

Model Optimization with Evolutionary
Algorithms

Thomas Bartz-Beielstein1 , Mike Preuss2 ,
Karlheinz Schmitt2 , and Hans–Paul Schwefel2

1 Cologne University of Applied Sciences, Cologne, Germany,

thomas.bartz-beielstein@fh-koeln.de,
2 University of Dortmund, Dortmund, Germany,

{mike.preuss,karlheinz.schmitt,hans-paul.schwefel}@cs.uni-dortmund.de

Does one need more than one optimization method? Or, stated differently,
is there an optimal optimization method? Following from the No Free Lunch
theorem (NFL, Wolpert and Macready [1]), in the general case—without clearly
specified task—there is not. For every single task, creating a specialized method
would be advantageous. Unfortunately, this requires (i) a lot of effort, and (ii)
extensive knowledge about the treated problem, and is thus not practiced. Alter-
natively, two strategies are usually followed when tackling a ‘new’ optimization
problem:

– Adapt an existing algorithm to the problem in its current form, and/or
– model/formulate the problem appropriately for an existing algorithm.

The first strategy modifies the algorithm design, whereas the second strat-

egy modifies the problem design. These designs will be discussed in detail in
the remainder of this article. Whereas ‘traditional’ mathematical optimization
approaches mostly favor the second approach, it may provoke unwanted side-
effects: One has to make sure that the most important features of the original
problem are taken over into the model. E.g., matching the problem to an exist-
ing algorithm may obscure its real global or good local optimizers so that they
become unreachable for the optimization algorithm. Besides, many existing al-
gorithms require the problem to fulfill properties it obviously or possibly does
not, e.g. continuity and differentiability. Particularly, in cases where computing
the quality value of a solution candidate requires running a complex simula-
tion software, one seldomly knows in advance which properties the underlying
(unknown) objective function possesses.

When nothing more than quality determining response values for any set
of input variables are known for a problem, we speak of black box optimiza-
tion. In the single-objective case, the common notion of an objective function
and its global optimum/global optimizers—as given in eqn. 1 for unconstrained
problems—is still useful. However, global optimizers, the set of input vectors x
for which f(x) is optimal, cannot be determined analytically. An empirical trial
and error method is the only way to find them.

f ∗ G = min{f (x)|x ∈ X } (1)

mailto:thomas.bartz-beielstein@fh-koeln.de

2

The black box concept immediately leads to direct search methods—such a
method only utilizes objective function responses and “does not ‘in its heart’
develop an approximate gradient”, as Wright [2] puts it. As far back as in the
1960s, many direct search methods have been invented, e.g. the famous Nelder-
Mead simplex algorithm [3]. At the same time, the first steps into the world
of evolutionary computation (EC) were taken, presenting very simple versions
of what is now subsumed under the unified denotation evolutionary algorithms
(EA). These do not only use bio-inspired heuristics, they also employ random-
ness. However, the extensive use of random numbers and the fragmentary theory
supporting EAs may be considered a drawback. Nevertheless, these optimization
methods have demonstrated their problem solving capability in numerous real-
world applications.

Interestingly, in recent years, the mathematical optimization community has
again shown increased interest in direct search methods, e.g. Kolda et al. [4].
This may have to do with (i) the fact that these techniques simply did not go
extinct on the practitioners side, and (ii) improved theoretical analysis methods
that now help tackling heuristic algorithms. In computer science, the growing
field of randomized algorithms is exclusively dealing with algorithms employing
random numbers — not only in optimization. Motwani and Raghavan [5] give
an overview.

This section targets at introducing the main EA concepts and specialized
techniques for three important application areas: Multiobjective optimization,
optimization under uncertainty, and multimodal optimization. These are relevant
to the topic of this book as they are closely interrelated and often encountered
conjoined in real-world applications.

Historical roots Although there have been precursors in proposing the utiliza-
tion of evolutionary concepts for optimization tasks, as e.g. Bremermann [6] (also
see Fogel’s fossil record [7]), invention and development of the first evolutionary
algorithms is nowadays attributed to a handful of pioneers who independently
suggested three different approaches.

– Fogel, Owens, and Walsh introduced evolutionary programming (EP) [8], at

first focused at evolving finite automata, later on modified into a numerical
optimization method.

– Genetic algorithms (GAs), as laid out by Holland [9], mainly dealed with
combinatorial problems and consequentially started with binary strings, in-
spired by the genetic code found in natural life.

– Evolution strategies (ESs) as brought up by Rechenberg [10] and Schwe-
fel [11] began with solving experimental engineering problems by hand using
discrete/integer parameters, but turning to real-valued representations when
numerical problems had to be solved.

In the early 1990s, a fourth branch of evolutionary algorithms emerged, ex-

plicitly performing optimization of programs: Genetic programming (GP), sug-
gested by Koza [12]. Since about the same time, these four techniques are collec-

3

tively referred to as evolutionary algorithms, building the core of the evolutionary
computation (EC) field.

What is an evolutionary algorithm? Today, there is little doubt about
components and general structure of an EA. It is understood as population based
direct search algorithm with stochastic elements that in some sense mimics the
organic evolution.

Besides initialization and termination as necessary constituents of every algo-
rithm, EAs consist of three important factors: A number of search operators, an
imposed control flow (fig. 1), and a representation that maps adequate variables
to implementable solution candidates.

Although different EAs may put different emphasis on the search operators
mutation and recombination, their general effects are not in question. Mutation
means neighborhood based movement in search space that includes the explo-
ration of the ‘outer space’ currently not covered by a population, whereas re-
combination rearranges existing information and so focuses on the ‘inner space.’
Selection is meant to introduce a bias towards better fitness values; GAs do so
by regulating the crossover via mating selection, ESs utilize the environmental
selection.

test for termination

environmental
selection

replacement

initialization
and evaluation

mating selection

recombination
crossover

evaluation mutation

Fig. 1. The evolutionary cycle, basic working scheme of all EAs. Terms common for
describing evolution strategies are used, alternative (GA) terms are added below.

A concrete EA may contain specific mutation, recombination, or selection
operators, or call them only with a certain probability, but the control flow is
usually left unchanged. Each of the consecutive cycles is termed a generation.
Concerning the representation, it should be noted that most empiric studies are
based on canonical forms as binary strings or real-valued vectors, whereas many
real-world applications require specialized, problem dependent ones.

4

test for termination

environmental
selection

replacement

initialization
and evaluation

cloning

evaluation mutation

Fig. 2. The evolutionary cycle of a two-membered (1+1) evolution strategy.

For an in-depth coverage on the defining components of an EA and their
connection to natural evolution, see Eiben and Schoenauer [13], Eiben and
Smith [14], and Bäck, Fogel, and Michalewicz [15].

Evolution strategies In the following, we introduce the most important canon-
ical ES variants for single objective optimization, which serve as basis for more
specialized algorithms later on.

The (1 + 1)-ES The first ES, the so-called (1 + 1)-ES or t wo membered evolution
strategy, uses one parent and one offspring only. Two rules have been applied to
these candidate solutions:

1. Apply small, random changes to all variables simultaneously.
2. If the offspring solution is not worse (in terms of its function value) than the

parent, take it as the new parent, otherwise retain the parent.

Schwefel [16] describes this algorithm as “the minimal concept for an imitation
of organic evolution.” The (1 + 1)-ES (fig. 2) is applied by many optimization
practitioners to their optimization problem and included in this article for three
reasons: (i) It is easy to implement, (ii) it requires only few exogenous parame-
ters, and (iii) it defines a standard for comparisons.

The first (1 + 1)-ES used binomially distributed mutations for integer vari-
ables (Schwefel [17]). These have been replaced by Gaussian mutations for con-
tinuous variables. Rechenberg [18] already proposed a simple rule to control the
mutation strength, the so-called 1/5 success rule. This simple ES requires the
specification of at four parameters (factors), namely the adaptation interval, the
required success rate, the step size adjustment factor3 , and the step size starting
value.
3 This is a constant factor c with 1 ≤ c ≤ 0.85, the lower bound being theoretically

near-optimal for simple model problems like the sphere model.

5

Population Based ESs Population based ESs use µ parents and λ offspring.
Rechenberg introduced the first multimembered ES, the so-called (µ + 1)-ES.
It uses µ parents and one offspring and is referred to as the steady-state ES.
Schwefel introduced the (µ + λ)-ES, in which λ ≥ 1 candidate solutions are
created each generation, and the best µ out of all µ + λ individuals survive, and
the (µ, λ)-ES, in which the parents are forgotten and only the best µ out of λ
candidate solutions survive. These selection schemes will be discussed later in
this section (p. 6).

A birth surplus is necessary for the (µ, λ)-ES, that is λ > µ. Schwefel et
al. [19] and Beyer and Schwefel [20] provide a comprehensive introduction to
evolution strategies.

Note that whereas GAs rely upon a start population uniformly scattered in
a closed search region, ESs—even if population based—may be started around
any start vector like standard optimization algorithms, without lower and upper
bounds for the variables.

Variation in ESs The use of populations enables an extension of the rather sim-
ple 1/5 success rule to control the mutation strength (Schwefel [11]). Beyer and
Schwefel [20] propose some guidelines derived from the philosophy of Darwinian
evolution to design these variation operators.

1. A state comprises a set of object and strategy parameter values (x(t) , s(t)).
Reachability demands that any state can be reached within a finite num-
ber of iterations. This feature is necessary to prove (theoretically) global
convergence.

2. Variation operators (mutation and recombination) should not introduce any
bias, e.g. by considering only good candidate solutions. Variation operators
are designed to explore the search space in contrast to selection operators
that exploit the gathered information. Recombination works, according to
Beyer [21], mainly as gene repair operator, not only as building block collec-
tion mechanism.

3. Scalability is the third criterion that should be fulfilled by variation opera-
tors: Small changes of the representation should cause small changes in the
function values.

The standard ES recombination operators produce one offspring from a fam-
ily of ρ parent individuals (usually ρ = 2). Consider a set of µ parental vectors
of length N , representing either object or strategy parameters:

{(x11 , . . . , x1N), (x21 , . . . , x2N), . . . , (xµ1 , . . . , xµN)}. (2)

Two recombination schemes are commonly used in ESs. Both use a set R =
{r1 , r2 , . . . , rρ }, that represents the indices of the mating partners. It is con-
structed by randomly (uniformly) choosing ρ numbers (with replacement or
not) from the set {1, 2, . . . , µ}. Discrete recombination selects the entries of the
offspring randomly from R, whereas intermediary recombination averages the
ρ corresponding values of all mating pool members in each component of the
newly generated vector.

6

Mutation is applied to the recombined intermediate solution. Mutation in
multimembered ESs is a self-adaptive process that relies on the individual cou-
pling of endogenous strategy parameters with object parameters. After being
varied as described above, the strategy parameters (standard deviations, also
called mean step sizes or mutation strengths) are applied to mutate the object
parameters. To illustrate this procedure, algorithms with one common σ are con-
sidered first. To prevent negative standard deviations, mutation of this σ should
be done multiplicatively. Beyer and Schwefel [20] discuss an additional argument
for a multiplicative mutation of the mutation strength on the sphere model. It
can be shown, that in expectation σ should be changed by a factor that only
depends on N . Therefore, the mutation operator can be implemented as

σ(t+1) = σ(t) · exp(τ z), (3)

where z is a realization of an N (0, 1) distributed random variable. The parameter
τ is the so-called learning rate . The object variables are mutated next:

x(t+1) = x(t) + w, (4)

where w is a realization of an N (0, σ(t+1)) distributed random variable. The
multiplicative mutation scheme for one σ can be extended to several strategy
parameters σ = (σ1 , . . . , σN). Schwefel [22] proposes the following extended log-
normal rule:

σ(t+1) =
 (
σ(t)

(t)

1 exp(τ z1), . . . , σd exp(τ zN) , (5)

where zi are realizations of N standard normally distributed random variables,
1 ≤ i ≤ N . This mutation scheme employs a single learning rate τ for all
strategy parameters. An alternative procedure that utilizes a global and a local
learning parameter τ0 and τ , respectively, is suggested by Bäck and Schwefel [23].
Self-adaptive correlated mutations have already been introduced in 1974, see
Schwefel [24] and Schwefel [25].

Selection in ESs Selection should direct the evolutionary search toward promis-
ing regions. In ESs, only candidate solutions with good function values are al-
lowed to reproduce. The replacement (environmental selection) process is deter-
ministic in contrast to the random processes used in GAs. This selection scheme
is known as truncation or breeding selection in biology. The κ-selection scheme
takes the age of candidate solutions into account: Only candidate solutions that
are younger than κ generations may survive, regardless of their fitness. For κ = 1
this selection method is referred to as comma-selection : only offspring individuals
can reproduce. The κ-selection is referred to as plus-selection for κ = ∞: Both
the offspring and the parents belong to the mating pool. The plus-selection is an
elitist selection scheme, because it guarantees the survival of the best individual
found so far.

Table 1 summarizes important ES parameters [26]. These parameters build
an a lgorithm design. In addition to algorithm designs optimization practitioners
have to cope with problem designs which will be discussed next.

7

σ(0)

Table 1. Algorithm design of ES

Symbol Parameter Range
µ Number of parent individuals N
ν = λ/µ Offspring-parent ratio R+

i Initial standard deviations R+

nσ Number of standard deviations. N denotes the prob- {1, N }
lem dimension

τ0 , τ Multiplier for mutation parameters R+
ρ
rx
rσ
κ

Mixing number
Recombination operator for object variables
Recombination operator for strategy variables
Maximum age

{1, µ}
{intermediary, discrete}
{intermediary, discrete}
R+

Ways to Cope with Uncertainty In the following, we will distinguish three
types of parameters that influence experimental results [27]. The first type of
parameter to be mentioned is a control parameter. Control parameters can be
set by an experimenter to “control” the experiment.

The second type of parameter, so–called environmental parameter depends
on the environment at the time the experiment is performed. Some authors refer
to environmental parameters as “noise” parameters. Note, that environmental
parameters include measurement errors such as falsely calibrated measurement
instruments, inexact scales, scale reading errors, etc. Data preprocessing tech-
niques were developed to reduce this source of error, which occurs in nearly
every field setting. In some situations, environmental parameters can be treated
as having a given distribution that is characteristic for the given experimental
setup.

The third type of parameter, so–called model parameter describes the uncer-
tainty of the mathematical modeling. First, we have to take into account that
computer simulations require a model which simplifies the underlying real-world
scenario. Therefore, simulation results are only approximations of the corre-
sponding real-world data. Next, if stochastic (and not deterministic) simulations
are considered, the measurements may be exact (because there is no environmen-
tal noise), but some of the models’ parameters are random parameters. In some
cases, there is a known (subjective) distribution which describes this uncertainty.

As an example, we consider a sequence of traffic signals along a certain route
or elevators’ movements in high-rise buildings. Optimization via simulation sub-
sumes all problems in which the performance of the system is determined by
running a computer simulation. If the result of a simulation run is a random
variable, we cannot optimize the actual value of the simulation output, or a sin-
gular performance of the system. One goal of optimization via simulation may be
to optimize the expected performance. In addition, consider a field study which
was performed to validate the results from the computer simulation. This field
study includes environmental parameters.

8

Algorithm
design

[Population size]

Problem
design

Control
[Number of runs]

Environment
[Arrival rate]

Model
[Fitness function]

Fig. 3. Before an EA can be started, the optimization practitioner has to specify several
parameters. Examples are shown in brackets. Environmental and model parameters can
be affected by noise.

Summarizing, there are two fundamental sources of uncertainty (or noise)
that can be described by environmental and model parameters. Figure 3 illus-
trates these parameters in the context of algorithm and problem designs.

The efficiency of the evaluation and selection method is a crucial point, since
averaging over repeated runs reduces the efficiency of the optimization process.

The Impact of Noise on EAs Noise makes it difficult to compare different solu-
tions and select the better ones. Noise affects the selection process in evolutionary
algorithms: In every iteration, the best µ out of λ candidate solutions have to
be determined.

Wrong decisions can cause stagnation of the search process: Over-valuated
candidates—solutions that are only seemingly better—build a barrier around
the optimum and prevent convergence. Or, even worse, the search process can
be misguided: The selection of seemingly good candidates moves the search away
from the optimum. This phenomenon occurs if the noise level is high and the
probability of a correct selection is very small.

One may attempt to reduce the effect of noise explicitly (explicit averaging).
The simplest way to do so is to sample a solution’s function value n times, and
use the average as estimate for the true expected function value. This reduces the
standard deviation of the noise by a factor of

√
n, while increasing the running

time by a factor of n.
In contrast to explicit averaging, some authors proposed implicit averaging,

i.e., increasing the population size to cope with uncertainty in evolutionary opti-
mization. Theoretical results lead to contradictory recommendations: In [28] the
authors conclude that it is better to increase the population size whereas [29]
shows that increasing the sample size is advantageous.

Further means used by evolutionary algorithms to cope with noise are aver-
aging techniques based on statistical tests, local regression methods for function
value estimation, or methods to vary the population size [30–36]. Because uncer-

9

tainties complicate the selection process for direct search methods, some authors
suggested modified selection operators.

A Taxonomy of Selection Methods As introduced above, noise affects selection.
Following Bechhofer, Santner, and Goldsman [37] and Bartz-Beielstein [38], we
present a taxonomy of elementary selection methods. Depending on a priori
knowledge, selection schemes can be classified according to the following criteria:

Threshold: subset selection – indifference zone.
Termination: single stage – multi stage (sequential).
Sample size: open procedures – closed procedures.
Variances: known – unknown, equal – unequal.

The goal of subset selection is the identification of a subset containing the best

candidate. It is related to screening procedures. Subset selection is used when
analyzing results, whereas the indifference zone (IZ) approach is used when de-
signing experiments. The sample size is known in subset selection approaches, it
is determined prior to the experiments in the indifference zone approaches. Single
stage procedures can be distinguished from multi stage procedures. The terms
“multi stage” and “sequential” will be used synonymously. The latter can use
elimination: If inferior solutions are detected, they are eliminated immediately.
Selection procedures are closed, if prior to experimentation an upper bound is
placed on the number of observations to be taken from each candidate. Other-
wise, they are open. Furthermore, it is important to know whether the variance
is common or known. Bartz-Beielstein [38] discussed similarities and differences
of these approaches. He also analyzed threshold-based procedures, which were
successfully applied to noisy, dynamic functions, e.g., in elevator group control.
Threshold rejection increases the chance of rejecting a worse candidate at the
expense of accepting a good candidate. It might be adequate if there is a very
small probability of generating a good candidate.

How can the experimenter cope with this multitude of selection methods?
Surely, there is no general rule for the determination of the best selection method.
Many theoretical results consider simplified sources of uncertainty, e.g. they re-
gard environmental parameters as random with a distribution that is known.
Performing experiments in a systematic manner might be useful. Modern ap-
proaches such as racing or sequential parameter optimization (SPO) can be
recommended in this context [39, 40]. A typical result from an SPO analysis is
shown in Figure 4.

Regarding the classification from fig. 3, there two starting points to cope
with noise: (i) varying the algorithm design, e.g., choosing a modified selection
operator or (ii) modifying the problem design, e.g., refining the fitness function.
Evolutionary optimization itself can be considered as an evolutionary process.
Based on results from previous optimization runs, the experimenter may gain
insight into the behavior of the evolutionary algorithm and into the structure
of the problem as well. He is able to modify (improve) algorithm and problem
designs—black box situations turn into gray box situations. Combinations of

10

Fu
nc

tio
n

va
lu

e

2.5

2

1.5

1

0.5

x 104

0

−0.5
10

5 40

20

NU 0 0

NPARENTS

Fig. 4. SPO combines classical and modern statistical tools for the analysis of algo-
rithms. Modifying population size (NPARENTS) and selective pressure (NU) can im-
prove algorithm’s performance significantly. Evolution strategies with small population
sizes and moderate selective pressure perform best in this setting.

classical and evolutionary methods (meta heuristics) may be useful in these
situations.

Multiple Objectives For many problems of high practical interest in science
and engineering, several possibly contradicting objectives shall be pursued simul-
taneously. In daily life we are confronted with many examples. E.g. in chemical
process engineering, where the productivity of chemical reactors is in contrast
to their loss during the start up and shut down phases. In the textile industry,
a similar conflict arises for the production of fabrics. Figure 5 shows a simple
discrete example. Total elongation (F1) and extensibility (F2) of the fabric shall
be improved, by means of maximizing F1 and minimizing F2 . All objectives
are sufficiently defined and in this case pointwise quantifiable. Their values are
determined by three adjustable control factors (decision variables): Number of
knitting skewers (x1), number of knitting rows (x2) and number of weft threads
(x3) per inch. The challenge for a multi-objective optimization algorithm con-
sists of finding decision variable value sets that fulfill all objectives as well as
possible.

In this context, the Pareto [41] concept of optimality proved as suitable.
During the beginning of an optimization run, it is often not hard to find solu-
tions that simultaneously improve both objectives. However, if an objective can
be improved further only by worsening an other objective, a solution is called
Pareto-optimal. Due to different possible preferences concerning the single ob-
jectives, this leads to a set of Pareto-optimal solutions, each of them representing
a valid optimal solution for the multi-objective problem (MOP). Figure 5 shows

11

be
tte

r

To
ta

l
el

on
ga

tio
n

 F
1

six solutions in the decision variable space (a) and the objective space (b) for the
fabric improvement example. In this example, the decision variable space is dis-
crete and constrained as indicated by the surrounding solid line. Consequently,
there is only a finite number of possible objective value combinations. Direct
comparison of solutions 5 and 6 shows that the former improves on F1 without
changing F2 . According to the Pareto dominance concept, solution 5 dominates
solution 6. However, pairwise comparison of solutions 1 to 5 does not result in
recognizing any such domination as improvement in one objective always comes
along with worsening in the other. These solutions are therefore indifferent to
each other, hence incomparable or non-dominated. If due to problem-specific
constraints no further improvements can be obtained (solutions 1-5 are on the
border of the feasible region) the set of all non-dominated solutions represents
the Pareto Set in the decision space and the Pareto Front in the objective space.
Since in each case only one solution can be realized, preference information of a
decision maker (DM) must be used next to select the final solution of the MOP.

(a) Decision Space (b) Objective Space
5

5 6 4 6

feasible region 3
4

3

X3

X2 2
2

1 1

X1 Extensibility F2
better

Fig. 5. The Pareto-dominance concept. (a) Decision space, (b) objective space

Why Use Evolutionary Algorithms? Problems with several conflicting criteria
have been treated for many years, e.g. with a considerable variety of techniques
developed in Operational Research. Concise overviews of existing approaches can
be found in Achilles et al. [42] and Miettinen [43]. Usually one tries to reduce
the MOP into a single-objective problem, so that it can be solved by means of
methods from single-objective optimization. One possible approach consists of
choosing a single criterion as main objective, and transform the other objectives
to constraints with lower or upper bounds. Without specific knowledge of the
problem, the choice of concrete upper and lower bounds suffers from arbitrari-
ness. Alternatively, one may try aggregation-based approaches. These combine
all criteria into a single, parametrized one. The aggregation can be accomplished

12

by any combination of arithmetical operations (i.e. a weighted sum), according
to some understanding of the problem. However, these techniques have several
limitations. Some of them are e.g. susceptible to the shape (convex/concave) of
the Pareto front, others to its continuity (connected/disconnected). In addition,
most of the ‘conventional’ approaches are only able to compute one single non-
dominated solution per run. Searching for a representative set of non-dominated
solutions requires a restart with different external parameter settings and differ-
ent starting points for each run.

Evolutionary algorithms are robust search methods, whose success and failure
is by far less susceptible to the shape or the continuity of the Pareto front. Their
greatest advantage is that they are able to provide a point-wise approximation
of the whole Pareto front in one go by employing cooperative search of a whole
population.

Algorithm Design If one regards the development of the evolutionary multi-
objective (EMO) algorithms within the last two decades, then the rise of sug-
gested approaches is impressing. The largest well-known collection of existing
approaches was arranged by Coello Coello and contains over 1900 entries [44]. A
common classification of all EMO-algorithms comes from Masud [45]. Depending
on the time at which the preference information from the DM is used, four classes
can be differentiated: (i) Non-preference, (ii) a-priori, (iii) interactive, and (iv)
a-posteriori. In the following, this classification is not discussed in detail as most
EMO-algorithms can be assigned to the last category. The optimization pro-
cess takes place before any preference information is incorporated. This entails
a clear task definition: Find a representative set of non-dominated solutions as
close (convergence) as possible to the Pareto optimal set/front. Additionally, the
resulting approximation has to exhibit a good distribution of solutions in terms
of both spread and uniformity - usually described by the term of diversity. The
aim of this section is to give an overview of the main methods that have been
developed in order to achieve these goals.

Fitness Assignment When moving from single-objective to multi-objective op-
timization while applying EAs, the most important changes to be made concern
the selection operator and especially the fitness assignment. In EAs, the fittest
individuals have better chances to survive and reproduce. For single-objective
optimization, only one scalar fitness value exists. However, in the multi-objective
case we have to deal with a fitness vector. Since EAs need a scalar to work on,
generally two design decisions must be made: On the one hand, this vector must
be scaled to enable for EA selection, and on the other hand the two conflicting
tasks of convergence and diversity shall be respected. But how to assign the
fitness of an individual in order to express suitability towards both goals? We
can roughly divide the existing answers into two categories:

Combined Fitness Assignment: Fitness is assigned such that the fitness
value represents convergence and diversity at the same time.

Single Fitness Assignment: Fitness assignment respects only one goal. Usu-
ally, this is convergence, as in the single-objective case.

13

Aggregation-, performance-, and Pareto-based approaches belong to the first
category. Aggregation-based approaches are the most traditional as well as sim-
plest possibility. Recently, performance-based fitness assignment strategies are
successfully used to evaluate the fitness of a new individual in relation to the
entire population. For example, the S-metric selection (SMS)-EMOA utilizes the
well-known S-metric (hypervolume) to calculate the fitness of an individual. This
measure is commonly used to evaluate the performance of an EMOA. It respects
proximity to the Pareto front as well as diversity of the solution set.

Pareto-based approaches use the Pareto dominance concept itself for fitness
assignment. Differences between these approaches arise in the methods employed
to exploit the partial order. According to Zitzler et al. [46], this kind of infor-
mation can be divided into: (i) Dominance rank: The number of solutions in
the population that dominate the solution under consideration, (ii) dominance
count: The number of solutions in the population that are dominated by the
solution under consideration, and (iii) dominance depth: The rank of the solu-
tion in the non-dominated sorted population. The latter approach is utilized by
many successful algorithms, e.g. the Non-dominated Sorting Genetic Algorithm
(NSGA)-II by Deb and others [47]. Dominance rank was first employed by Fon-
seca and Fleming in their Pareto envelope-based algorithm (PESA) [48]. Today, a
multiplicity of methods are based on this principle, see for example Bosman and
Thierens [49]. Dominance depth and dominance rank are successfully combined
in the Strength Pareto Evolutionary Algorithm 2 (SPEA2) approach by Zitzler
and others [50].

However, most of these algorithms apply a secondary fitness assignment strat-
egy that serves the goal of diversity. In most cases they try to incorporate density
information into the selection process (mating/environmental), according to the
rule: The smaller the density of individuals within a neighborhood, the larger the
chance of an individual to reproduce. Figure 6 shows the three most frequently
used methods: Kernel-based, grid-based and nearest-neighborhood measures. Fit-
ness sharing, as e.g. used in NSGA, is a kernel-based strategy. The distance of an
individual to all other individuals in the population is calculated and summed
up. These values are then used to deflect the evolutionary search out of densely
populated regions. Grid-based techniques as e.g. utilized by the Pareto Archived
Evolution strategy (PAES) of Knowles and Corne [51], employ hypergrids to de-
fine neighborhoods within the objective space. The more individuals in a box,
the heavier they are penalized (see fig. 6). Nearest neighborhood techniques as
used in SPEA2 and its variants calculate the distance between an individual and
its nearest neighbor in order to estimate the neighborhood density.

Criterion-based approaches represent the second category of fitness assign-
ment strategies. They all share the same basic idea: The fitness value of an
individual is determined by only one of the criteria according to the goal of con-
vergence. However, the choice of a single criterion for any individual shall be
reconsidered repeatedly (in each generation). As thereby parts of the population
are selected according to different criteria, it is hoped that the goal of diversity
can be achieved indirectly (see Schaffer [52] and Laumanns and others [53]).

14

To
ta

l
el

on
ga

tio
n

grid−base

kernel−base

nearest neighbor

Extensibility

Fig. 6. Most common diversity preservation strategies in EMOA.

Representations and Variation Operators Design and analysis of representations
and corresponding genetic operators is prevalent in the field of evolutionary com-
putation. Often, an adept combination of all components determines the system’s
success or failure. This insight is ubiquitous in the case of single-objective opti-
mization. However, in multi-objective optimization, the conceptual approaches
are still mainly concerned with the selection operator. Research focusing on vari-
ation operators or representations remains rare. Some recent approaches are:
Rudolph [54] and Hanne [55] who investigate control mechanisms for the mu-
tation strength in the multi-objective case. Grimme and Schmitt [56] focus on
recombination operators that produce diverse offspring in each generation.

Elitism Elitism preserves previously attained good solutions from one generation
to the next. The prime example of an elitist algorithm in the single-objective
case is the ‘plus’-selection ES. In the multi-objective case two types of elitism
are used: Maintaining elitism in the current population, as is already done in
the single-objective case, or doing so in an archive (secondary population) that
stores non-dominated solutions externally. Archive contents may or may not be
integrated again into the optimization process (Zitzler and others [46]). Of vital
importance is the criterion used to control replacement of archive members, the
most commonly used of which is the dominance criterion. It leads to an archive
of non-dominated solutions, relative to all solutions generated during a run.

Future Perspectives As has been hinted to in the previous paragraphs, a lot
of work remains to be done on EMOAs. We briefly discuss the currently most
promising paths:

Investigating representations and variation operators: Büche and oth-

ers [57] show that the interaction between selection and search operators
is often not co-ordinated well, and that approximation of the Pareto front

15

cannot be done with arbitrary precision. Further on, there is the dilemma

of stagnation with good diversity of the solution set on the one hand, or
arbitrarily exact approximation of a few points on the Pareto front. We
conjecture that this trade-off between convergence and diversity can be at-
tributed to the fact that variation operators cannot simply be taken over
from the single-objective case and that changing only the selection operator
is not sufficient to meet the requirements of multi-objective optimization.

Focusing on the region of interest (ROI): In the last years, most EMO re-
searchers focus on algorithms that are able to find the whole Pareto front.
However, in practice, the decision maker is only interested in a specific region
of the Pareto-front. Focusing on a region derived from user preferences may
help to increase convergence speed and/or quality and also simplify solution
selection by the DM later on.

Parallelism: Considering the suitability of EAs working in a parallel manner,
one should expect that the development of parallel approaches stands only
at the beginning. Apart from first successful attempts to convert the state-
of-the-art algorithms into a parallel version [58], an increasing number of
parallel approaches has been published only recently [59, 60].

Parameter tuning: Attaining good parameter settings for a given problem-
algorithm combination currently is one of the hot topics in single-objective
optimization [38]. It is necessary to adapt those techniques for the multi-
objective case in order to avoid the commonly used manual parameter tuning
and provide important insight into parameter interactions.

Multimodal Problems Although, during the last decades, many empirical
and most of the theoretical studies in EC have been devoted to simple test prob-
lems with only one extremal point, the great majority of practical applications
requires optimization in far more complex fitness landscapes. Multimodality—
the presence of more than one locally optimal point—requires a shift from a
hill-climbing oriented towards a global perspective. At the top of the hill, the
need arises to somehow ’escape’ the associated local optimum. This may be done
in two different ways. Either, one tries to save as much positional and learned
(step sizes/mutation strengths) information as possible and, preserving this in-
formation, attempts to jump over the neighboring valleys. Or, one completely
gives up the current search space location and performs random initialization
again. For mutation strenghts getting larger and larger, the former scenario more
and more resembles the latter.

However, if the treated optimization problem is not available in a closed
algebraic form, detecting the arrival at a local optimum may not be trivial,
depending on the employed variable representation. Combinatorial and binary
encoded optimization problems come with a natural minimal step definition
which enables enumeration of the neighborhood. For real-valued representations,
eqn. 6 specifies a necessary and sufficient condition for a local optimum, with x∗ L

meaning its search space location, d(x, y) a distance metric, and E the maximal
distance to tested neighboring search points. Nevertheless, the bounded but still

16

infinite neighborhood cannot be completely explored efficiently and one has to

rely on the strong causality assumption (Rechenberg[61]: similar causes entail
similar effects) to identify local optima at least in probability.

x∗ L is local minimizer iff ∃E : ∀x ∈ X : d(x, x∗ L) < E ⇒ f (x∗ L) ≤ f (x) (6)

Strongly related to the notion of local optima is the one of basins of attrac-
tion; these emcompass the search space portion leading to an optimum if the
steepest descent is followed. For this local search process, efficient approxima-
tion methods are known, e.g. quasi-Newton algorithms. However, identification
of different basins is even more difficult than local optimum detection if no fur-
ther information regarding size and/or location of the basins is available. The
key property of multimodal optimization methods is thus how efficient they are
in finding the different search space regions that contain the best local optima.

Canonical population based EAs perform global and local search at the same
time, gradually narrowing their focus to the most promising regions, and more
sooner than later to a single basin of attraction (e.g. Preuss, Schönemann and
Emmerich [62]). From the discussion above, it becomes clear that the ability
to explore multiple promising regions—either concurrently or sequentially—is
decisive for obtaining well performing EA variants. But for a given limit of
available computational time, these always have to face the global vs. local search
tradeoff like any other global optimization algorithm.

One possible way to speedup local optimization, so that more effort can be
diverted to search space exploration, is to hybridize EAs with existing local
search methods. These approaches are subsumed under the term memetic algo-
rithms (MA) that was introduced by Moscato [63]. A recent overview is given
by Krasnogor and Smith [64], together with a suggested taxonomy.

Most other specialized EAs strive for enhanced global search capabilities by
means of at least one of the following three techniques:

Restarts are utilized to enhance the chance of reaching the/a basin of attraction

of the global optimum. As an example, an efficient restart CMA-ES for mul-
timodal problems has been suggested by Auger and Hansen [65]. Multistart
methods obtain potential solutions consecutively, and every new instantia-
tion may be provided with search results of completed previous runs. They
avoid the problem of jumping into a neighboring good region by giving up
the current search space location completely.

Diversity maintenance aims for a uniform distribution of individuals over
the whole search space. Comparing relative or absolute distances of solution
candidates and applying clustering methods are common means to prevent
overlapping search paths and promote good search space coverage. Diver-
sity may be held up explicitly or implicitly. Following Eiben and Smith [14],
explicit means that active measures are taken to model the distribution of
search points in the desired way, whereas implicit stands for deliberately
slowing down information exchange by restricting recombination or selec-

17

tion/replacement. Classical island models provide implicit diversity main-

tenance by building relatively independent subpopulations. Spatially struc-
tured EAs [66] do so by restricting the effect of recombination and selection
operators to the local neighborhood. Shifting balance GAs by Oppacher and
Wineberg [67] exemplify explicit diversity maintenance as they prevent sub-
population overlap which is measured by absolute population distances.

Niching methods also strive for a suitable spread of search points, only on the
level of basins of attraction. As Mahfoud [68] points out, it is the aim of nich-
ing algorithms to detect separate basins and keep them in focus of the search.
Unfortunately, basin identification within an EA is not easy and prone to
error, so that endogenously retrieved basin information is highly unreliable
and nonexistent when the optimization starts. Crowding by De Jong [69]
and fitness sharing by Goldberg and Richardson [70] are regarded as the
classical niching methods. The former employ relative, the latter absolute
distances. These have been carried further e.g. by Li et al. [71], Streichert et
al. [72], and Shir [73], but still the radii employed for detecting search points
located together in a basin remain problematic. Only few approaches inte-
grate fitness topology information into the basin identification process, e.g.
the universal evolutionary global optimizer (UEGO) by Jelasity [74], Ursem’s
multinational GA [75], and the sample-based crowding method proposed by
Ando et al. [76].

It shall be noted that solving multimodal problems is related to tackling

constrained or multiobjective ones. Removing constraints from a problem by
transforming it by means of (metric) penalty functions (see e.g. Michalewicz
and Schoenauer [77] and Coello Coello [78]) as commonly done in EC most
often leads to multimodal problems even if the original problem was unimodal.

In multi-objective optimization, the focus has been mainly on the objec-
tive space for a long time. Today, it becomes increasingly clear that population
movement in the decision (search) space heavily depends on the multimodal
search properties of the applied optimization algorithms (Preuss, Naujoks and
Rudolph [79]).

Conclusions May it be (or not) that one day there is no more need to invent
new optimization tools because we have got the best tailored ones already for
every possible real-world problem. May it be (or not) that then the dream of
hardliners has come true that all of these best tailored methods can abstain
from using pseudo random numbers for deciding upon the next iteration in the
search for the solution. But, contemporary tools are still well advised not to rely
on deterministic algorithms alone. That is, why an idea from the early days of
digital computers is still alive, i.e., the idea to mimic procedures found in nature
that obviously have led to remarkably effective systems or subsystems. One may
think that nature had enough time to achieve a good solution by means of pure
chance, but time has always been scarce when there are competitors, and the
way nature finds its way is much more sophisticated.

18

Anyway, it is a matter of fact that evolutionary algorithms have become
widely used in practice since their invention in the 1960s and even found their
way into articles in the field of theoretical computer science. Their domain of
application are ’black box’ situations, where the analysis of the situation at hand
does not help or is too costly or dangerous, i.e., in case of experimental design and
even computer simulation of nonlinear dynamic systems and processes. However,
situations may occur where the black box situations turn into gray or even white
box situations. EAs can be combined with classical methods which leads to m eta
heuristics, and the optimization practitioner can get the best from both worlds.

References

1. D.H. Wolpert and W.G. Macready. No free lunch theorems for optimization. IEEE
Transactions on Evolutionary Computation, 1(1):67–82, 1997.

2. M.H. Wright. Direct search methods: Once scorned, now respectable. In Proc. 1995
Dundee Biennial Conf. in Numerical Analysis), volume 344 of Pitman Res. Notes
Math. Ser., pages 191–208. CRC Press, Boca Raton, FL, 1995.

3. J.A. Nelder and R. Mead. A simplex method for function minimization. Computer
Journal, 7(4):308–313, 1965.

4. T.G. Kolda, R.M. Lewis, and V.J. Torczon. Optimization by direct search: New
perspectives on some classical and modern methods. SIAM Review, 45(3):385–482,
2003.

5. R. Motwani and P. Raghavan. Randomized algorithms. Cambridge University
Press, New York, 1995.

6. H.J. Bremermann. Optimization through evolution and recombination. In M.C.
Yovits, G.T. Jacobi, and G.D. Goldstein, editors, Self-Organizing Systems. Spartan
Books, Washington DC, 1962.

7. D.B. Fogel. Evolutionary Computation: The Fossil Record. Wiley–IEEE Press,
New York, 1998.

8. L.J. Fogel, A.J. Owens, and M.J. Walsh. Artificial intelligence through a simulation
of evolution. In A. Callahan, M. Maxfield, and L.J. Fogel, editors, Biophysics and
Cybernetic Systems. Spartan Books, Washington DC, 1965.

9. J.H. Holland. Genetic algorithms and the optimal allocation of trials. SIAM
Journal of Computing, 2(2):88–105, 1973.

10. I. Rechenberg. Evolutionsstrategie: Optimierung technischer Systeme nach Prinzip-
ien der biologischen Evolution. Frommann-Holzboog, Stuttgart, 1973.

11. H.-P. Schwefel. Evolutionsstrategie und numerische Optimierung. PhD thesis,
Department of Process Engineering, Technical University of Berlin, Germany, 1975.

12. J.R. Koza. Genetic Programming: On the Programming of Computers by Means
of Natural Selection. MIT Press. Cambridge, MA, 1992.

13. A.E. Eiben and M. Schoenauer. Evolutionary computing. Information Processing
Letters, 82(1):1–6, 2002.

14. A.E. Eiben and J.E. Smith. Introduction to Evolutionary Computing. Springer,
Berlin, 2003.

15. Th. Bäck, D. B. Fogel, and Z. Michalewicz, editors. Handbook of Evolutionary
Computation. Oxford University Press, New York, and Institute of Physics Publ.,
Bristol, 1997.

16. H.-P. Schwefel. Evolution and Optimum Seeking. Sixth-Generation Computer
Technology. Wiley Interscience, New York, 1995.

19

17. H.-P. Schwefel. Kybernetische Evolution als Strategie der exprimentellen Forschung
in der Strömungstechnik. Master’s thesis, Technical University of Berlin, Germany,
1965.

18. I. Rechenberg. Evolutionsstrategie: Optimierung technischer Systeme nach Prinzip-
ien der biologischen Evolution. PhD thesis, Department of Process Engineering,
Technical University of Berlin, Germany, 1971.

19. H.-P. Schwefel, G. Rudolph, and Th. Bäck. Contemporary evolution strategies.
In F. Morán, A. Moreno, J.J. Merelo, and P. Chacón, editors, Advances in Artifi-
cial Life – Proc. Third European Conf. Artificial Life (ECAL’95), pages 893–907.
Springer, Berlin, 1995.

20. H.-G. Beyer and H.-P. Schwefel. Evolution strategies – A comprehensive introduc-
tion. Natural Computing, 1:3–52, 2002.

21. H.-G. Beyer. Toward a theory of evolution strategies: On the benefit of sex – the
(µ/µ, λ)-theory. Evolutionary Computation, 3(1):81–111, 1995.

22. H.-P. Schwefel. Numerische Optimierung von Computer–Modellen mittels der Evo-
lutionsstrategie, volume 26 of Interdisciplinary Systems Research. Birkhäuser,
Basle, Switzerland, 1977.

23. Thomas Bäck and Hans-Paul Schwefel. Evolutionary algorithms: Some very old
strategies for optimization and adaptation. In D. Perret-Gallix, editor, New Com-
puting Techniques in Physics Research II, pages 247–254. World Scientific, Singa-
pore, 1992.

24. Hans-Paul Schwefel. Numerical Optimization of Computer Models. Wiley, Chich-
ester, 1981.

25. Hans-Paul Schwefel. Collective phenomena in evolutionary systems. In P. Check-
land and I. Kiss, editors, Problems of Constancy and Change – The Complemen-
tarity of Systems Approaches to Complexity, Proc. 31st Annual Meeting, volume 2,
pages 1025–1033. Int’l Soc. for General System Research, 1987.

26. Th. Bartz-Beielstein. Experimental analysis of evolution strategies— Overview and
comprehensive introduction. Interner Bericht des Sonderforschungsbereichs 531
Computational Intelligence CI–157/03, Universität Dortmund, Germany, 2003.

27. T.J. Santner, B.J. Williams, and W.I. Notz. The Design and Analysis of Computer
Experiments. Springer, Berlin, 2003.

28. Hans-Georg Beyer. Towards a theory of evolution strategies: Some asymptotical
results from the (1 + /, λ)-theory. Evolutionary Computation, 1(2):165–188, 1993.

29. J.M. Fitzpatrick and J.J. Grevenstette. Genetic algorithms in noisy environments.
Machine learning, 3:101–120, 1988.

30. P. Stagge. Averaging efficiently in the presence of noise. In A. Eiben, editor,
Parallel Problem Solving from Nature, PPSN V, pages 188–197. Springer, Berlin,
1998.

31. H.-G. Beyer. Evolutionary algorithms in noisy environments: Theoretical issues
and guidelines for practice. CMAME (Computer methods in applied mechanics
and engineering), 186:239–267, 2000.

32. Y. Sano and H. Kita. Optimization of Noisy Fitness Functions by Means of Ge-
netic Algorithms using History of Search. In M. Schoenauer, K. Deb, G. Rudolph,
X. Yao, E. Lutton, J.J. Merelo, and H.-P. Schwefel, editors, Parallel Problem Solv-
ing from Nature (PPSN VI), volume 1917 of LNCS, pages 571–580. Springer,
Berlin, 2000.

33. D.V. Arnold. Evolution strategies in noisy environments — A survey of exist-
ing work. In L. Kallel, B. Naudts, and A. Rogers, editors, Theoretical Aspects
of Evolutionary Computing, Natural Computing, pages 239–249. Springer, Berlin,
2001.

20

34. J. Branke, C. Schmidt, and H. Schmeck. Efficient fitness estimation in noisy en-
vironments. In L.Spector et al., editor, Proc. of the Genetic and Evolutionary
Computation Conference (GECCO’01), pages 243–250. Morgan Kaufmann, San
Francisco, 2001.

35. Th. Bartz-Beielstein and S. Markon. Tuning search algorithms for real-world appli-
cations: A regression tree based approach. In G. W. Greenwood, editor, Proc. 2004
Congress on Evolutionary Computation (CEC’04), Portland, OR, volume 1, pages
1111–1118. IEEE Press, Piscataway NJ, 2004.

36. Yaochu Jin and Jürgen Branke. Evolutionary optimization in uncertain environ-
ments - a survey. IEEE Transactions on Evolutionary Computation, 9(3):303–318,
JUN 2005.

37. R. E. Bechhofer, T. J. Santner, and D. M. Goldsman. Design and Analysis of
Experiments for Statistical Selection, Screening, and Multiple Comparisons. Wiley,
1995.

38. Th. Bartz-Beielstein. Experimental Research in Evolutionary Computation—The
New Experimentalism. Springer, Berlin, 2006.

39. M. Birattari, T. Stützle, L. Paquete, and K. Varrentrapp. A racing algorithm
for configuring metaheuristics. In W. B. Langdon et al., editor, GECCO 2002:
Proceedings of the Genetic and Evolutionary Computation Conference, pages 11–
18. Morgan Kaufmann, 2002.

40. Thomas Bartz-Beielstein, Christian Lasarczyk, and Mike Preuß. Sequential pa-
rameter optimization. In B. McKay et al., editors, Proceedings 2005 Congress on
Evolutionary Computation (CEC’05), Edinburgh, Scotland, volume 1, pages 773–
780, Piscataway NJ, 2005. IEEE Press.

41. V. Pareto. Cours d’Economie Politique 1. Lausanne, Rouge, 1896.
42. A. Achilles, K.H. Elster, and R. Nehse. Bibliographie zur Vektoroptimierung.

Math. Op. forsch. Stat., Ser. Optim. 10, (2), 1979.
43. K. Miettinen. Nonlinear Multiobjective Optimization. Int. series in operations

research and management science. Kluwer Academic Publishers, Boston, 1998.
44. C.A. Coello Coello. The EMOO repository: A resource for doing research in evolu-

tionary multiobjective optimization. IEEE Computational Intelligence Magazine,
1(1):37–45, 2006.

45. C.L. Hwang and A.S.M. Masud. Multiple Objective Descision Making – Meth-
ods and Applications: A State-of-the-Art Survey, volume 186 of Lecture Notes in
Economics and mathematical Systems. Springer, Berlin, 1979.

46. E. Zitzler, M. Laumanns, and S. Bleuler. A tutorial on evolutionary multiobjective
optimization. In Workshop on Multiple Objective Metaheuristics (MOMH 2002).
Springer, Berlin, 2003.

47. K. Deb, S. Agrawal, A. Pratap, and T. Meyarivan. A fast elitist non-dominated
sorting genetic algorithm for multi-objective optimisation: NSGA-II. In M. Schoe-
nauer, K. Deb, G. Rudolph, X. Yao, E. Lutton, J.J. Merelo, and H.-P. Schwefel,
editors, Proc. of the 6th Int’l Conf. on Parallel Problem Solving from Nature -
PPSN VI, volume 1917 of LNCS, pages 849–858. Springer, Berlin, 2000.

48. C.M. Fonseca and P.J. Fleming. On the performance assessment and comparison of
stochastic multiobjective optimizers. In H.-M. Voigt, W.-Ebeling, I. Rechenberg,
and H.-P. Schwefel, editors, Parallel Problem Solving from Nature - PPSN IV.
Springer, Berlin, 1996.

49. P.A.N. Bosman and D. Thierens. The naive MIDEA: A baseline multi-objective
EA. In C.A. Coello Coello, A. Hernández Aguirre, and E. Zitzler, editors,
Proc. Evolutionary Multi-Criterion Optimization: Third Int’l Conference (EMO
2005), volume 3410 of LNCS, pages 428–442. Springer, Berlin, 2005.

21

50. E. Zitzler, M. Laumanns, and L. Thiele. SPEA2: Improving the strength pareto
evolutionary algorithm for multiobjective optimization. In K.C. Giannakoglou,
D.T. Tsahalis, J. Periaux, K.D. Papailiou, and T. Fogarty, editors, Evolution-
ary Methods for Design, Optimization and Control with Applications to Industrial
Problems, pages 1–6. International Center for Numerical Methods in Engineer-
ing(CIMNE), Barcelona, 2001.

51. J. Knowles and D. Corne. The pareto archived evolution strategy: A new baseline
algorithm for pareto multiobjective optimisation. In P.J. Angeline, Z. Michalewicz,
M. Schoenauer, X. Yao, and A. Zalzala, editors, Proc. Congress on Evolutionary
Computation, (CEC’99), volume 1, pages 98–105. IEEE Press, Washington DC,
1999.

52. J.D. Schaffer. Multiple Objective Optimization with Vector Evaluated Genetic Al-
gorithms. PhD thesis, Vanderbilt University, 1984.

53. M. Laumanns, G. Rudolph, and H.-P. Schwefel. A spatial predator-prey approach
to multi-objective optimization: A preliminary study. In A. E. Eiben, M. Schoe-
nauer, and H.-P. Schwefel, editors, Parallel Problem Solving From Nature — PPSN
V, pages 241–249, Amsterdam, Holland, 1998. Springer, Berlin.

54. G. Rudolph. On a multi–objective evolutionary algorithm and its convergence to
the Pareto set. In D.B. Fogel, H.-P. Schwefel, Th. Bäck, and X. Yao, editors,
Proc. Fifth IEEE Conf. Evolutionary Computation (ICEC’98), Anchorage AK,
pages 511–516. IEEE Press, Piscataway NJ, 1998.

55. T. Hanne. On the convergence of multiobjective evolutionary algorithms. European
Journal Of Operational Research, 117(3):553–564, 1999.

56. C. Grimme and K. Schmitt. Inside a predator-prey model for multi-objective op-
timization: A second study. In H.-G. Beyer et al., editor, Proc. Genetic and Evo-
lutionary Computation Conf. (GECCO 2006), Seattle WA, pages 707–714. ACM
Press, New York, 2006.

57. D. Büche, S. Müller, and P. Koumoutsakos. Self-adaptation for multi-objective
evolutionray algorithms. In C. M. Fonseca, P. J. Fleming, E. Zitzler, K. Deb, and
L. Thiele, editors, Evolutionary Multi-Criterion Optimization, Second Int.’l Conf.,
(EMO 2003), number 2632 in LNCS, pages 267–281. Springer, Berlin, 2003.

58. T. Okuda, T. Hiroyasu, M. Miki, and S. Watanabe. DCMOGA: Distributed Coop-
eration model of Multi-Objective Genetic Algorithm. In MPSN - II, The Second
Workshop on Multiobjective Problem Solving from Nature, Granada, 2002.

59. J.L.A. Coello and C.A. Coello. MRMOGA: Parallel evolutionary multiobjective
optimization using multiple resolutions. In D. Corne et al., editor, Proc. 2005 IEEE
Congress on Evolutionary Computation, (CEC 2005), volume 3, pages 2294–2301.
IEEE Press, 2005.

60. J. Mehnen, Th. Michelitsch, K. Schmitt, and T. Kohlen. pMOHypEA: Paral-
lel evolutionary multiobjective optimization using hypergraphs. Technical Report
of the Collaborative Research Centre 531 Computational Intelligence CI–189/04,
University of Dortmund, 2004.

61. Ingo Rechenberg. Evolution strategy—nature’s way of optimization. In H. W.
Bergmann, editor, Optimization: Methods and Applications, Possibilities and Lim-
itations. Springer, Berlin, 1989.

62. M. Preuss, L. Schönemann, and M. Emmerich. Counteracting genetic drift and
disruptive recombination in (µ +, λ)-ea on multimodal fitness landscapes. In H.-
G. Beyer, editor, Proc. 2005 Conf. on Genetic and Evolutionary Eomputation,
(GECCO 2005), pages 865–872. ACM Press, New York, 2005.

22

63. P. Moscato. On Evolution, Search, Optimization, Genetic Algorithms and Martial
Arts: Towards Memetic Algorithms. Technical Report Caltech Concurrent Com-
putation Program, Report. 826, California Institute of Technology, Pasadena, CA,
1989.

64. N. Krasnogor and J.E. Smith. A tutorial for competent memetic algorithms: Model,
taxonomy and design issues. IEEE Transactions on Evolutionary Computation,
5(9):474–488, 2005.

65. A. Auger and N. Hansen. A restart CMA evolution strategy with increasing pop-
ulation size. In B. McKay et al., editors, Proc. 2005 Congress on Evolutionary
Computation (CEC’05), Edinburgh, Scotland, volume 2, pages 1769–1776. IEEE
Press, Piscataway NJ, 2005.

66. M. Tomassini. Spatially Structured Evolutionary Algorithms Artificial Evolution in
Space and Time. Natural Computing Series. Springer, Berlin, 2005.

67. F. Oppacher and M. Wineberg. The shifting balance genetic algorithm: Improving
the GA in a dynamic environment. In W. Banzhaf, J. Daida, A. E. Eiben, M. H.
Garzon, V. Honavar, M. Jakiela, and R. E. Smith, editors, Proc. Genetic and
Evolutionary Computation Conf. (GECCO 1999), Orlando FL, volume 1, pages
504–510. Morgan Kaufmann, San Francisco, 1999.

68. S.W. Mahfoud. Niching Methods for Genetic Algorithms. PhD thesis, University
of Illinois at Urbana Champaign, 1995.

69. K.A. De Jong. An analysis of the behavior of a class of genetic adaptive systems.
PhD thesis, University of Michigan, 1975.

70. D.E. Goldberg and J. Richardson. Genetic algorithms with sharing for multimodal
function optimization. In Proc. of the Second Int’l Conf. on Genetic Algorithms
on Genetic Algorithms and Their Application, pages 41–49. Lawrence Erlbaum
Associates, Inc., Mahwah, NJ, 1987.

71. J.-P. Li, M.E. Balazs, G.T. Parks, and P.J. Clarkson. A species conserving ge-
netic algorithm for multimodal function optimization. Evolutionary Computation,
10(3):207–234, 2002.

72. F. Streichert, G. Stein, H. Ulmer, and A. Zell. A clustering based niching method
for evolutionary algorithms. In E. Cantú-Paz, editor, Proc. 2003 Conf. on Genetic
and Evolutionary Computation, (GECCO 2003), pages 644–645. Springer, Berlin,
2003.

73. O.M. Shir. Niching in evolution strategies. In H.-G. Beyer, editor, Proc. 2005
Conf. on Genetic and Evolutionary Computation, (GECCO 2005), pages 865–872,
New York, 2005. ACM Press, New York.

74. M. Jelasity. UEGO, an abstract niching technique for global optimization. In
A. E. Eiben, Th. Bäck, M. Schoenauer, and H.-P. Schwefel, editors, Proc. Parallel
Problem Solving from Nature – PPSN V, Amsterdam, pages 378–387. Springer,
Berlin, 1998.

75. R.K. Ursem. Multinational evolutionary algorithms. In P.J. Angeline, editor,
Proc. of the Congress of Evolutionary Computation (CEC-99), volume 3, pages
1633–1640. IEEE Press, Piscataway, NJ, 1999.

76. S. Ando, E. Suzuki, and S. Kobayashi. Sample-based crowding method for multi-
modal optimization in continuous domain. In B. McKay et al., editor, Proc. 2005
Congress on Evolutionary Computation (CEC’05), Edinburgh, Scotland, volume 2,
pages 1867–1874. IEEE Press, Piscataway NJ, 2005.

77. Z. Michalewicz and M. Schoenauer. Evolutionary algorithms for constrained pa-
rameter optimization problems. Evolutionary Computation, 4(1):1–32, 1996.

23

78. C.A. Coello Coello. Theoretical and numerical constraint-handling techniques used
with evolutionary algorithms: A survey of the state of the art. Computer Methods
in Applied Mechanics and Engineering, 191(11–12):1245–1287, 2002.

79. M. Preuss, B. Naujoks, and G. Rudolph. Pareto set and EMOA behavior for simple
multimodal multiobjective functions. In Th.Ph. Runarsson et al., editor, Parallel
Problem Solving from Nature (PPSN IX), volume 4193 of LNCS, pages 513–522.
Springer, Berlin, 2006.

