize the environmental 
selection. 

 
 
 
 
 

test for termination 
 
 
 

environmental 
selection 

replacement 

initialization 
and evaluation 
 

mating selection 
 

 
 
 

recombination 
crossover 

 
 

evaluation mutation 
 
 

Fig. 1. The evolutionary  cycle, basic working scheme of all EAs. Terms common for 
describing evolution strategies are used, alternative (GA)  terms are added below. 

 
 
 

A concrete EA may contain specific mutation,  recombination, or selection 
operators, or call them only with a certain probability,  but the control flow is 
usually left unchanged. Each of the consecutive  cycles is termed a generation. 
Concerning the representation, it should be noted that most empiric studies are 
based on canonical forms as binary strings or real-valued vectors, whereas many 
real-world applications require specialized, problem dependent ones. 
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Fig. 2. The evolutionary cycle of a two-membered (1+1)  evolution strategy. 
 
 

For an in-depth coverage on the defining components of an EA and their 
connection to  natural  evolution, see  Eiben and Schoenauer  [13], Eiben and 
Smith [14], and Bäck, Fogel, and Michalewicz [15]. 

 
 

Evolution strategies In the following, we introduce the most important canon- 
ical ES variants for single objective optimization, which serve as basis for more 
specialized algorithms later on. 

 
The (1 + 1)-ES The first ES, the so-called (1 + 1)-ES or t wo membered evolution 
strategy, uses one parent and one offspring only. Two rules have been applied to 
these candidate solutions: 

 
1. Apply small, random changes to all variables simultaneously. 
2. If the offspring solution is not worse (in terms of its function value) than the 

parent, take it as the new parent, otherwise retain the parent. 
 

Schwefel [16] describes this algorithm as “the minimal concept for an imitation 
of organic evolution.” The (1 + 1)-ES (fig. 2) is applied by many optimization 
practitioners to their optimization problem and included in this article for three 
reasons: (i) It is easy to implement, (ii) it requires only few exogenous parame- 
ters, and (iii)  it defines a standard for comparisons. 

The first (1 + 1)-ES used binomially distributed mutations for integer vari- 
ables (Schwefel [17]). These have been replaced by Gaussian mutations for con- 
tinuous variables. Rechenberg [18] already proposed a simple rule to control the 
mutation strength, the so-called 1/5 success rule. This simple ES requires the 
specification of at four parameters (factors), namely the adaptation interval, the 
required success rate, the step size adjustment factor3 , and the step size starting 
value. 
3  This is a constant factor c with  1 ≤ c ≤ 0.85, the lower bound being theoretically 

near-optimal for simple model problems like the sphere model. 
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Population Based ESs Population based ESs use µ parents and λ  offspring. 
Rechenberg introduced the first multimembered ES, the so-called (µ + 1)-ES. 
It uses µ parents and one offspring and is referred to as the steady-state  ES. 
Schwefel introduced the (µ + λ)-ES, in which λ  ≥  1 candidate solutions are 
created each generation,  and the best µ out of all µ + λ individuals survive, and 
the (µ, λ)-ES, in which the parents are forgotten and only the best µ out of λ 
candidate solutions survive. These selection  schemes will  be discussed later in 
this section (p. 6). 

A birth  surplus is necessary for the (µ, λ)-ES, that  is λ > µ. Schwefel et 
al. [19] and Beyer and Schwefel [20] provide a comprehensive introduction  to 
evolution strategies. 

Note that whereas GAs rely upon a start population uniformly scattered in 
a closed search region, ESs—even if population based—may  be started around 
any start vector like standard optimization algorithms, without lower and upper 
bounds for the variables. 

 
Variation in ESs The use of populations enables an extension of the rather sim- 
ple 1/5 success rule to control the mutation strength (Schwefel [11]). Beyer and 
Schwefel [20] propose some guidelines derived from the philosophy of Darwinian 
evolution to design these variation operators. 

1. A state comprises a set of object and strategy parameter values (x(t) , s(t) ). 
Reachability  demands that  any state can be reached within  a finite num- 
ber of iterations. This feature is necessary to prove  (theoretically)  global 
convergence. 

2. Variation operators (mutation and recombination) should not introduce any 
bias, e.g. by considering only good candidate solutions. Variation operators 
are designed to explore the search space in contrast to selection operators 
that  exploit the gathered information. Recombination works, according to 
Beyer [21], mainly as gene repair operator, not only as building block collec- 
tion mechanism. 

3. Scalability is the third  criterion that should be fulfilled by variation opera- 
tors: Small changes of the representation should cause small changes in the 
function values. 

 

The standard ES recombination operators produce one offspring from a fam- 
ily of ρ parent individuals (usually ρ = 2). Consider a set of µ parental vectors 
of length N , representing either object or strategy parameters: 

{(x11 , . . . , x1N ), (x21 , . . . , x2N ), . . . , (xµ1 , . . . , xµN )}.  (2) 

Two recombination schemes are commonly used in ESs. Both use a set R = 
{r1 , r2 , . . . , rρ }, that  represents the indices of the mating partners. It is con- 
structed by randomly (uniformly)  choosing ρ numbers (with  replacement  or 
not) from the set {1, 2, . . . , µ}. Discrete recombination selects the entries of the 
offspring randomly from R,  whereas intermediary recombination  averages the 
ρ corresponding values of all mating pool members in each component  of the 
newly generated vector. 
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Mutation  is applied to the recombined intermediate solution. Mutation  in 
multimembered ESs is a self-adaptive process that relies on the individual cou- 
pling of endogenous strategy parameters with  object  parameters. After  being 
varied as described above, the strategy parameters (standard deviations, also 
called mean step sizes or mutation strengths) are applied to mutate the object 
parameters. To illustrate this procedure, algorithms with one common σ are con- 
sidered first. To prevent negative standard deviations, mutation of this σ should 
be done multiplicatively. Beyer and Schwefel [20] discuss an additional argument 
for a multiplicative mutation of the mutation strength on the sphere model. It 
can be shown, that  in expectation σ should be changed by a factor that  only 
depends on N . Therefore, the mutation operator can be implemented  as 

σ(t+1)  = σ(t) · exp(τ z),  (3) 

where z is a realization of an N (0, 1) distributed random variable. The parameter 
τ is the so-called learning rate . The object variables are mutated next: 

 
x(t+1) = x(t) + w, (4) 

where w is a realization of an N (0, σ(t+1) ) distributed  random variable. The 
multiplicative mutation scheme for one σ can be extended to several strategy 
parameters σ = (σ1 , . . . , σN ). Schwefel [22] proposes the following extended log- 
normal rule:  

σ(t+1)  =
 (
σ(t)

  
(t) 

1    exp(τ z1 ), . . . , σd   exp(τ zN ) , (5) 
 

where zi  are realizations of N standard normally distributed random variables, 
1 ≤  i ≤  N . This mutation  scheme  employs a single learning rate τ  for all 
strategy parameters. An alternative procedure that utilizes a global and a local 
learning parameter τ0 and τ , respectively, is suggested by Bäck and Schwefel [23]. 
Self-adaptive  correlated mutations have already been introduced in 1974, see 
Schwefel [24] and Schwefel [25]. 

 
Selection in ESs Selection should direct the evolutionary search toward promis- 
ing regions. In ESs, only candidate solutions with good function values are al- 
lowed to reproduce. The replacement (environmental selection) process is deter- 
ministic in contrast to the random processes used in GAs. This selection scheme 
is known as truncation or breeding selection in biology. The κ-selection scheme 
takes the age of candidate solutions into account: Only candidate solutions that 
are younger than κ generations may survive, regardless of their fitness. For κ = 1 
this selection method is referred to as comma-selection : only offspring individuals 
can reproduce. The κ-selection is referred to as plus-selection for κ = ∞: Both 
the offspring and the parents belong to the mating pool. The plus-selection is an 
elitist selection scheme, because it guarantees the survival of the best individual 
found so far. 

Table 1 summarizes important ES parameters [26]. These parameters build 
an a lgorithm design. In addition to algorithm designs optimization practitioners 
have to cope with problem designs which will be discussed next. 
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Table 1. Algorithm design of ES 
 

Symbol  Parameter Range 
µ  Number of parent individuals  N 
ν = λ/µ Offspring-parent ratio  R+ 

i Initial standard deviations R+ 

nσ  Number of standard deviations. N denotes the prob- {1, N } 
lem dimension 

τ0 , τ Multiplier for mutation  parameters R+ 
ρ 
rx 
rσ 
κ 

Mixing  number 
Recombination operator for object variables 
Recombination operator for strategy variables 
Maximum age 

{1, µ} 
{intermediary, discrete} 
{intermediary, discrete} 
R+ 

 
 
 

Ways  to Cope with  Uncertainty In the following, we will distinguish three 
types of parameters that  influence experimental results [27]. The first type of 
parameter to be mentioned is a control parameter. Control parameters can be 
set by an experimenter to “control” the experiment. 

The second type of parameter, so–called environmental parameter depends 
on the environment at the time the experiment is performed. Some authors refer 
to environmental parameters as “noise” parameters. Note, that environmental 
parameters include measurement errors such as falsely calibrated measurement 
instruments, inexact scales, scale reading errors, etc. Data preprocessing tech- 
niques were developed to reduce this source of error, which occurs in nearly 
every field setting. In some situations, environmental parameters can be treated 
as having a given distribution  that is characteristic for the given experimental 
setup. 

The third type of parameter, so–called model parameter describes the uncer- 
tainty of the mathematical modeling. First, we have to take into account that 
computer simulations require a model which simplifies the underlying real-world 
scenario. Therefore, simulation results are only approximations of the corre- 
sponding real-world data. Next, if stochastic (and not deterministic) simulations 
are considered, the measurements may be exact (because there is no environmen- 
tal noise), but some of the models’ parameters are random parameters. In some 
cases, there is a known (subjective) distribution which describes this uncertainty. 

As an example, we consider a sequence of traffic signals along a certain route 
or elevators’ movements in high-rise buildings. Optimization via simulation sub- 
sumes all problems in which the performance of the system is determined by 
running a computer simulation. If the result of a simulation run is a random 
variable, we cannot optimize the actual value of the simulation output, or a sin- 
gular performance of the system. One goal of optimization via simulation may be 
to optimize the expected performance. In addition, consider a field study which 
was performed to validate the results from the computer simulation. This field 
study includes environmental parameters. 
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Fig. 3. Before an EA can be started, the optimization practitioner has to specify several 
parameters. Examples are shown in brackets. Environmental and model parameters can 
be affected by noise. 

 

 
 

Summarizing, there are two  fundamental sources of uncertainty  (or noise) 
that can be described  by environmental and model parameters. Figure 3 illus- 
trates these parameters in the context of algorithm and problem designs. 

The efficiency of the evaluation and selection method is a crucial point, since 
averaging over repeated runs reduces the efficiency of the optimization process. 

 
 

The Impact of Noise on EAs Noise makes it difficult to compare different solu- 
tions and select the better ones. Noise affects the selection process in evolutionary 
algorithms: In every iteration, the best µ out of λ candidate solutions have to 
be determined. 

Wrong decisions can cause stagnation of the search process: Over-valuated 
candidates—solutions that  are only seemingly better—build  a barrier around 
the optimum and prevent convergence. Or, even worse, the search process can 
be misguided: The selection of seemingly good candidates moves the search away 
from the optimum. This phenomenon occurs if the noise level is high and the 
probability of a correct selection is very small. 

One may attempt to reduce the effect of noise explicitly (explicit averaging). 
The simplest way to do so is to sample a solution’s function value n times, and 
use the average as estimate for the true expected function value. This reduces the 
standard deviation of the noise by a factor of 

√
n, while increasing the running 

time by a factor of n. 
In contrast to explicit averaging, some authors proposed implicit  averaging, 

i.e., increasing the population size to cope with uncertainty in evolutionary opti- 
mization. Theoretical results lead to contradictory recommendations: In [28] the 
authors conclude that it is better to increase the population size whereas [29] 
shows that increasing the sample size is advantageous. 

Further means used by evolutionary algorithms to cope with noise are aver- 
aging techniques based on statistical tests, local regression methods for function 
value estimation, or methods to vary the population size [30–36]. Because uncer- 
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tainties complicate the selection process for direct search methods, some authors 
suggested modified selection operators. 

 
A Taxonomy of Selection Methods As introduced above, noise affects selection. 
Following Bechhofer, Santner, and Goldsman [37] and Bartz-Beielstein [38], we 
present  a taxonomy of elementary selection methods. Depending on a priori 
knowledge,  selection schemes can be classified according  to the following criteria: 

 
Threshold:  subset selection – indifference zone. 
Termination: single stage – multi stage (sequential). 
Sample size: open procedures – closed procedures. 
Variances:  known – unknown, equal – unequal. 

 
The goal of subset selection is the identification of a subset containing the best 

candidate. It is related to screening procedures.  Subset selection is used when 
analyzing results, whereas the indifference  zone (IZ) approach is used when de- 
signing experiments. The sample size is known in subset selection approaches, it 
is determined prior to the experiments in the indifference zone approaches. Single 
stage procedures  can be distinguished from multi stage procedures.  The terms 
“multi stage” and “sequential” will be used synonymously.  The latter can use 
elimination: If inferior solutions are detected, they are eliminated immediately. 
Selection procedures are closed, if prior to experimentation an upper bound is 
placed on the number of observations to be taken from each candidate. Other- 
wise, they are open. Furthermore, it is important to know whether the variance 
is common or known. Bartz-Beielstein [38] discussed similarities and differences 
of these approaches.  He also analyzed threshold-based procedures, which were 
successfully applied to noisy, dynamic functions, e.g., in elevator group control. 
Threshold rejection increases the chance of rejecting a worse candidate at the 
expense of accepting a good candidate. It might be adequate if there is a very 
small probability of generating a good candidate. 

How can the experimenter cope with  this multitude  of selection methods? 
Surely, there is no general rule for the determination of the best selection method. 
Many theoretical results consider simplified sources of uncertainty, e.g. they re- 
gard environmental parameters as random with  a distribution  that  is known. 
Performing experiments in a systematic manner might  be useful. Modern ap- 
proaches  such as racing or sequential  parameter optimization  (SPO) can be 
recommended in this context [39, 40]. A typical result from an SPO analysis is 
shown in Figure 4. 

Regarding the classification from fig. 3, there two  starting points to cope 
with noise: (i) varying the algorithm design, e.g., choosing a modified selection 
operator or (ii) modifying the problem design, e.g., refining the fitness function. 
Evolutionary optimization itself can be considered as an evolutionary process. 
Based on results from previous optimization runs, the experimenter may gain 
insight into the behavior of the evolutionary algorithm and into the structure 
of the problem as well. He is able to modify (improve) algorithm and problem 
designs—black box situations turn  into gray box situations. Combinations of 
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Fig. 4. SPO combines classical and modern statistical  tools for the analysis of algo- 
rithms. Modifying  population size (NPARENTS) and selective pressure (NU)  can im- 
prove algorithm’s performance significantly. Evolution strategies with small population 
sizes and moderate selective pressure perform best in this setting. 

 
 

classical and evolutionary methods (meta heuristics) may be useful  in these 
situations. 

 
 

Multiple Objectives  For many problems of high practical interest in science 
and engineering, several possibly contradicting objectives shall be pursued simul- 
taneously. In daily life we are confronted with many examples. E.g. in chemical 
process engineering,  where the productivity  of chemical reactors is in contrast 
to their loss during the start up and shut down phases. In the textile industry, 
a similar conflict arises for the production of fabrics. Figure 5 shows a simple 
discrete example. Total elongation (F1 ) and extensibility (F2 ) of the fabric shall 
be improved, by means of maximizing F1  and minimizing F2 . All  objectives 
are sufficiently defined and in this case pointwise quantifiable. Their values are 
determined by three adjustable control factors (decision variables): Number of 
knitting  skewers (x1 ), number of knitting  rows (x2 ) and number of weft threads 
(x3 ) per inch. The challenge for a multi-objective optimization algorithm con- 
sists of finding decision variable value sets that  fulfill  all objectives as well as 
possible. 

In this  context, the Pareto [41] concept of optimality  proved as suitable. 
During the beginning of an optimization run, it is often not hard to find solu- 
tions that simultaneously improve both objectives. However, if an objective can 
be improved further only by worsening an other objective, a solution is called 
Pareto-optimal. Due to different possible preferences concerning  the single ob- 
jectives, this leads to a set of Pareto-optimal solutions, each of them representing 
a valid optimal solution for the multi-objective problem (MOP). Figure 5 shows 
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six solutions in the decision variable space (a) and the objective space (b) for the 
fabric improvement example. In this example, the decision variable space is dis- 
crete and constrained as indicated by the surrounding solid line. Consequently, 
there is only a finite number of possible objective  value combinations. Direct 
comparison of solutions 5 and 6 shows that the former improves on F1  without 
changing F2 . According to the Pareto dominance concept, solution 5 dominates 
solution 6. However, pairwise comparison of solutions 1 to 5 does not result in 
recognizing any such domination as improvement in one objective always comes 
along with worsening in the other. These solutions are therefore indifferent to 
each other, hence incomparable or non-dominated. If  due to problem-specific 
constraints no further improvements can be obtained (solutions 1-5 are on the 
border of the feasible region) the set of all non-dominated solutions represents 
the Pareto Set in the decision space and the Pareto Front in the objective space. 
Since in each case only one solution can be realized, preference information of a 
decision maker (DM) must be used next to select the final solution of the MOP. 

 
 

(a) Decision Space  (b) Objective Space 
5 

 
5  6  4  6 

feasible region  3 
4 

 
3 

X3 
 

X2 2 
2 

1 1 

 
 

X1 Extensibility F2 
better 

 
Fig. 5. The Pareto-dominance concept. (a) Decision space, (b) objective space 

 
 
 

Why Use Evolutionary Algorithms?  Problems with  several conflicting criteria 
have been treated for many years, e.g. with a considerable variety of techniques 
developed in Operational Research. Concise overviews of existing approaches can 
be found in Achilles et al. [42] and Miettinen [43]. Usually one tries to reduce 
the MOP into a single-objective problem, so that it can be solved by means of 
methods from single-objective optimization. One possible approach consists of 
choosing a single criterion as main objective, and transform the other objectives 
to constraints with lower or upper bounds. Without  specific knowledge of the 
problem, the choice of concrete upper and lower bounds suffers from arbitrari- 
ness. Alternatively,  one may try  aggregation-based  approaches. These combine 
all criteria into a single, parametrized one. The aggregation can be accomplished 
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by any combination of arithmetical operations (i.e. a weighted sum), according 
to some understanding of the problem. However, these techniques have several 
limitations. Some of them are e.g. susceptible to the shape (convex/concave)  of 
the Pareto front, others to its continuity (connected/disconnected). In addition, 
most of the ‘conventional’ approaches are only able to compute one single non- 
dominated solution per run. Searching for a representative set of non-dominated 
solutions requires a restart with different external parameter settings and differ- 
ent starting points for each run. 

Evolutionary algorithms are robust search methods, whose success and failure 
is by far less susceptible  to the shape or the continuity of the Pareto front. Their 
greatest advantage is that they are able to provide a point-wise approximation 
of the whole Pareto front in one go by employing cooperative search of a whole 
population. 

 
Algorithm  Design If  one regards the development  of the evolutionary multi- 
objective (EMO)  algorithms within  the last two decades, then the rise of sug- 
gested approaches  is impressing.  The largest well-known collection of existing 
approaches was arranged by Coello Coello and contains over 1900 entries [44]. A 
common classification of all EMO-algorithms comes from Masud [45]. Depending 
on the time at which the preference information from the DM is used, four classes 
can be differentiated: (i)  Non-preference, (ii) a-priori, (iii) interactive, and (iv) 
a-posteriori. In the following, this classification is not discussed in detail as most 
EMO-algorithms can be assigned to the last category. The optimization  pro- 
cess takes  place before any preference information is incorporated. This entails 
a clear task definition: Find a representative set of non-dominated solutions as 
close (convergence) as possible to the Pareto optimal set/front. Additionally, the 
resulting approximation has to exhibit a good distribution  of solutions in terms 
of both spread and uniformity  - usually described by the term of diversity. The 
aim of this section is to give an overview of the main methods that have been 
developed in order to achieve these goals. 

 
Fitness Assignment When moving from single-objective to multi-objective op- 
timization while applying EAs, the most important changes to be made concern 
the selection operator and especially the fitness assignment. In EAs, the fittest 
individuals have better chances to survive and reproduce. For single-objective 
optimization, only one scalar fitness value exists. However, in the multi-objective 
case we have to deal with a fitness vector. Since EAs need a scalar to work on, 
generally two design decisions must be made: On the one hand, this vector must 
be scaled to enable for EA selection, and on the other hand the two conflicting 
tasks of convergence and diversity shall  be respected.  But  how to assign the 
fitness of an individual  in order to express suitability  towards both goals? We 
can roughly divide the existing answers into two categories: 

 

Combined  Fitness Assignment:  Fitness is assigned  such that  the fitness 
value represents convergence and diversity at the same time. 

Single Fitness Assignment:  Fitness assignment respects only one goal. Usu- 
ally, this is convergence,  as in the single-objective case. 
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Aggregation-, performance-, and Pareto-based approaches belong to the first 
category. Aggregation-based approaches are the most traditional as well as sim- 
plest possibility. Recently, performance-based fitness assignment strategies are 
successfully used to evaluate the fitness of a new individual  in relation to the 
entire population. For example, the S-metric selection (SMS)-EMOA utilizes the 
well-known S-metric (hypervolume) to calculate the fitness of an individual. This 
measure is commonly used to evaluate the performance of an EMOA. It respects 
proximity  to the Pareto front as well as diversity of the solution set. 

Pareto-based  approaches use the Pareto dominance concept itself for fitness 
assignment. Differences between these approaches arise in the methods employed 
to exploit the partial order. According to Zitzler et al. [46], this kind of infor- 
mation can be divided into: (i)  Dominance rank: The number of solutions in 
the population that dominate the solution under consideration, (ii) dominance 
count: The number of solutions in the population that  are dominated by the 
solution under consideration, and (iii) dominance depth: The rank of the solu- 
tion in the non-dominated sorted population. The latter approach is utilized by 
many successful algorithms, e.g. the Non-dominated Sorting Genetic Algorithm 
(NSGA)-II by Deb and others [47]. Dominance rank was first employed by Fon- 
seca and Fleming in their Pareto envelope-based algorithm (PESA) [48]. Today, a 
multiplicity of methods are based on this principle, see for example Bosman and 
Thierens [49]. Dominance depth and dominance rank are successfully combined 
in the Strength Pareto Evolutionary Algorithm 2 (SPEA2) approach by Zitzler 
and others [50]. 

However, most of these algorithms apply a secondary fitness assignment strat- 
egy that serves the goal of diversity. In most cases they try to incorporate density 
information into the selection process (mating/environmental),  according to the 
rule: The smaller the density of individuals within a neighborhood, the larger the 
chance of an individual to reproduce. Figure 6 shows the three most frequently 
used methods: Kernel-based, grid-based and nearest-neighborhood  measures. Fit- 
ness sharing,  as e.g. used in NSGA, is a kernel-based strategy. The distance of an 
individual to all other individuals in the population is calculated and summed 
up. These values are then used to deflect the evolutionary search out of densely 
populated regions. Grid-based  techniques as e.g. utilized by the Pareto Archived 
Evolution strategy (PAES) of Knowles and Corne [51], employ hypergrids to de- 
fine neighborhoods within  the objective space. The more individuals in a box, 
the heavier they are penalized  (see fig. 6). Nearest neighborhood techniques as 
used in SPEA2 and its variants calculate the distance between an individual and 
its nearest neighbor in order to estimate the neighborhood density. 

Criterion-based approaches represent the second category of fitness assign- 
ment  strategies. They all share the same basic idea: The fitness value of an 
individual is determined by only one of the criteria according to the goal of con- 
vergence. However, the choice of a single criterion for any individual  shall be 
reconsidered repeatedly (in each generation).  As thereby parts of the population 
are selected according to different criteria, it is hoped that the goal of diversity 
can be achieved indirectly (see Schaffer  [52] and Laumanns and others [53]). 
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Fig. 6. Most common diversity preservation strategies in EMOA. 
 
 

Representations and Variation Operators Design and analysis of representations 
and corresponding genetic operators is prevalent in the field of evolutionary com- 
putation. Often, an adept combination of all components determines the system’s 
success or failure. This insight is ubiquitous in the case of single-objective opti- 
mization. However, in multi-objective optimization, the conceptual approaches 
are still mainly concerned with the selection operator. Research focusing on vari- 
ation operators or representations remains rare. Some recent  approaches are: 
Rudolph [54] and Hanne [55] who investigate control mechanisms for the mu- 
tation strength in the multi-objective case. Grimme and Schmitt [56] focus on 
recombination operators that produce diverse offspring in each generation. 

 
Elitism Elitism preserves previously  attained good solutions from one generation 
to the next. The prime example of an elitist algorithm in the single-objective 
case is the ‘plus’-selection ES. In the multi-objective case two types of elitism 
are used: Maintaining  elitism in the current population, as is already done in 
the single-objective case, or doing so in an archive (secondary population) that 
stores non-dominated  solutions externally. Archive contents may or may not be 
integrated again into the optimization process (Zitzler and others [46]). Of vital 
importance is the criterion used to control replacement of archive members, the 
most commonly used of which is the dominance criterion. It leads to an archive 
of non-dominated solutions, relative to all solutions generated during a run. 

 
Future  Perspectives  As has been hinted to in the previous paragraphs,  a lot 
of work remains to be done on EMOAs. We briefly discuss the currently most 
promising paths: 

 
Investigating  representations and variation  operators: Büche  and oth- 

ers [57] show that  the interaction between selection and search operators 
is often not co-ordinated well, and that approximation of the Pareto front 
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cannot be done with arbitrary  precision. Further on, there is the dilemma  

 

of stagnation with  good diversity  of the solution set on the  one hand, or 
arbitrarily  exact approximation of a few points on the Pareto front.  We 
conjecture that this trade-off between convergence and diversity can be at- 
tributed  to the fact that  variation operators cannot simply be taken over 
from the single-objective case and that changing only the selection operator 
is not sufficient to meet the requirements of multi-objective optimization. 

Focusing on the region of interest  (ROI): In the last years, most EMO re- 
searchers focus on algorithms that are able to find the whole Pareto front. 
However, in practice, the decision maker is only interested in a specific region 
of the Pareto-front. Focusing on a region derived from user preferences may 
help to increase convergence speed and/or quality and also simplify solution 
selection by the DM later on. 

Parallelism:  Considering the suitability  of EAs working in a parallel manner, 
one should expect that the development of parallel approaches stands only 
at the beginning. Apart from first successful attempts to convert the state- 
of-the-art algorithms into a parallel version [58], an increasing number of 
parallel approaches has been published only recently [59, 60]. 

Parameter tuning:  Attaining  good parameter settings for a given problem- 
algorithm combination currently is one of the hot topics in single-objective 
optimization [38]. It is necessary to adapt those techniques for the multi- 
objective case in order to avoid the commonly used manual parameter tuning 
and provide important insight into parameter interactions. 

 
 

Multimodal Problems  Although, during the last decades, many empirical 
and most of the theoretical studies in EC have been devoted to simple test prob- 
lems with only one extremal point, the great majority of practical applications 
requires optimization in far more complex fitness landscapes. Multimodality— 
the presence of more than one locally optimal point—requires a shift from a 
hill-climbing  oriented towards a global perspective. At the top of the hill, the 
need arises to somehow ’escape’ the associated local optimum. This may be done 
in two different ways. Either, one tries to save as much positional and learned 
(step sizes/mutation strengths) information as possible and, preserving this in- 
formation, attempts to jump over the neighboring valleys. Or, one completely 
gives up the current search space location and performs random initialization 
again. For mutation strenghts getting larger and larger, the former scenario more 
and more resembles the latter. 

However, if the treated optimization  problem is not available in a closed 
algebraic form, detecting the arrival  at a local optimum  may not be trivial, 
depending on the employed variable representation. Combinatorial and binary 
encoded  optimization  problems  come with  a natural  minimal  step definition 
which enables enumeration  of the neighborhood. For real-valued representations, 
eqn. 6 specifies a necessary and sufficient condition for a local optimum, with x∗ L 

meaning its search space location, d(x, y) a distance metric, and E the maximal 
distance to tested neighboring search points. Nevertheless, the bounded but still 



16 

infinite neighborhood cannot be completely explored efficiently and one has to  

 

rely on the strong causality assumption (Rechenberg[61]: similar causes entail 
similar effects) to identify local optima at least in probability. 

 
 

x∗ L  is local minimizer iff  ∃E : ∀x ∈  X : d(x, x∗ L ) < E ⇒ f (x∗ L ) ≤  f (x)  (6) 

Strongly related to the notion of local optima is the one of basins of attrac- 
tion; these emcompass the search space portion leading to an optimum if the 
steepest descent is followed. For this local search process, efficient approxima- 
tion methods are known, e.g. quasi-Newton algorithms. However, identification 
of different basins is even more difficult than local optimum detection if no fur- 
ther information regarding size and/or location of the basins is available. The 
key property of multimodal optimization methods is thus how efficient they are 
in finding the different search space regions that contain the best local optima. 

Canonical population based EAs perform global and local search at the same 
time, gradually narrowing their focus to the most promising regions, and more 
sooner than later to a single basin of attraction (e.g. Preuss, Schönemann and 
Emmerich [62]). From the discussion above, it becomes clear that  the ability 
to explore multiple  promising regions—either concurrently or sequentially—is 
decisive  for obtaining well performing EA  variants. But  for a given limit  of 
available computational time, these always have to face the global vs. local search 
tradeoff like any other global optimization algorithm. 

One possible way to speedup local optimization, so that more effort can be 
diverted to search space exploration, is to hybridize EAs with existing local 
search methods. These approaches are subsumed under the term memetic algo- 
rithms (MA)  that was introduced by Moscato [63]. A recent overview is given 
by Krasnogor and Smith [64], together with a suggested taxonomy. 

Most other specialized EAs strive for enhanced global search capabilities by 
means of at least one of the following three techniques: 

 
Restarts  are utilized to enhance the chance of reaching the/a basin of attraction 

of the global optimum. As an example, an efficient restart CMA-ES for mul- 
timodal problems  has been suggested by Auger and Hansen [65]. Multistart 
methods obtain potential solutions consecutively, and every new instantia- 
tion may be provided with search results of completed previous runs. They 
avoid the problem of jumping into a neighboring good region by giving up 
the current search space location completely. 

Diversity maintenance  aims for a uniform distribution  of individuals over 
the whole search space. Comparing relative or absolute distances of solution 
candidates and applying clustering methods are common means to prevent 
overlapping search paths and promote good search space coverage.  Diver- 
sity may be held up explicitly or implicitly.  Following Eiben and Smith [14], 
explicit means that active measures are taken to model the distribution  of 
search points in the desired way, whereas implicit  stands for deliberately 
slowing down information exchange by restricting recombination or selec- 



17 

tion/replacement. Classical island models provide implicit  diversity main-  

 

tenance by building relatively independent subpopulations. Spatially struc- 
tured EAs [66] do so by restricting the effect of recombination and selection 
operators to the local neighborhood. Shifting balance GAs by Oppacher and 
Wineberg [67] exemplify explicit diversity maintenance  as they prevent sub- 
population overlap which is measured by absolute population distances. 

Niching  methods also strive for a suitable spread of search points, only on the 
level of basins of attraction. As Mahfoud [68] points out, it is the aim of nich- 
ing algorithms to detect separate basins and keep them in focus of the search. 
Unfortunately, basin identification  within  an EA is not easy and prone to 
error, so that endogenously retrieved basin information is highly unreliable 
and nonexistent  when the optimization starts. Crowding by De Jong [69] 
and fitness sharing by Goldberg and Richardson [70] are regarded as the 
classical niching methods. The former employ relative,  the latter  absolute 
distances. These have been carried further e.g. by Li et al. [71], Streichert et 
al. [72], and Shir [73], but still the radii employed for detecting search points 
located together in a basin remain problematic. Only few approaches inte- 
grate fitness topology information into the basin identification process, e.g. 
the universal evolutionary global optimizer (UEGO) by Jelasity [74], Ursem’s 
multinational GA [75], and the sample-based crowding method proposed by 
Ando et al. [76]. 

 
It shall be noted that  solving multimodal  problems is related to tackling 

constrained or multiobjective  ones. Removing constraints from a problem by 
transforming it by means of (metric)  penalty functions (see e.g. Michalewicz 
and Schoenauer  [77] and Coello Coello [78]) as commonly done in EC most 
often leads to multimodal problems even if the original problem was unimodal. 

In  multi-objective  optimization,  the  focus has been mainly on the objec- 
tive space for a long time. Today, it becomes increasingly clear that population 
movement  in the decision (search) space  heavily depends on the multimodal 
search properties of the applied optimization algorithms (Preuss, Naujoks and 
Rudolph [79]). 

 
 

Conclusions May it be (or not) that one day there is no more need to invent 
new optimization tools because we have got the best tailored ones already for 
every possible real-world problem. May it be (or not) that  then the dream of 
hardliners has come true that  all of these best tailored methods can abstain 
from using pseudo random numbers for deciding upon the next iteration in the 
search for the solution. But, contemporary tools are still well advised not to rely 
on deterministic algorithms alone. That is, why an idea from the early days of 
digital computers is still alive, i.e., the idea to mimic procedures found in nature 
that obviously have led to remarkably effective systems or subsystems. One may 
think that nature had enough time to achieve a good solution by means of pure 
chance, but time has always been scarce when there are competitors, and the 
way nature finds its way is much more sophisticated. 
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Anyway, it is a matter  of fact that  evolutionary algorithms have become 
widely used in practice since their invention in the 1960s and even found their 
way into articles in the field of theoretical computer science. Their domain of 
application are ’black box’ situations, where the analysis of the situation at hand 
does not help or is too costly or dangerous, i.e., in case of experimental design and 
even computer simulation of nonlinear dynamic systems and processes. However, 
situations may occur where the black box situations turn into gray or even white 
box situations. EAs can be combined with classical methods which leads to m eta 
heuristics, and the optimization practitioner can get the best from both worlds. 
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