
Preface

Computational systems inspired by nature are often analyzed experimentally and
principled methods can make this analysis reliable and effective. Severe require-
ments have been transmitted to draw objective conclusions from computational
experiments. At the same time profitable ways of looking into the data are used
to improve the design and configuration of the computational systems. The quest
for these methods is spawning a considerable amount of research integrating and
expanding existing work in the field of statistics.

The contributions to the workshop mainly exploit an interesting and impor-
tant link between optimization of stochastic algorithms and model-based analysis
in simulation and production engineering. Several issues within the model-based
approach require to be understood and adapted to the particular context. Model
validation and data transformation are two of them that received particular at-
tention at the workshop.

The first contribution, written by Tobias Wagner, considers an interesting
and important link between model-based analysis and optimization of stochas-
tic algorithms and the experiment-based optimization of processes in production
engineering. Bernd Bischl, Olaf Mersmann, and Heike Trautmann present and
compare resampling strategies as methods for model validation. Simon Wess-
ing and Tobias Wagner demonstrate that a rank transformation of the data
before the modeling and aggregation improves the mean performance of the
sequential parameter optimization (SPO). An example from pratice concludes
these proceedings: Patrick Koch, Wolfgang Konen, Oliver Flasch, and Thomas
Bartz-Beielstein present how parameter tuning can be applied in the context of
stormwater prediction.

We wish to thank all authors and reviewers for their contributions and fruit-
ful discussions. We hope that these proceedings constitute a further small step
forward in the setting up of a methodology and related software.

September 2010 The organizing committee
WEMACS 2010

Organization

WEMACS 2010 was organized jointly to the International Conference on Parallel
Problem Solving From Nature (PPSN 2010)

Organizing Committee

Thomas Bartz-Beielstein, Cologne University of Applied Sciences
Marco Chiarandini, University of Southern Denmark
Lúıs Paquete, University of Coimbra, Portugal
Mike Preuss, TU Dortmund, Germany

Advisory Board

Mauro Birattari, Université Libre de Bruxelles
Juergen Branke, University of Warwick

Dimo Brockhoff, INRIA Saclay Île-de-France
Gusz Eiben, Vrije Universiteit Amsterdam
Carlos Fonseca, Universidade do Algarve
David Ginsbourger, Universität Bern
Yuri Goegebeur, Syddansk Universitet
Wolfgang Konen, Cologne University of Applied Sciences
Jörn Mehnen, Cranfield University
Boris Naujoks, TU Dortmund
Ruxandra Stoean, Universitatea din Craiova
Heike Trautmann, TU Dortmund

Table of Contents

A Subjective Review of the State of the Art in Model-Based Parameter
Tuning . 1

Tobias Wagner

Resampling Methods in Model Validation . 14
Bernd Bischl, Olaf Mersmann, and Heike Trautmann

A Rank Transformation Can Improve Sequential Parameter Optimization 32
Simon Wessing and Tobias Wagner

Optimizing Support Vector Machines for Stormwater Prediction 47
Patrick Koch, Wolfgang Konen, Oliver Flasch, and Thomas Bartz-
Beielstein

A Subjective Review of the State of the Art in
Model-Based Parameter Tuning

Tobias Wagner

Institute of Machining Technology (ISF), TU Dortmund
Baroper Straße 301, 44227 Dortmund, Germany

wagner@isf.de, http://www.isf.de

Abstract. Over recent years, the model-based parameter tuning of com-
putational systems has become an emergent research topic. When the
considered systems are subject of stochastic effects, the parameter tun-
ing can be seen as a noisy optimization task, as often faced in production
engineering. In this paper, the current research on parameter optimiza-
tion is discussed based on experiences from an engineering background.
An extended framework of important steps in a model-based parameter-
tuning procedure is proposed which enhances known frameworks with
data transformation and model validation steps. For each step, refer-
ences to important literature are provided and topics for future research
are identified.

Keywords: Design and Analysis of Computer Experiments (DACE),
Expected Improvement (EI), Sequential Parameter Optimization (SPO)

1 Introduction

The model-based analysis and optimization of computational systems which are
subject to stochastic (uncontrollable) effects, i. e. noise, is closely related to the
experiment-based optimization of processes in production engineering. In both
scenarios, the objective function, e. g., the response of the system to a specific
design, cannot be determined exactly. Thus, certainty about the true quality of
a design can only be obtained by repeating the corresponding experiment and
performing an estimation of the distribution of the responses. As another im-
portant factor, an efficient use of experiments is necessary since each experiment
is expensive. Consequently, sequential model-based approaches which use the
information of previous experiments for the determination of new design points
are popular in both disciplines.

Nevertheless, important differences between model-based parameter opti-
mization of computational systems and production-engineering processes exist.
While the main cost factor of computer experiments is the computational run-
time, real experiments in production engineering also produce costs for the ma-
chines, the tools, and the operator. The increase of computational power and the
use of parallelization allow high number of runs for each design to be conducted
when analyzing computational systems. In contrast, only a very small number of

2 T. Wagner

validation experiments is possible for production-engineering problems. Conse-
quently, the focus of the research on parameter optimization for computational
systems in the last years has been on effective, but robust schemes for identify-
ing the current best design [15, 17, 18]. Unfortunately, the application of these
approaches for applications in production engineering is not possible since the
experimental budget N ist strictly limited, i. e., N < 50 in most cases. The main
aim in this scenario is the detection and validation of a single design in the vicin-
ity of the optimum. Therefore, more effort is spent on the effective generation
of accurate surrogate models [35, 37], on the validation of these models [6], and
on specific criteria for the model-based sequential optimization [25, 26, 36].

In this paper, the findings in both application areas, computational systems
and production engineering, are brought together in an extended framework for
model-based parameter optimization. The steps of the framework are reviewed
and open research questions are discussed. Before the extended framework is
proposed, the terms, definitions, and methods used therein are introduced. In
this context, also references to important literature are provided. Based on these
basics, the framework is presented and discussed. Conclusions are drawn and an
outlook on further research is provided.

2 Basics

The initial situation for parameter tuning turns out to be a classical optimization
problem minx∈X f(x).1 X is called space of allowable parameter settings [15] or
design space. Consequently, a vector x ∈ X is denoted as parameter setting or
design. It contains specific settings for each tuning parameter xi, i = 1, . . . , n.
The design space X is often bounded by box constraints li ≤ xi ≤ ui which define

the region of interest (bounds) B =

(
l1 · · · ln
u1 · · · un

)
=

(
l
u

)
. The corresponding

value of the objective function y(x) is evaluated by conducting experiments on a
set of test instances T . In the frequently analyzed case of parameter tuning for
optimization algorithms, T comprises a set of test functions and a target quality
or a runtime budget. In machining experiments, T can be seen as a specification
of the geometry to be machined and the tool to be used. Based on the outcome
of the experiment, a response y, e. g., runtime or final solution quality of a
computational system or the material volume that can be machined before the
tool is worn, can be derived. Based on stochastic effects in the algorithm or
problem instance and uncontrollable environmental effects during the process,
the actual objective value of a design can only be evaluated as y = y(x) + ε,
where ε can be denoted as random error or noise of an evaluation.

An empirical surrogate model M is based on the available sets of designs
D = (xT1 , . . . ,x

T
k)T and responses y = (y1, . . . , yk)T and approximates the ac-

tual objective function y(x). In this paper, the discussion only focuses on sur-
rogate models as used in the Design and Analysis of Computer Experiments

1 Minimization problems are considered in this paper. Maximization problems can be
transformed to corresponding minimization problems minx∈X−f(x).

Model-Based Parameter Tuning – A Review 3

(DACE) [28, 29]. These models consider each of the k responses as produced by

the model yj = f(xj)
Tβ+Z(xj), j = 1, . . . , k, where f(x) = (f1(x), . . . , fp(x))

T

are monomial regression functions, e. g., x1, x22, or sin(x3), β = (β1, . . . , βp)
T is

p-dimensional vector of corresponding regression coefficients, and Z(x) is a zero-
mean (centered) stationary Gaussian process (GP) with dependencies specified
by the covariance Cov{Z(xj1), Z(xj2)} = σ2

Zr(xj1 ,xj2) for a known correlation
function r and a process variance σ2

Z . It can be shown [29] that the best predictor
ŷ(x) for a design x with respect to the mean squared prediction error is

ŷ(x) = f(x)T β̂︸ ︷︷ ︸
regression function

+ r(x)
T
R−1 (y − Fβ̂)︸ ︷︷ ︸

observed residuals

, (1)

where β̂ =
(
FTR−1F

)−1
FTR−1y are the regression coefficients estimated in

the sense of least squares and F = (f(x1) · · · f(xk))
T

is the k × p matrix of
regression function values for each of the k designs. Analogously, the vector
r(x) = (r(x,x1), . . . , r(x,xk))

T
of correlations between x and the already evalu-

ated designs and the k × k intercorrelation matrix R = (r(x1) · · · r(xk)) are de-
fined in terms of the correlation function r. From the definition in equation (1),
it can be seen that the prediction of the model is improved by an estimation of
the corresponding residual to the regression function based on a linear combina-
tion of the residuals already observed, where the weight of each residual depends
on the correlation with the evaluated design x. Usually, a constant regression
function f(x) = β1 and the most general correlation model

r(xj1 ,xj2) = exp

(
−

n∑
i=1

θi|xj1,i − xj2,i|pi
)

(2)

of Sacks et al. [28] are used. The model parameters θ and p control the slope and
the smoothness of the correlation function and allow a wide range of functional
relations to be modeled. Thus, no assumptions on the underlying process are
postulated a-priori. In many parameter tuning applications [2, 15], the exponents
are fixed to pi = 2, leading to an infinite times differentiable model M.

Based on the strength of the correlations r(x) and the process variance σ2
Z ,

also the corresponding uncertainty

ŝ(x) =

√
σ2
Z

(
1− r(x)TR−1r(x) +

(1− 1TR−1r(x))2

1TR−11

)
(3)

of a prediction ŷ(x) can be computed.2 The stochastic output of the experiments
can be considered by means of the so-called nugget effect [14, 30]. The nugget
cnugget scales down the correlation function r by multiplying it with (1− cnugget)
and thereby avoids the exact interpolation of the observations. The influence
of outliers is relaxed and a smoother model can be computed. Moreover, the

2 The formula is shown for the constant regression function f(x) = β1. Nevertheless,
the uncertainty ŝ(x) can also be computed for more complex regression functions.

4 T. Wagner

Algorithm 1: Extended framework for model-based parameter optimiza-
tion
Require: T {set of test instances}

B {region of interest (box constraints)}
N {experimental budget}
Ninit {size of the initial design set}
rinit {initial number of runs per design}

1: D = generateInitialDesign(B, Ninit) {choose initial design}
2: Y = runDesign(D, rinit) {perform experiments}
3: while entries(Y) < N do

4: Ỹ = transformLocal(Y) {transformation of the responses}
5: [y, s] = aggregateRuns(Ỹ) {calculate performance and corresponding std.}
6: [ỹ, s̃] = transformGlobal(y, s) {transformation of the performance}
7: M = fitModel(D, ỹ, s̃) {fit surrogate model of the response}
8: Q = validateModel(M,D, ỹ, s̃) {validate surrogate model of the response}
9: [x∗, y∗] = defineCurrentBest(y, s,Y,M) {decide on output design}

10: xnew = modelOptimization(M, y∗) {find promising design points}
11: r = adjustRunsPerDesign() {determine number of runs for new design}
12: D = concatenate(D,xnew) {add new design point}
13: Y = concatenate(Y, runDesign(xnew, r)) {evaluate new design point}
14: end while
15: return M, x∗, y∗ {return model, best design point, and its performance}

uncertainty of already evaluated designs is no longer zero since the weighted
correlation of a solution with itself (1− cnugget)r(x,x) is smaller than one. This
effect can be used to integrate the uncertainty of an evaluation into the model.
The single factor cnugget is then replaced by a vector of nugget factors for each
observation [24].3

3 Discussion

The extended framework for model-based parameter optimization is shown in
Algorithm 7. In the following, current realizations of the steps in the framework
are summarized and discussed. Implementations of some of these realizations are
available in the Sequential Parameter Optimization Toolbox (SPOT) [1, 3].

3.1 Pre-experimental planning and the choice of input parameters

The set of test instances T and the region of interest B have already been intro-
duced in the previous section. Whereas a meaningful selection of test instances
and runtime budgets is a crucial point in the assessment of optimization algo-
rithms [16, 34], the surrounding conditions of a specific process of interest are

3 The formulas of Picheny et al. [13, 24] are based on covariances in spite of correla-
tions.

Model-Based Parameter Tuning – A Review 5

usually known. More specific, the main interest in the former is the design of the
system and its assessment versus other competing systems. Therefore, a good
parameterization is necessary for the competitiveness of the algorithm. In the
latter, the comparison between different processes is rarely of interest. The aim
of the model-based optimization is to find a suitable setting for the available
machines and tools in the given experimental budget N .

In cases where no experiences about the analyzed system exist, a statistical
screening using fractional factorial design should be conducted before the tuning
parameters and the region of interest are defined [23]. Unfortunately, this is only
rarely the case in the analysis of computational systems [27]. It has been shown
that a dimensionality-reduction is important when using DACE models, whose
correlation function mainly depends on the distance between designs [33]. In
this context, also the use of transformations of the tuning parameters should
be considered. DACE models are relying on a stationary GP, i. e., a constant
activity of the response over the considered domain. However, a change of the
population size from µ = 1 to µ = 10 surely has a bigger effect on the response
compared to change from µ = 100 to µ = 110. The change of the magnitude of
the parameter is more important than the change in the absolute value. Thus,
a logarithmic transformation is suitable (see, e. g. [5]). Whenever some theoretic
knowledge on suitable parameters exist, e. g., a mutation rate should be pm =
1/n, where n is the dimension of the problem, this knowledge should be used
for the transformation. Applied to the mutation rate, the tuning parameter pm
could be substituted by m > 0 with pm = n−m. These transformations often
significantly improve the quality of the surrogate models.

3.2 The initial design

In order to compute an initial surrogate model, which can then be used for the
sequential determination of new design points, a design set has to be evaluated
a-priori. In this context, the following questions arise:

1. What kind of experimental design should be chosen?
2. How many different designs Ninit should be evaluated?
3. How many replications of each design rinit should be performed?

Over the last years, many studies have been conducted in order to provide an-
swers for these questions [4, 6, 8, 15, 16, 21, 22, 29]. Unfortunately, the amount
of significant results is rather low. Koehler and Owen provide an overview of the-
oretical results for many different types of designs. However, these results do not
provide direct recommendations for the choice of the initial design. It is generally
assumed that space-filling designs, such as Latin hypercube sampling (LHS) [22],
are superior to factorial or central composite designs [8] for estimating a DACE
model, but comparative studies [15, 22, 29] can only conclude that LHS is supe-
rior to random sampling, and even this holds only in most cases. Nevertheless,
LHS are used in almost all popular DACE-based approaches [2, 20].

Since LHS is a very general framework, different optimization criteria for
Latin hypercube designs exist [19]. The entropy criterion e(D) = det R is directly

6 T. Wagner

related to the information for the correlation matrix R obtained by the design.
It can be computed based on fixed model parameters θ and p. For an isotropic
model θ1 = . . . = θn and p1 = . . . = pn, the entropy criterion results in a
design optimizing the minmax-criterion. If some evidence on the importance of
the different tuning parameters exist, e. g., by conducting a parameter screening
before the model-based optimization, these importances can also be considered
by adjusting the values of θi, whereby a higher θ results in a higher importance
of the corresponding tuning parameter.

With respect to the second question, the recommendation Ninit ≈ 10n was
established [20]. It has been shown that this number produces good predictions
also for noisy responses [6]. More recent studies have shown that even Ninit < 10n
can produce good results in a sequential optimization given that the modeled
response is not too bumpy [4, 16]. A lower bound for the size of the initial design
should be the number of model parameters, i. e., Ninit ≥ 2n + 1 for a model
with the power exponential correlation kernel (equation 2) and a nugget factor
cnugget. A solution to the problem of local overfitting for small initial designs [16]
is offered by an adaptive choice of the criterion for determining the next design.
This is discussed in subsection 3.6. For the initial number of runs of each design
rinit, a low number rinit ≤ 3 is recommended [4]. In particular, some studies
indicate that the budget for the initial design should be completely allocated to
exploration, i. e., rinit = 1 [6, 13].

3.3 Transformations of the response

In classical statistics, transformations are common means to adjust the experi-
mental data in order to obtain a better agreement with the assumptions of the
modeling methods, e.,̇g., normality, linearity, or stationary variance. For DACE,
in particular the logarithmic transformation is used for improving the fit of the
model [15, 18, 20]. The use of this transformation is motivated by better re-
sults after a complete sequential optimization. Despite the applicability of the
logarithmic transformation seeming to hold for many types of parameter tuning
problems [15], a closer look at the actual benefit of the transformation would
increase understanding.

In classical approaches, the data of all runs, independently of having the
same design x, are used to fit the surrogate model [14, 20]. Consequently, only
one transformation can be performed. It has recently been shown that an a-
priori aggregation of the runs and a transformation of the aggregated responses
allows more performance indices to be realized and models to be computed ef-
ficiently [15]. However, with regard to the assumptions behind the aggregation
and behind the surrogate model, different targets have to be accomplished by
the transformation. Consequently, two different transformation steps are distin-
guished in the extended framework.

In the first step, the data over different runs of a parameter setting has to
be aggregated into a response or performance value. When a parametric index
such as the mean of the runs is desired, an approximately gaussian distribution
of results is required. This is especially important when the uncertainty of the

Model-Based Parameter Tuning – A Review 7

Fig. 1: Incorporation of a mean-variance-relationship by using a homoscedastic model
on a logarithmic transformation of the response.

model (equation 3) is directly related to the uncertainty of the response [13, 14,
24]. To accomplish this precondition, a power transform (also known as Box-Cox
technique) [7] or rank transform [9] can be used.

In the second step, the aggregated response can be transformed again in
order to improve the prediction quality of the surrogate model. As mentioned
before, the logarithmic transformation has shown to be suitable in the context of
parameter tuning of optimization algorithms. This is not only due to an improved
prediction [15], but also due to the usually existing mean-variance-relationship,
i. e., a positive correlation of the aggregated response y and the corresponding
measurement noise ε [5]. Based on a logarithmic transformation, this effect can
be modelled using homoscedastic DACE models with a constant nugget cnugget.
An example of a homoscedastic model of an induction heating process using
a logarithmic transformation, which is computed based on three independent
thermocouple measurements, is shown in Fig. 1 [35].

3.4 Fitting and validating the model

The determination of the parameters θ and p in equation 2 is usually termed
model fitting. To accomplish this, maximum likelihood estimation (MLE), i. e.,
the optimization of the term σ2

Z det R has become the state of the art. If non-
interpolating models with strictly positive uncertainties for already evaluated
designs are desired, also cnugget can be determined by MLE [14]. Compared to an
evaluation based on resampling strategies, such as leave-one-out cross-validation
(CV) [20, 32], it is more efficient and has shown to produce better models in most
of my engineering applications. However, MLE can provide bad estimations for
small sample sizes [12] and noisy data. In former studies, it has been shown
that DACE models allowing pi ≤ 2 and using only a constant regression term
f(x) = β1 are often superior to models using a quadratic regression function and
pi = 2 [6].

Even when some authors state that noise-free DACE models can be used for
the modeling of the aggregated responses [2, 15], it has to be noted that the

8 T. Wagner

Fig. 2: Comparison of the predictions of interpolating (left) and non-interpolating
(right) DACE models.

aggregated response is still subject to error in the estimation; in particular when
the performance index is computed based on a small sample.4 This has to be
considered when choosing the modeling approach. In Fig. 2, a one-dimensional
test functions is modeled based on 10 designs with corresponding noisy responses.
Whereas the interpolating model clearly shows overfitting and an overestimation
of the activity θ, the non-interpolating model provides predictions much closer
to the true function. Moreover, the estimation of the uncertainty reflects the
variation in the estimation of the true response.

In contrast to production engineering, the surrogate models used for the
sequential determination of designs in parameter tuning are usually not validated
– though this has been recommended from the beginning [20]. Based on a CV
of the surrogate model, the prediction quality of the model can be evaluated,
and if required, transformations of the response can be performed or further
exploratory designs can be added. The validation of the model is particularly
important when the model is used to determine the current best solution [14]. In
the example shown in Fig. 2, the coefficient of determination is R2

CV = 0.26 for
the interpolating model and R2

CV = 0.46 for the non-interpolating model.5 Thus,
the validation agrees with the true quality of the model. Empirical studies have
shown that a good fit in the cross-validation usually ensures a good prediction
quality [6, 32]. Nevertheless, it has to be noted that a validation based on CV is
only suitable when the model parameters were not fit using CV.

3.5 Who is the current best?

After all designs have been evaluated, usually two decisions have to be made.
The first one is about validation experiments of the currently best design, the

4 Given a random sample of size n with independent observations, the standard error
of the estimated arithmetic mean is σε/n, where σε is the standard deviation of the
different runs of a design. For the estimation of the standard error of nonparametric
aggregated responses, resampling strategies like bootstrapping [10] can be used [5].

5 R2
CV is determined based on CV since R2 = 1 for interpolating DACE models.

Model-Based Parameter Tuning – A Review 9

second one about the evaluation of new design points. Based on recent stud-
ies [15, 18, 24], it is accepted that the first decision is made based on the avail-
able evaluations, whereas the second one is made based on an optimization of
the surrogate model. In all these approaches, the objective of both decisions is
the identification of the solution being the minimizer of the considered aggrega-
tion. However, when comparing different algorithms, algorithm A is accepted as
superior to algorithm B only when the difference between the result distributions
of both algorithms is significant. In order to significantly detect a difference δ in
the means which is equal to the standard deviation σε of the results based on a
paired t-test, at least r = 50 runs of each algorithm are necessary [11]. Conse-
quently, a significant discrimination of the actually best design for a stochastic
optimization algorithm is almost impossible based on the available runtime bud-
get. With respect to the efficiency of the parameter tuning procedure, it may be
sufficient to find a design that is not significantly worse to the unknown optimal
design based on a reasonable number of runs r ≈ 30, i. e., δ = 1.5σε. Neverthe-
less, the best design x∗ returned should be validated with the highest number
of runs over all evaluated designs [15].

3.6 Sequential design – The role of the infill criterion

In the phase of the sequential design, both informations provided by the model,
the prediction of the aggregated response and the corresponding uncertainty, are
used to determine new designs for evaluation. For a model-based internal opti-
mization, the scalarization of these information into an optimization criterion,
the so-called infill criterion [30], is required. Sequential Parameter Optimization
(SPO) [2] uses a generalized form of the expected improvement (EI) criterion [31]

EI(x) = (y∗ − ŷ(x))Φ(u(x)) + ŝ(x)φ(u(x)), u(x) =
y∗ − ŷ(x)

ŝ(x)
, (4)

which puts more emphasis on the predicted uncertainty ŝ(x). In general, the
EI is used for an automated balancing between local exploitation and global
exploration on deterministic global optimization problems [20]. Although the EI
and its variants are also considering a global exploration of the search space,
they are based on a strong confidence in the predictions of ŷ(x) and ŝ(x). Thus,
whenever the model quality is poor, e. g., due too bumpy responses and a too
small initial sample, the EI can lead to a local overfitting of the model [16].
As already mentioned in subsection 3.4, a cross-validation of the model can
indicate such situations, providing the chance to adaptively choose the infill
criterion. In cases of poor model quality, exploratory infill criteria, such as the
entropy criterion [19] or the maximization of the minimal distance to other
designs can be used. The entropy criterion still relies on a reasonable estimation
of the correlation parameter vectors θ and p, where the second criterion can be
used when the model is completely infeasible.

Even in cases where the model quality with respect to the predictions ŷ
is fine, say R2

CV > 0.5, many conceptual problems can occur when applied to

10 T. Wagner

problems with stochastic responses. A good discussion of the roles of y∗ and ŷ
has already been published [24]. In brief, the exact y∗ of the already evaluated
designs is not known (cf. subsection 3.5) and the true response y(x) and the
evaluated response y are not necessarily the same. Nevertheless, the role of ŝ is
even more critical. When an interpolating DACE model is used, the noise in the
estimation of the response leads to an overestimation of the activity parameters,
as shown in Fig. 2. This effect becomes extreme if two neighboring designs are
evaluated with considerably different responses due to the stochastic effects [5].
It leads to huge confidence intervals of equal spread σZ , where no correlation to
other solutions exist. Consequently, only the prediction ŷ can be used to guide
the optimization. For non-interpolating DACE models, two possible scenarios
exist. When a homoscedastic model with a single nugget factor cnugget is used,
the prediction is likely to be surrounded by a confidence interval of constant
width (1 − cnugget)σZ , as shown in Fig. 2 (right). By a-priori applying a loga-
rithmic transformation, even a proportional mean-variance-relationship can be
included in the model (cf. Fig.1). However, still the EI is mainly depended on the
prediction ŷ. Therefore, the only variant of DACE models where both compo-
nents of the EI can show a complex interaction is the heteroscedastic case with
a vector of noise variances for each response, but even in this case conceptual
problems exist. The noise variance is the second moment of the response. Its
estimation is much harder than the one of the aggregated response itself. Since
the uncertainty is still expressed in terms of the standard deviation of a normal
distribution, transformations to approximate normality are required. Moreover,
the EI would emphasize on high uncertainties. Usually, robust solutions with low
variance are desired.

A recent approach that tackles most of the conceptual problems of the stan-
dard EI is presented by Picheny et al. [24]. They use a heteroscedastic DACE
model for considering the noise variance, i. e., the accuracy, of each response.
By these means, the uncertainty of the model is not longer only related to the
uncertainty of the prediction, but rather to the uncertainty of evaluation.6 By
taking a β-quantile for β ≥ 0.5 as aggregation criterion, a favor for low vari-
ances can be introduced. Moreover, they propose an automated method for the
determination of the computation time spent on a new design xnew based on the
evolution of the EI of this design with increasing accuracy of evaluation. This
adaptive increasing of evaluations for promising designs is called intensification
and will be topic of the following subsection.

3.7 Intensification

In current versions of SPO, the number of evaluations for new designs is increased
with the iterations. First, this increase was multiplicative rnew = 2rold [2], later
it was adjusted to an additive increase rnew = rold + 1 [3]. Moreover, adaptive

6 The noise variance used in the model is not equal to the variance σε of the different
runs of a design. It is related to the standard error in estimating the true aggregated
response y(x) (cf. subsection 3.4) and can be decreased by further replications of x.

Model-Based Parameter Tuning – A Review 11

approaches for the choice of r based on statistical tests [4] and heuristics [18, 24]
have been proposed. All adaptive approaches aim at a reduction of runs for new
designs which early show to be inferior to the current best design.

4 Conclusion and Outlook

In this paper, the state of the art in model-based parameter tuning was criti-
cally discussed and an extended framework of steps in a sequential parameter
optimization (SPO) procedure was proposed. Compared to recent SPO variants,
this framework also includes steps of data transformation and model validation.
For each step of the framework, a subjective classification of recent approaches
was made and basic ideas for new methods were presented.

Based on the classifaction of recent approaches, topics for future research
were identified. In particular, the aim of the application of an SPO-procedure
has to be specified more clearly. Is it really desired to find the design x∗ that
provides the best objective value on the true, but unknown, underlying objective
y(x) or is it already satisfying to obtain a design that is at least competive with
this design based on statistical tests on a reasonable number of runs, say r = 30.
Based on the agreement on the aim of SPO, suitable infill criteria should be
designed. The commonly used expected improvement criterion was shown to
have some weaknesses when applied to noisy responses.

Acknowledgments. This paper is based on investigations of the collaborative
research center SFB/TR TRR 30, which is kindly supported by the Deutsche
Forschungsgemeinschaft (DFG).

References

1. Bartz-Beielstein, T.: SPOT: An R package for automatic and interactive tuning
of optimization algorithms by sequential parameter optimization. ArXiv e-prints
1006(4645B) (2010), http://arxiv.org/abs/1006.4645v1

2. Bartz-Beielstein, T., Lasarczyk, C., Preuß, M.: Sequential parameter optimization.
In: McKay, B., et al. (eds.) Proc. 2005 IEEE Congress on Evolutionary Computa-
tion (CEC 2005). pp. 773–780. IEEE press, US (2005)

3. Bartz-Beielstein, T., Lasarczyk, C., Preuß, M.: SPOT Sequential Parameter Op-
timization Toolbox (2009), http://www.gm.fh-koeln.de/imperia/md/content/

personen/lehrende/bartz_beielstein_thomas/spotdoc.pdf

4. Bartz-Beielstein, T., Preuß, M.: Considerations of budget allocation for sequential
parameter optimization (SPO). In: Paquete, L., et al. (eds.) Proc. Workshop on
Empirical Methods for the Analysis of Algorithms (EMAA 2006). pp. 35–40 (2006)

5. Biermann, D., Joliet, R., Michelitsch, T., Wagner, T.: Sequential parameter op-
timization of an evolution strategy for the design of mold temperature control
systems. In: Fogel, G., Ishibuchi, H., et al. (eds.) Proc. 2010 IEEE Congress on
Evolutionary Computation (CEC 2010). IEEE Press, US (2010)

12 T. Wagner

6. Biermann, D., Weinert, K., Wagner, T.: Model-based optimization revisited: To-
wards real-world processes. In: Michalewicz, Z., Reynolds, R.G. (eds.) Proc. 2008
IEEE Congress on Evolutionary Computation (CEC 2008). pp. 2980–2987. IEEE
Press, US (2008)

7. Box, G.E.P., Cox, D.R.: An analysis of transformations. Royal Statistical Society,
Series B 26(2), 211–252 (1964)

8. Bursztyn, D., Steinberg, D.M.: Comparison of designs for computer experiments.
Statistical Planning and Inference 136(3), 1103–1119 (2006)

9. Conover, W.J., Iman, R.L.: Rank transformations as a bridge between parametric
and nonparametric statistics. American Statistician 35(3), 124–129 (1981)

10. Efron, B.: Bootstrap methods: Another look at the jackknife. Annals of Statistics
7(1), 1–26 (1979)

11. Ferris, C., Grubbs, F., Weaver, C.: Operating characteristics for the common statis-
tical tests of significance. Annals of Mathematical Statistics 17(2), 178–197 (1946)

12. Ginsbourger, D., Dupuy, D., Badea, A., Roustant, O., Carraro, L.: A note on
the choice and the estimation of kriging models for the analysis of deterministic
computer experiments. Applied Stochastic Models for Business and Industry 29(2),
115–131 (2009)

13. Ginsbourger, D., Picheny, V., Roustant, O., Richet, Y.: Kriging with heterogeneous
nugget effect for the approximation of noisy simulators with tunable fidelity. In:
Proc. Joint Meeting of the Statistical Society of Canada and the Société Francaise
de Statistique (2008)

14. Huang, D., Allen, T.T., Notz, W.I., Zheng, N.: Global optimization of stochastic
black-box systems via sequential kriging meta-models. Global Optimization 34(4),
441–466 (2006)

15. Hutter, F., Bartz-Beielstein, T., Hoos, H.H., Leyton-Brown, K., Murphy, K.: Se-
quential model-based parameter optimisation: an experimental investigation of au-
tomated and interactive approaches. In: Bartz-Beielstein, T., Chiarandini, M., Pa-
quete, L., Preuß, M. (eds.) Empirical Methods for the Analysis of Optimization
Algorithms, pp. 361–411. Springer, Berlin Heidelberg (2010)

16. Hutter, F., Hoos, H.H., Leyton-Brown, K.: Tradeoffs in the empirical evaluation
of competing algorithm designs. Annals of Mathematics and Artificial Intelligence
57(3–4) (2010)

17. Hutter, F., Hoos, H.H., Leyton-Brown, K., Murphy, K.: Time-bounded sequential
parameter optimization. In: Blum, C., Battiti, R. (eds.) Proc. Conf. Learning and
Intelligent Optimization (LION 4). pp. 281–298. Springer, Berlin Heidelberg (2010)

18. Hutter, F., Hoos, H.H., Leyton-Brown, K., Murphy, K.P.: An experimental inves-
tigation of model-based parameter optimisation: SPO and beyond. In: Raidl, G.,
et al. (eds.) Proc. Genetic and Evolutionary Computation Conf. (GECCO 2009).
pp. 271–278. ACM, New York, NY (2009)

19. Jin, R., Chen, W., Sudjianto, A.: An efficient algorithm for constructing optimal
design of computer experiments. Statistical Planning and Inference 134(1), 268–287
(2005)

20. Jones, D.R., Schonlau, M., Welch, W.J.: Efficient global optimization of expensive
black-box functions. Global Optimization 13(4), 455–492 (1998)

21. Koehler, J.R., Owen, A.B.: Computer experiments. In: Ghosh, S., Rao, C.R. (eds.)
Handbook of Statistics, vol. 13, pp. 261–308. Elsevier, New York, NY (1996)

22. McKay, M.D., Conover, W.J., Beckman, R.J.: A comparison of three methods for
selecting values of input variables in the analysis of output from a computer code.
Technometrics 21(1), 239–245 (1979)

Model-Based Parameter Tuning – A Review 13

23. Montgomery, D.C.: Design and Analysis of Experiments. John Wiley and Sons,
New York, 4. edn. (1997)

24. Picheny, V., Ginsbourger, D., Richet, Y.: Noisy expected improvement and on-
line computation time allocation for the optimization of simulators with tunable
fidelity. In: Rodrigues, H., et al. (eds.) Proc. Conf. Engineering Optimization (Eng-
Opt 2010) (2010)

25. Ponweiser, W., Wagner, T., Biermann, D., Vincze, M.: Multiobjective optimization
on a limited amount of evaluations using model-assisted S-metric selection. In:
Rudolph, G., et al. (eds.) Proc. 10th Int’l Conf. Parallel Problem Solving from
Nature (PPSN X). pp. 784–794. Springer, Berlin Heidelberg (2008)

26. Ponweiser, W., Wagner, T., Vincze, M.: Clustered multiple generalized ex-
pected improvement: A novel infill sampling criterion for surrogate models. In:
Michalewicz, Z., Reynolds, R.G. (eds.) Proc. 2008 IEEE Congress on Evolutionary
Computation (CEC 2008). pp. 3514–3521. IEEE Press, US (2008)

27. Ridge, E., Kudenko, D.: Screening the parameters affecting heuristic performance.
In: Thierens, D., et al. (eds.) Proc. Genetic and Evolutionary Computation Conf.
(GECCO 2007). p. 180. ACM, New York, NY (2007)

28. Sacks, J., Welch, W.J., Mitchell, T.J., Wynn, H.P.: Design and analysis of computer
experiments. Statistical Science 4(4), 409–435 (1989)

29. Santner, T.J., Williams, B.J., Notz, W.: The Design and Analysis of Computer
Experiments. Springer, New York, NY (2003)

30. Sasena, M.J.: Flexibility and Effciency Enhancements for Constrained Global De-
sign Optimization with Kriging Approximations. Ph.D. thesis, University of Michi-
gan (2002)

31. Schonlau, M., Welch, W.J., Jones, D.R.: Global versus local search in constrained
optimization of computer models. In: Rosenberger, W.F., Flournoy, N., Wong,
W.K. (eds.) New Developments and Applications in Experimental Design, vol. 34,
pp. 11–25. Institute of Mathematical Statistics, Hayward, CA (1997)

32. Tenne, Y., Armfield, S.W.: Metamodel accuracy assessment in evolutionary opti-
mization. In: Michalewicz, Z., Reynolds, R.G. (eds.) Proc. 2008 IEEE Congress on
Evolutionary Computation (CEC 2008). pp. 1505–1512. IEEE Press, US (2008)

33. Tenne, Y., Izui, K., Nishiwaki, S.: Dimensionality-reduction frameworks for compu-
tationally expensive problems. In: Fogel, G., Ishibuchi, H. (eds.) Proc. 2010 IEEE
Congress on Evolutionary Computation (CEC 2010). IEEE Press, US (2010)

34. Trautmann, H., Wagner, T., Naujoks, B., Preuß, M., J.Mehnen: Statistical methods
for convergence detection of multi-objective evolutionary algorithms. Evolutionary
Computation 17(4), 493–509 (2009)

35. Wagner, T., Bröcker, C., Saba, N., Biermann, D., Matzenmiller, A., Steinhoff, K.:
Modelling of a thermomechanically coupled forming process based on functional
outputs from a finite element analysis and from experimental measurements. Ad-
vances in Statistical Analysis (AStA) 94(4) (2010)

36. Wagner, T., Emmerich, M., Deutz, A., Ponweiser, W.: On expected-improvement
criteria for model-based multi-objective optimization. In: Schaefer, R., Cotta, C.,
Kolodziej, J., Rudolph, G. (eds.) Proc. 11th Int’l Conf. Parallel Problem Solving
from Nature (PPSN XI). Springer, Berlin Heidelberg (2010)

37. Wagner, T., Passmann, D., Weinert, K., Biermann, D., Bledzki, A.K.: Efficient
modeling and optimization of the property gradation of self-reinforced polypropy-
lene sheets within a thermo-mechanical compaction process. In: Teti, R. (ed.) Proc.
6th CIRP Int’l Conf. Intelligent Computation in Manufacturing Engineering (CIRP
ICME ’08). pp. 447–452. Edizione Ziino, C. mare di Stabia, Italy (2008)

Resampling Methods in Model Validation

Bernd Bischl, Olaf Mersmann, and Heike Trautmann

TU Dortmund University, Dortmund, Germany
{bischl, olafm, trautmann}@statistik.tu-dortmund.de

Abstract. Meta modeling has become a crucial tool in solving expen-
sive optimization problems. Much of the work in the past has focused on
finding a good regression method to model the fitness functions. Exam-
ples of such methods include classical linear regression, splines, neural
networks, kriging and support vector regression. This paper specifically
draws attention to the fact that the model accuracy is a crucial aspect
in the meta modeling framework. Resampling strategies such as cross-
validation, subsampling, bootstrapping and nested resampling are promi-
nent methods for model validation and are systematically discussed with
respect to possible pitfalls, shortcomings and specific features.

Keywords: resampling, meta models, model validation, cross-validation, boot-
strap, subsampling, nested resampling, regression

1 Introduction

Many real-world continuous optimization problems are of a complex nature
which often requires expensive fitness function evaluations or computationally
intensive simulations in case the functions cannot be provided explicitly in ana-
lytical form (black-box optimization). Approximations, often called meta models,
are an important means to reduce the computational effort by fitting a regres-
sion function based on a number of evaluated design points, in particular when
the required number of explicit fitness evaluations should be kept as small as
possible.

A comprehensive overview of meta-modeling techniques with respect to evo-
lutionary computation and multiobjective optimization in general is given in [22],
[41], [25] and [31]. A detailed discussion of these methods, however, is beyond
the scope of this paper. Most prominent approaches are polynomial models resp.
response surface analysis [29], kriging together with the expected improvement
approach (e.g. [21]), for example used for algorithm parameter tuning in the
well-known framework of sequential parameter optimization (SPO, [3]), neural
networks (e.g. [32]) or support vector regression (e.g. [47], [5]).

Meta modeling strategies can be implemented by constructing a global meta-
model based on initial data points (offline data sampling), e.g. generated by an
experimental design, and replacing the fitness function by the meta-model for
the whole optimization process. However, in general the meta model should be

Resampling Techniques 15

used in combination with the original fitness function in order to control the
convergence to the meta model optimum which does not necessarily coincide
with the optimum of the original fitness function. Different strategies for this so-
called evolution control exist [22]. By these means the meta model as well can be
updated sequentially during optimization (online data sampling). In addition, in-
teractive approaches combining the explicit function and the meta model can be
employed where local meta models are estimated using progressively generated
evaluations of the explicit function (e.g. [46], [15]). In multiobjective evolution-
ary optimization meta models play an important role in pre-screening points
based on their predicted values and confidence of these predictions (e.g. [15]). A
comparative study of different approaches is given in [42].

The key aspect, however, is that the meta model will always only approximate
the original problem [23], which possibly leads to bias, wide confidence bands
and also error in the obtained optimum, properties that cannot be neglected in
evaluating a modeling approach. Resampling methods can be efficiently used for
the following purposes:

Accuracy assessment of a given meta model: Clearly, a meta model with-
out sufficient accuracy should not be used for optimization as biased results
will be generated which will not have any relevance for the problem at hand.
This stresses the importance of a systematic model validation which indi-
cates the reliability and accuracy of the estimated model. In case the current
meta model does not fulfill the requirements, possible alternatives are either
a model update based on additional values obtained by more fitness function
evaluations or using a different, possibly less complex, modeling technique.

Model selection: In many cases several model classes are candidates for fit-
ting the desired meta model. Resampling methods and the related accuracy
assessment efficiently support the selection process of the most appropriate
and reliable model type. It should be noted, that it is usually advisable to
choose a less complex model in order to achieve good results with the de-
sired small sample sizes since more complex models usually require larger
data sets to be sufficiently accurate.

Tuning of hyperparameters: Most modeling strategies require the setting of
so-called hyperparameters (e.g. the parameters of the covariance kernel in
kriging). Thus, a tuning of the hyperparameters is desired to determine the
settings leading to highest model quality which can be evaluated using the
discussed resampling techniques.

Unfortunately, not much attention has been given to model accuracy assess-
ment in the evolutionary computation field so far. It is a somewhat disregarded
topic, except from the comprehensive survey in [41]. In the following, model
quality is solely reflected by model accuracy, which in our view is the most rel-
evant aspect, although other aspects of model quality could also be relevant
in some settings. For example, in the early stages of an optimization process, a
smooth model might be considered more appropriate than a rough model since it
will provide sufficient information to drive the optimization process and simul-
taneously diminishes the probability of being stuck in local optima. However,

16 LNCS: B. Bischl, O. Mersmann, H. Trautmann

smoothing an accurate but rough model provides this possibility as well and can
at the same time in its accurate form be used at the end of the optimization
process. Also one should take into account that being able to interpret a meta
model is often seen as an important benefit that other optimization techniques
lack (e.g. see [37]). A model that is merely helpful in controlling the optimiza-
tion but does approximate the true structure of the data generating process well
enough might therefore mislead one to draw wrong conclusions in a later stage
of analysis.

P
re

d
ic

ti
o
n

er
ro

r

Model complexity

Test Sample

Training Sample

High Bias

Low Variance

Low Bias

High Variance

Fig. 1: With increasing model complexity overfitting on the training set becomes more
likely [19].

The focus of this paper therefore is on stressing the importance of evaluating
model accuracy in meta model optimization together with providing related
practical guidelines and recommendations. We thoroughly discuss state of the
art approaches with respect to their advantages and shortcomings. However, we
do not claim to provide a comprehensive model validation approach covering all
optimization specific aspects in general.

An overview of the most important resampling techniques for model valida-
tion such as cross validation, bootstrapping, subsampling and nested resampling
as a combination of the former approaches is available in sections 2 and 3. Guide-
lines are presented for choosing an adequate resampling technique suitable for
small sample sizes resulting from a small number of fitness evaluations. In section
4, specific attention is drawn to a discussion of potential pitfalls and important
assumptions that have to be fulfilled. Conclusions are drawn in section 5. All
of these methods and most of the comments are generally applicable for any
regression or classification setting in machine learning, and for comparison some
remarks are made regarding the latter.

Resampling Techniques 17

D = {d1, d2, d3, . . . , dn}

D(1)

s(1)

D(2)

s(2)

D(3)

s(3)

S = {s(1), s(2), s(3), . . . , s(k)}

p(1) . . . p(m)

· · ·

· · ·

D(k)

s(k)

Fig. 2: Generic resampling scheme. A model validation function takes a training set
(D(i)) and an accompanying test set (D \ D(i)). Different generators for the data
subsets D(i) are cross-validation, bootstrapping or subsampling. S equals the set of
aggregrated loss function values which are again aggregated by performance measures
p(i).

2 Basic Resampling Techniques and Statistical Properties

Assume we are given a fitness function f , a set of points from the parameter space
of f and the associated function values. Denote these by {d1, d2, d3, . . . , dn} = D,
where di = (xi, yi) is a vector of covariates xi and associated function values
yi = f(xi). Our aim now is to find a meta model which approximates f using

the information contained in D, i.e. we want to fit a regression function f̂D to
our data D.

Now the question arises, how well our model f̂D approximates the real fitness
function f . This requires the definition of an appropriate loss function L(y, f̂(x)).

For regression this will be the squared loss (y − f̂(x))2 or the absolute loss

|y− f̂(x)|, if robustness is required with respect to outliers. These loss values are
aggregated by the mean to form the mean squared error (MSE) and the mean
absolute error (MAE).

One naive way to assess the quality of our model would be to measure the
losses on the data we used for fitting. This generally cannot work, as the error
measure will be optimistically biased in this setting, see fig. 1. In fact, for some
models, it will always be zero, e.g. imagine an interpolating spline. One way to
rectify this is to split the data into a training set Dtrain and a corresponding
test set Dtest such that Dtrain ∪ Dtest = D and Dtrain ∩ Dtest = ∅. One would
then train the model on Dtrain to obtain f̂Dtrain

and calculate its performance
measure using the data points in Dtest. This approach called the hold-out or
test set method is very easy to implement and to work with from a statistical
perspective, as the test set observations are completely independent from the
training observations.

Still two important problems remain: A large data set D is required, since we
need enough data in the training set to build an adequate model, but also enough
samples in the test set to get statistically valid performance results. These large

18 LNCS: B. Bischl, O. Mersmann, H. Trautmann

amount of samples will usually not be available if evaluating f is expensive. Also,
one will not detect variance and model instability due to changes in the training
set. Some models, especially more complex1, nonlinear ones, might produce very
different results even when the training data only slightly change.

Algorithm 2: Generic resampling

input : A dataset D of n observations d1 to dn, the number of subsets k to
generate and a loss function L.

output: Summary of the validation statistics.
1 Generate k subsets of D named D(1) to D(k)

2 S ← ∅
3 for i← 1 to k do

4 D̄(i) ← D \D(i)

5 f̂ ← FitModel (D(i))

6 si ←
∑

(x,y)∈D̄(i)

L(y, f̂(x))

7 S ← S ∪ {si}
8 Summarize S

To deal with this situation, resampling techniques have been developed. All
of these techniques repeatedly generate training and test sets from the data set at
hand, fit a model to each training set and judge its quality on the corresponding
test set (and possibly also on the training set). This general framework is depicted
in Fig. 2. In the next three subsections we will introduce three different methods
to generate these training/test pairs and will show how to estimate performance
values.

2.1 Cross-validation

Cross-validation (CV) [38] is probably one of the oldest resampling techniques.
Like all other methods presented in this paper it uses the generic resampling
strategy as described in Alg. 2. The k subsets (line 1 of Alg. 2) are generated
according to Alg. 3. The idea is to divide the dataset into k equally sized blocks
and then use k−1 blocks to fit the model and validate it on the remaining block.
This is done for all possible combinations of k − 1 of the k blocks. The k blocks
are usually called folds in the cross-validation literature. So a cross-validation
with k = 10 would be called a 10 fold cross-validation. Usual choices for k are
5, 10 and n.

1 Note that although we use model complexity informally in this text, different rig-
orous definitions of this notion exist, among them VC dimension and Rademacher
complexity [2].

Resampling Techniques 19

Algorithm 3: Subsets for k-fold

CV.

input : A dataset D of n
observations d1 to dn and
the number of subsets k to
generate.

output: k subsets of D named D(1)

to D(k).
1 D ← Shuffle (D)
2 for i← 1 to k do

3 D(i) ← D

4 for j ← 1 to n do
5 i← (j mod k) + 1

6 D(i) ← D(i) \ {dj}

Algorithm 4: Subsets for

bootstrap.

input : A dataset D of n
observations d1 to dn and
the number of subsets k to
generate.

output: k subsets of D named D(1)

to D(k).
1 for i← 1 to k do

2 D(i) ← ∅
3 for j ← 1 to n do
4 d← RandomElement (D)

5 D(i) ← D(i) ∪ {d}

This last case of k = n is also referred to as leave-one-out cross-validation
(LOOCV) because the model is fitted on the subsets of D which arise if we
leave out exactly one observation. In general this is computationally hard but
for certain classes of models the LOOCV estimate can be calculated efficiently.
Examples include linear regression [45], splines [43], support vector regression [9]
and kriging models [40].

2.2 Bootstrap

The development of the bootstrap resampling strategy [12] is almost as old as
the idea of cross-validation. Again Alg. 2 is the basis of the method, but the k
subsets are generated using Alg. 4. Here k is usually chosen much larger than in
the CV case. Values of k = 100 up to k = 1000 are not uncommon and there is
practically no upper limit on k2 .

The subset generation is based on the idea that instead of sampling from
D without replacement, as done in the CV case, we sample with replacement.
One of the advantages of this approach is that the size of the training set, in
the bootstrap literature often also called the in bag observations, is equal to
the actual data set size. On the other hand this entails that some observations
can and likely will be present multiple times in the training set D(i). In fact,
asymptotically only about 1−e−1 ≈ 63.2% of the data points in D will be present
in the training set [12]. The remaining ≈ 36.8% of observations are called out of
bag and form the test set as in CV.

The fact that some observations are present multiple times in the training
set can be problematic for some meta modeling techniques. Several approaches
have been proposed to deal with this. Most add a small amount of random noise
to the observations. For details see [12].

2 Do note, that there are nn different bootstrap samples. So for very small n there are
limits to the number of bootstrap samples you can generate.

20 LNCS: B. Bischl, O. Mersmann, H. Trautmann

Another effect of adding some observations multiple times to the training set
is that we overemphasize their importance, called oversampling. This leads to
an estimation bias for our validation statistic since all data points in the test
set are now, in some sense, outliers. A first attempt to counter this was the so
called .632 bootstrap procedure by [13]. Here the estimated error of the model is
a weighted average of the error on the training set and the test set. The fallacy
in this approach is that some modeling techniques will always have an error of
0 on the training set. An example of such a method would be an interpolating
spline.

Algorithm 5: .632+ bootstrap

input : A dataset D of n observations d1 to dn, the number of subsets k to
generate and a loss function L.

output: k values of the validation statistic.
1 Generate k subsets of D named D(1) to D(k)

2 S ← ∅
3 for i← 1 to k do

4 D̄(i) ← D \D(i)

5 f̂ ← FitModel (D(i))

6 γ̂ ← 1
n2

n∑
p,q=1

L(yp, f̂(xq))

7 sin ← 1
n2

∑
(x,y)∈D(i)

L(y, f̂(x))

8 sout ← 1
n2

∑
(x,y)∈D̄(i)

L(y, f̂(x))

9 R̂← sout−sin
γ̂−sin

10 ŵ ← 0.632

1−0.368R̂

11 si ← (1− ŵ)sin
i + ŵsout

i

12 S ← S ∪ {si}

To counter this, Efron proposed a further variant of the bootstrap named
the .632+ bootstrap (see [14]). This strategy is a bit more involved and deviates
somewhat from the framework proposed in Alg. 2. The details are given in Alg. 5.
The main difference here is, that instead of fixed weights, as in the .632 bootstrap,
the weights are calculated for each model to reflect how well the model can
reproduce the training set.

The k subsets of D are again generated using Alg. 4. Then, as in the general
framework, the model f̂ is calculated in line 5. Line 6, 7, 9 and 10 are new. In line
6 the loss is estimated for the hypothetical case that our model has no predictive
power. This is done by calculating the loss for each possible combination of x
and y from D. Because there is now no direct dependence between x and y,
the loss one observes tells us something about the error rate the model would
achieve even if there was no link between x and y, i.e. our function was pure

Resampling Techniques 21

noise. This quantity γ̂ is called the no-information error rate. Using this and
the in-bag error rate from line 7, as well as the usual out-of-bag error rate from
line 8 the relative overfitting rate R̂ is calculated in line 9. R̂ lies between 0 and
1. If R̂ = 1, then the model is completely overfitted, i.e. it only has predictive
power on the training set. If R̂ is almost 0 on the other hand, then f̂ has great
predictive power on the test set and we can use the error on the training set to
increase the accuracy of our error estimate. The final performance criterion is
the weighted average of the in-bag and out-of-bag error rates as calculated in
line 11 using the weight derived in line 10 from the relative overfitting rate.

2.3 Subsampling

Subsampling (SS) is very similar to the classical bootstrap. The only difference is
that observations are drawn from D without replacement. Therefore the training
set has to be smaller than D or no observations would remain for the test set.
Usual choices for the subsampling rate |D(i)|/|D| are 4/5 or 9/10. This corre-
sponds to the usual number of folds in cross-validation (k = 5 or k = 10). Like
in bootstrapping, k has to be selected a-priori by the user. Choices for k are also
similar to bootstrapping, e.g. in the range of 100 to 1000.

Algorithm 6: Subset generation algorithm for subsampling.

input : A dataset D of n observations d1 to dn, the number of subsets k to
generate and the subsampling rate r.

output: k subsets of D named D(1) to D(k).
1 m← br|D|c
2 for i← 1 to k do
3 D′ ← D

4 D(i) ← ∅
5 for j ← 1 to m do
6 d← RandomElement (D′)

7 D(i) ← D(i) ∪ {d}
8 D′ ← D′ \ {d}

2.4 Further methods

Many variants, extensions and combinations of the above algorithms exist, which
we cannot all present as comprehensively as the standard methods presented in
the previous section. Some examples of these methods are:

Repeated cross-validation: (REPCV) performs a usual k-fold CV multiple
times and aggregates the results (normally by the mean) to reduce the vari-
ance of randomly splitting the data.

22 LNCS: B. Bischl, O. Mersmann, H. Trautmann

Bootstrap cross-validation: (BCV) generates b bootstrap samples of D and
performs cross-validation on each bootstrap sample, then aggregates the re-
sulting error rates by averaging them. This has been shown to be advan-
tageous for small sample sizes. For a detailed description see [17] and [20],
but note comment 10 in section 4 and the variation proposed in [20], where
entries in the test set are removed, which also occur in the training set.

Stratified cross-validation: (SCV) ensures that all folds of the cross-validation
include a roughly equal number of observations per region of the input space.
Several methods to achieve this have been proposed, for an example see [10].

3 Nested Resampling

Often the process of deriving a model requires a more complex approach (in-
cluding model selection) than simply fitting a regression model. This will be the
case when hyperparameters (e.g. consider support vector regression) or covari-
ates have to be selected (e.g. screening the covariates for the ones which have a
relevant influence on the target value y). Since the optimal hyperparameters are
often data-dependent, they cannot be chosen without looking at the data. On
the other hand one cannot perform these model selection steps using the same
resampling sets that are used for evaluating the model itself, as this can lead to
severely biased performance results (see comments 4 and 5 in section 4). This
effect is sometimes called “training on the test set”, since through the repeated
evaluation of the model on the test data, information regarding its structure
enters the model which might lead to overfitting.

Another explanation of why overfitting will occur is illustrated by the follow-
ing thought experiment: Imagine a model, which randomly assigns predictions
without using the covariates and with a hyperparameter σ which has no influ-
ence on the quality of the fit. “Optimizing” σ over a large number of iterations
now corresponds to choosing the minimum statistic of the error values of all
generated random models. This minimum will be the lower the more iterations
we perform. It will however not be a reasonable estimator regarding the perfor-
mance on new data (which would be the mean of all observed errors or expected
error rate on an unused test set).

Instead, the model selection process has to be treated as part of the fitting
and therefore has to be repeated for every training set. Unfortunately, as this
kind of model selection usually requires a resampling approach as well, one ends
up with a nested process of sampling. While the model is evaluated in an outer
loop, every training set is resampled again in an inner loop to select an ap-
propriate model, e.g. see [35]. As an example, consider using subsampling with
k = 100 for evaluation and 5-fold cross-validation for hyperparameter selection.
For each of the 100 training sets D(i) from subsampling, a 5-fold cross-validation
on the training set is employed as internal fitness evaluation to select the best
setting for the hyperparameters of the regression function. This is an optimiza-
tion problem itself, but we are not going to cover the differences between the
usual approaches here. Typically, optimization methods are used for which no

Resampling Techniques 23

Fig. 3: Nested resampling with two nested cross-validations

parameters have to be specified a priori in order to avoid another level of hyper-
parameter optimization. The resulting optimization quality of these approaches
usually is sufficient for this purpose. The best obtained hyperparameters are
used to fit the model on the complete training set and calculate the error on the
test set of the outer resampling strategy. Fig. 3 shows this process schematically
for two nested cross-validations.

While this course of action is computationally very expensive, it is currently
the only known way to ensure unbiased results. If runtime has to be reduced,
more efficient optimization or a coarser resampling for model selection in the
inner loop should be employed. If the latter produces a negative effect for model
selection, at least this will be noticeable in a valid way in the outer evaluation.

4 Common Pitfalls, Recommendations and Statistical
Properties

In practical applications, choosing the right resampling method and experimen-
tal setup in order to evaluate estimated models might become a tough decision –
even for an experienced data analyst. We will describe the most common miscon-
ceptions and pitfalls in this section and try to give reasonable recommendations
and some theoretical results relevant for applied work. There exist a number of
other papers with a similar goal, often from the field of classification, which we
build upon. See for example [18, 24, 26, 27, 35] and for more general recommen-
dations [33].

1. Terminology.
Make sure to check formal definitions of resampling methods in papers. Un-
fortunately, even in the ones cited in this one, sometimes different names are
used or even exchanged. For example in [6] what we call out-of-bag bootstrap

24 LNCS: B. Bischl, O. Mersmann, H. Trautmann

is called bootstrap cross-validation (and therefore used differently than we
defined BCV) and in [30] what we call subsampling is called cross-validation.
Other terms for subsampling also include Monte Carlo cross-validation [34]
and repeated hold-out [24].

2. Stochastic performance values are not a disadvantage.
We have encountered a specific preference towards the leave-one-out esti-
mator among non-statisticians “because it does not produce results subject
to stochastic variation”, but instead delivers a reproducible, deterministic
value. This is a misconception which stems from the notion that your given
data set completely determines your task. On the contrary, the data was
obtained by a stochastic (real-world or simulated) process itself. The task is
not to optimize a machine learning model w.r.t. to this data set, but to use
the data efficiently to minimize the loss on new, unseen observations. This
is and will always be a stochastic optimization problem. Information about
uncertainty and statistical variation due to slight changes in the data and
unstable models are an advantage and not a drawback.

3. Be precise when stating how model selection and evaluation were
performed.
As the interpretation of results relies strongly on the chosen experimen-
tal setup, the necessity of this statement should be self-evident. Still, some
authors seem to treat this issue as a “minor detail, only worth brief men-
tioning in passing”. Also, when code is not published along with a paper,
reproducibility of results sometimes becomes difficult if not impossible.

4. Do not report performances from repeated tuning on the same
resampling.
Even though this problem and its remedy have already been discussed in
section 3, we emphasize this common error here again, as from our experi-
ence this still repeatedly turns up in applied work. Disregarding this makes
interpretations and comparisons to other results nearly impossible, as one
can never be sure how much positive results are due to the “training on the
test set” effect. Quite a number of publications had to be rectified because
of this mistake, see [16] for a recent example. Use nested resampling.

5. Include all modeling steps into the resampling.
If data-dependent preprocessing or pre-selection of variables is performed,
these have to be included in the resampling as well to avoid biased, opti-
mistic results. Although not doing so is basically the same mistake as the
one described in the comment above, this happens more frequently as pre-
processing is usually considered independently of the model fitting and per-
formed once in the beginning of the analysis. Simon et al. show in [36] how
the reevaluation of experiments from a published paper, in which covariates
were excluded by a statistical test in preprocessing, lead to much worse re-
sults than it would have been the case if the selection was included into a
complete resampling. They also confirm this conclusion by further simulation
studies regarding the selection of covariates.

6. Do not use hold-out, CV with few iterations or subsampling with
a low subsampling rate for small samples.

Resampling Techniques 25

These methods have a large bias resulting from the reduced training set size
(and a larger variance due to to the one or only few random split-ups, except
for subsampling), which is especially hurtful when data is scarce anyway.

7. Comments regarding Leave-One-Out and Cross-validation.

Leave-one-out cross-validation has better properties for the squared loss used
in regression than for its usual 0-1 counterpart in classification and is an al-
most unbiased estimator for the mean loss [26]. It can be shown that it is
asymptotically equivalent to the well-known AI criterion (AIC), the jack-
knife and the bootstrap [13, 39]. Although these asymptotic equivalences
are important and interesting in their own right, we want to point out that
many practically relevant differences exist between the mentioned methods,
some discussed in the comments in this section.

The many possibilities for its efficient computation mentioned in section 2.1
and its deterministic, reproducible value (but see comment 2) and its near
unbiasedness make LOO an attractive candidate among the presented algo-
rithms, especially when only few samples are available. But one should be
aware of the following facts: LOOCV has a high variance [26, 44] as estima-
tor of the mean loss, meaning quite different values are produced if the data
used for cross-validation slightly changes. It also is asymptotically inconsis-
tent and tends to select too complex models. In [34] theoretical reasons for
this effect are presented, and subsampling and balanced leave-d-out CV are
shown to be superior estimators in a simulation study. Kohavi [26] arrives
at similar results regarding LOO and demonstrates empirically that 10-fold
CV is often superior. He suggests a stratified version.

For these reasons we recommend LOO mainly for efficient model selection,
still keeping in mind that this might lead to somewhat suboptimal choices.
Repeated and stratified CV will usually produce more reliable results in
practice.

8. Comments on different bootstrap variants.

Many variations on the algorithms presented in section 2.2 exists. We will
here restrict ourselves to comparing the simple out-of-bag bootstrap, using
only sout, the older .632, which always sets ŵ = 0.632, and the .632+. While
the out-of-bag bootstrap is pessimistically biased in the sense that it bases
its performance values on models which use only about 63.2% of the data,
.632 can be optimistic in a much worse way, as complex models can easily
achieve sin = 0 (or consider adding a “memory” of the training data to your
model). Both estimators are known to have a low variance, and out-of-bag is
especially good, when the sample size is small and the error or noise in the
data is high [44]. .632+ combines the best properties of both estimators and
can generally be trusted to achieve very good results with small sample sizes.
Its main drawback are the difficult combination with tuning (see comment
10) and that it might result in an optimistic bias, when more complex models
are considered [24, 27].

9. Choosing the number of iterations in bootstrapping, subsampling,
etc.

26 LNCS: B. Bischl, O. Mersmann, H. Trautmann

These questions seem to remain an open research issue, and the general
consensus seems to be to err on the safe by choosing a large k. 100, 250
and 500 are common values in published papers, [44] recommends at least
200 to obtain a good estimate. But a reasonable setting has always to be
data-dependent, relying on the number of available samples, the complex-
ity of the task and applied models. One should be aware that this will be
computationally very expensive.
There exists a couple of heuristics to select the number of iterations adap-
tively, especially in model selection and optimization. For example consider
the repeated testing performed in F-Races [7]. But for valid statistical infer-
ence one will have to employ methods from the sequential analysis. To our
knowledge, this is not very often done in machine learning, and a compre-
hensive overview of these techniques is beyond the scope of this article. We
refer the reader to [28] for an accessible introduction.

10. Bootstrapping or subsampling? Repeated observations can be prob-
lematic.
When combining model or complexity parameter selection with bootstrapped
data sets, repeated observations can lead to a substantial bias towards more
complex models. This stems from the fact that with a high probability mea-
surements will occur both in the training set as well as the test set, so
that more complex models “memorizing” the training data will seem prefer-
able. This effect was documented in the setting of using boosting for high-
dimensional microarray data [6] and subsampling was proposed and evalu-
ated as a remedy.

11. Independence, Confidence Intervals and Testing.
In general, the generated training and test sets, and therefore the obtained
performance statistics will not be independent when sampling from a finite
data set. This has negative consequences if confidence intervals for the perfor-
mance measure should be calculated. The dependence structure is especially
complicated for the commonly used cross-validation, where the split-up of
the data in one iteration completely depends on all other split-ups. It can be
shown that in this setting no unbiased estimator of the variance exists [4] and
pathological examples can be constructed, where the variance estimator per-
forms arbitrarily bad. Extensions on corrections for subsampling exist which
take the dependence between sampled data sets into account and provide
a much better foundation for interval estimators and subsequent statistical
tests regarding location parameters [30].
The focus in this paper has largely been on model selection and not nec-
essarily on model comparison. For this several procedures using statistical
hypothesis tests have been proposed by [1, 11, 20, 30].

12. Software and illustrating examples.
While many machine learning toolboxes contain at least some of the men-
tioned resampling strategies, we would like to point out that our own R pack-
age mlr [8] contains all of the methods mentioned in this paper, including
generic nested resampling, and an interface to many regression, classification
and optimization algorithms in R.

Resampling Techniques 27

R examples to demonstrate specific issues from this section are made avail-
able at http://statistik.uni-dortmund.de/~bischl/ppsn2010_res.

4.1 Comparison to relevant work

To our best knowledge the mentioned methodology in this article is not very often
used to assess and improve meta models in optimization. We are only aware of a
paper by Tenne and Armfield [41], where a similar approach is followed and will
compare to their work. The authors propose to use hold-out, 10-fold CV, LOO
and the .632 bootstrap to estimate the prediction error of a quadratic, a kriging
and and radial basis function network model on three different test functions.
They do not include the .632+ bootstrap or repeated CV in their study, although
these estimators might be more appropriate for their small sample sizes (less than
100). They also optimize the hyperparameters of the anisotropic kriging model
on the full data set in the beginning, which might lead to a bias in the following
resampling caused by overfitting.

Otherwise their findings agree with our comments above: they state that hold-
out has an pessimistic bias, as fewer data is used for training, LOO has a large
variance, the 10-fold CV also has a large variance due to the random splitting of
the few samples and .632 has a low variance and an optimistic bias. However, they
do no provide references for these facts, which have also been observed by other
authors in comparison studies in machine learning [14, 24, 26, 27, 34, 35, 45].
They report LOO as the most suited but computationally expensive resampling
method for model assessment, but without mentioning the many approaches for
its efficient calculation (see 2.1).

5 Conclusions and Outlook

Meta modeling techniques play a prominent role in modern expensive optimiza-
tion procedures. Much research has focused on the design of powerful modeling
methods. In this paper we have given an overview of well-known resampling
methods from statistics and how they can be used to choose or tune a meta
model.

Proper model validation in this context is crucial. First of all, employing a
meta-model which badly approximates the original objective function cannot
lead to reliable optimization results. Secondly, hyperparameter tuning for a spe-
cific model class, selecting from a finite amount of different models and possibly
choosing relevant features are important steps in practical optimization. It is
well known that their correct application leads to an improvement in general-
ization performance. As in model validation, a properly evaluated performance
measure is needed in order to compare among the potential models. But when
very few sample points are combined with very powerful and flexible regression
models like kriging, overfitting becomes likely. Therefore, the model validation
procedure plays a key role for determining a useful model and subsequently
performing efficient optimization.

28 LNCS: B. Bischl, O. Mersmann, H. Trautmann

After introducing the three basic strategies, cross-validation, bootstrapping
and subsampling, nested resampling is discussed and common pitfalls and design
mistakes are highlighted when using these methods. As a summarizing recom-
mendation, we suggest to consider efficient Leave-One-Out cross-validation for
fast model tuning, the .632+ bootstrap for small samples sizes with low com-
plexity models and when no tuning is required, and subsampling or repeated
cross-validation in all other cases, see Fig. 4.

In the future we will perform a similar benchmark study like [41]. We will
include more advanced resampling methods, which are specifically tailored for
the small sample sizes encountered in global optimization of expensive functions,
like repeated cross-validation and the .632+ bootstrap. We will also investigate
the question, whether the usual approach of selecting hyperparameters on the
full sample in the beginning leads to overfitting and an optimistically biased
estimator in the subsequent resampling, and if so, whether this can be avoided
by nested resampling. From these results we will derive further practical rec-
ommendation for resampling evaluations in the field of optimization by meta
modeling.

In addition, different facets of model quality with respect to optimization
processes will be studied and incorporated into to the presented guidelines for
model accuracy assessment.

Small
sample?

Low model
complex-

ity?

Tuning?

Tuning?

High-dim.
model space+
fast LOO?

SS
10-fold CV

.632+ Nested Rep. CV
Nested SS

Rep. CV
SS

Possibly .632+

LOO CV

yes

no

yes

no

no

yes

yes

no

no

yes

Fig. 4: Guidelines for selecting a resampling strategy.

Resampling Techniques 29

Acknowledgements This work was partly supported by the Collaborative Re-
search Center SFB 823 and the Research Training Group ”Statistical Modelling”
of the German Research Foundation.

References

1. Alpaydin, E.: Combined 5x2cv f test for comparing supervised classification learn-
ing algorithms. Neural Computation 11, 1885–1892 (1999)

2. Bartlett, P., Boucheron, S., Lugosi, G.: Model selection and error estimation. Ma-
chine Learning 48(1-3), 85–113 (2002)

3. Bartz-Beielstein, T.: Experimental Research in Evolutionary Computation – The
New Experimentalism. Springer Natural Computing Series, Berlin (2006)

4. Bengio, Y., Grandvalet, Y.: No unbiased estimator of the variance of k-fold cross-
validation. Journal of Machine Learning Research 5, 1089–1105 (2004)

5. Bhattacharya, M.: Meta model based ea for complex optimization. International
Journal of Computational Intelligence 1(4), 36–45 (2008)

6. Binder, H., Schumacher, M.: Adapting prediction error estimates for biased com-
plexity selection in high-dimensional bootstrap samples. Statistical Applications in
Genetics and Molecular Biology 7(1), Article 12 (2008)

7. Birattari, M., Stutzle, T., Paquete, L., Varrentrapp, K.: A racing algorithm for
configuring metaheuristics. In: Proceedings of the Genetic and Evolutionary Com-
putation Conference. pp. 11–18. Morgan Kaufmann (2002)

8. Bischl, B.: mlr: Machine learning in R, http://mlr.r-forge.r-project.org (2010)
9. Cawley, G., Talbot, N.: Fast exact leave-one-out cross-validation of sparse least-

squares support vector machines. Neural Networks 17(10), 1467–1475 (2004)
10. Diamantidis, N., Karlis, D., Giakoumakis, E.: Unsupervised stratification of cross-

validation for accuracy estimation. Artificial Intelligence 116(1-2), 1–16 (2000)
11. Dietterich, T.: Approximate statistical tests for comparing supervised classification

learning algorithms. Neural Computation 10(7), 1895–1923 (1998)
12. Efron, B.: Bootstrap methods: Another look at the jackknife. The Annals of Statis-

tics 7(1), 1–26 (1979)
13. Efron, B.: Estimating the error rate of a prediction rule: Improvement on cross-

validation. Journal of the American Statistical Association 78(382), 316–331 (1983)
14. Efron, B., Tibshirani, R.: Improvements on cross-validation: The 0.632 + bootstrap

method. Journal of the American Statistical Association 92(438), 548–560 (1997)
15. Emmerich, M., Giannakoglou, K., Naujoks, B.: Single- and multiobjective evolu-

tionary optimization assisted by gaussian random field metamodels. IEEE Trans-
actions on Evolutionary Computation 10(4), 421–439 (2006)

16. Fiebrink, R., Fujinaga, I.: Feature selection pitfalls and music classification. In:
ISMIR. pp. 340–341 (2006)

17. Fu, W.J., Carroll, R.J., Wang, S.: Estimating misclassification error with small
samples via bootstrap cross-validation. Bioinformatics 21(9), 1979–1986 (2005)

18. Good, P.: Resampling Methods: A Practical Guide to Data Analysis. Birkhauser
(2005)

19. Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning.
Springer (2001)

20. Hothorn, T., Leisch, F., Zeileis, A., Hornik, K.: The design and analysis of bench-
mark experiments. Journal of Computational and Graphical Statistics 14, 675–699
(2005)

30 LNCS: B. Bischl, O. Mersmann, H. Trautmann

21. Huang, D., Allen, T., Notz, W., Zeng, N.: Global optimization of stochastic black-
box systems via sequential kriging meta-models. J. of Global Optimization 34(3),
441–466 (2006)

22. Jin, Y.: A comprehensive survey of fitness approximation in evolutionary compu-
tation. Soft Computing 9(1), 3–12 (2005)

23. Jin, Y., Branke, J.: Evolutionary optimization in uncertain environments – a sur-
vey. IEEE Transactions on Evolutionary Computation 9(3), 303–318 (2005)

24. Kim, J.H.: Estimating classification error rate: Repeated cross-validation, repeated
hold-out and bootstrap. Computational Statistics and Data Analysis 53(11), 3735–
3745 (2009)

25. Knowles, J., Nakayama, H.: Multiobjective Optimization: Interactive and Evo-
lutionary Approaches, chap. Meta-Modeling in Multiobjective Optimization, pp.
245–284. Springer (2008)

26. Kohavi, R.: A study of cross-validation and bootstrap for accuracy estimation and
model selection. In: IJCAI. pp. 1137–1143 (1995)

27. Molinaro, A., Simon, R., Pfeiffer, R.: Prediction error estimation: a comparison of
resampling methods. Bioinformatics 21(15), 3301–3307 (2005)

28. Mukhopadhyay, N., de Silva, B.M.: Sequential methods and their applications.
Chapman & Hall/CRC (2009)

29. Myers, R., Montgomery, D.: Response Surface Methodology. Wiley, New York
(1995)

30. Nadeau, C., Bengio, Y.: Inference for the generalization error. Machine Learning
52(3), 239–281 (2003)

31. Nakayama, H., Yun, Y., Yoon, M.: Sequential Approximate Multiobjective Opti-
mization Using Computational Intelligence. Springer Publishing Company, Incor-
porated (2009)

32. Ong, Y., Nair, P., Keane, A.: Evolutionary optimization of computationally expen-
sive problems via surrogate modeling. AIAA Journal 41(4), 687–696 (2003)

33. Salzberg, S.: On comparing classifiers: Pitfalls to avoid and a recommended ap-
proach. Data Mining and Knowledge Discovery 1(3), 317–328 (1997)

34. Shao, J.: Linear model selection by cross-validation. Journal of the American Sta-
tistical Association 88(422), 486–494 (1993)

35. Simon, R.: Fundamentals of Data Mining in Genomics and Proteomics, chap. Re-
sampling Strategies for Model Assessment and Selection, pp. 173–186. Springer,
US (2007)

36. Simon, R., Radmacher, M.D., Dobbin, K., McShane, L.M.: Pitfalls in the use of
dna microarray data for diagnostic and prognostic classification. Journal of the
National Cancer Institute 95(1), 14–18 (2003)

37. Smit, S., Eiben, A.: Comparing parameter tuning methods for evolutionary al-
gorithms. In: IEEE Congress on Evolutionary Computation (CEC). pp. 399–406
(2009)

38. Stone, M.: Cross-validatory choice and assessment of statistical predictions. Journal
of the Royal Statistical Society, Series B 36(1), 111–147 (1974)

39. Stone, M.: An asymptotic equivalence of choice of model by cross-validation and
akaike’s criterion. Journal of the Royal Statistical Society, Series B 39, 44–47 (1977)

40. Sundararajan, S., Keerthi, S.: Predictive approaches for choosing hyperparameters
in gaussian processes. Neural Computation 13(5), 1103–1118 (2001)

41. Tenne, Y., Armfield, S.: Metamodel accuracy assessment in evolutionary optimiza-
tion. In: IEEE Congress on Evolutionary Computation. pp. 1505–1512 (2008)

Resampling Techniques 31

42. Wagner, T., Emmerich, M., Deutz, A., Ponweiser, W.: On expected-improvement
criteria for model-based multi-objective optimization. In: Schaefer, R. (ed.) Parallel
Problem Solving from Nature. Springer, Berlin (2010)

43. Wahba, G.: Spline bases, regularization, and generalized cross validation for solving
approximation problems with large quantities of noisy data. In: Proceedings of the
International Conference on Approximation Theory in Honour of George Lorenz.
Academic Press (1980)

44. Weiss, S., Kulikowski, C.: Computer systems that learn: classification and predic-
tion methods from statistics, neural nets, machine learning, and expert systems.
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA (1991)

45. Wu, C.: Jackknife, bootstrap and other resampling methods in regression analysis.
Annals of Statistics 14, 1261–1295 (1986)

46. Younis, A., Dong, Z.: Metamodelling using search space exploration and unimodal
region elimination for design optimization. Engineering Optimization 6(42), 517–
533 (2010)

47. Yun, Y., Yoon, M., Nakayama, H.: Multi-objective optimisation based on meta-
modelling using support vector regression. Optimization and Engineering 10(2),
167–181 (2009)

A Rank Transformation Can Improve
Sequential Parameter Optimization

Simon Wessing1 and Tobias Wagner2

1 Chair of Algorithm Engineering, TU Dortmund
Otto-Hahn-Straße 14, 44227 Dortmund, Germany

simon.wessing@tu-dortmund.de, http://ls11-www.informatik.uni-dortmund.de
2 Institute of Machining Technology (ISF), TU Dortmund

Baroper Straße 301, 44227 Dortmund, Germany
wagner@isf.de, http://www.isf.de

Abstract. Over recent years, parameter tuning of Evolutionary Algo-
rithms (EAs) is attracting more and more interest. In particular, the
sequential parameter optimization (SPO) framework for model-assisted
tuning procedures resulted in established parameter tuning algorithms.
Most variants of SPO apply Kriging for modeling the fitness landscape
and, thereby, finding an optimal parameter configuration on a limited
budget of EA runs. In this work, we enhance the SPO framework by
introducing transformation steps before the aggregation and before the
modeling. We empirically show that a rank transformation of the data
improves the mean performance of SPO and is superior to other trans-
formations, such as the Box-Cox and the logarithmic transformation.

Keywords: Data Transformation, Design and Analysis of Computer
Experiments, Kriging, Sequential Parameter Optimization (SPO)

1 Introduction

Parameter tuning of evolutionary algorithms (EAs) is a noisy optimization prob-
lem with expensive evaluations. An approach to this problem is SPO by Bartz-
Beielstein et al. [1], which usually uses Kriging models to predict new promising
search points. Kriging is based on the assumption that the modeled data follows
a deterministic, stationary multivariate Gaussian process (GP). This cannot be
guaranteed to be fulfilled in general. For example, distributions of objective val-
ues often show an unwanted skewness. Hutter et al. [10] have demonstrated that
it can be advantageous for SPO to apply a logarithmic transformation to the
data before the modeling. In geostatistics, which is the original application area
of Kriging, this technique is known as lognormal Kriging. Our goal is to inves-
tigate if other techniques considered in geostatistics are equally successful in
our application. In particular, a rank transformation seems promising since it is
established to process highly skewed data [12, 21].

The remainder of the paper is organized as follows. In Sect. 2, an introduc-
tion to the theoretical aspects of Kriging is given. Sect. 3 describes the SPO

A Rank Transformation Can Improve SPO 33

framework with our proposed modifications. In Sect. 4, we present experiments
to examine our hypotheses about the benefit of data transformations. Sect. 5
concludes the paper and provides an outlook on future research topics.

2 Basics

Parameter tuning of EAs represents an optimization problem minx∈X y(x).3 X
is called design space. A vector x ∈ X is denoted as design point. It contains the
settings of the considered tuning parameters xi, i = 1, . . . , n. Usually, the design
space X is bounded by box constraints l and u, whereby li ≤ xi ≤ ui define the
region of interest (ROI). The performance of the algorithm y(x) is evaluated by
performing experiments on a representative test instance T . In T , information
about the optimization task, i. e., the test function or simulator output of inter-
est, and the desired target quality or an allowed runtime budget are encoded.
Based on the outcomes of the experiments for xi, an aggregated response yi can
be derived. Based on stochastic effects in the algorithm or simulator, the actual
objective value of a design can only be evaluated as yi = y(xi) + εi, where εi can
be denoted as random error or noise of an evaluation.

In this paper, we particularly focus on Kriging models as used in the De-
sign and Analysis of Computer Experiments [17, 18]. Kriging models M are
based on a set of designs D = (xT1 , . . . ,x

T
k)T and the corresponding responses

y = (y1, . . . , yk)T , which approximate the actual objective function y(x). They
consider the k responses as yj = f(xj)

Tβ+Z(xj), j = 1, . . . , k, where the vector

f(x) = (f1(x), . . . , fp(x))
T

contains p monomial regression functions, e. g., x2 or
tan(x), β = (β1, . . . , βp)

T is a p-dimensional vector of corresponding regression
coefficients, and Z(x) is a zero mean (centered) stationary Gaussian process with
dependencies specified by the covariance Cov{Z(xj1), Z(xj2)} = σ2

Zr(xj1 ,xj2)
for a known correlation function r and a process variance σ2

Z . Consequently, it
is assumed that the residuals to the regression function can be described as a
multivariate Gaussian distribution.

It can be shown [18] that the best linear unbiased predictor ŷ(x) with respect
to the mean squared prediction error is

ŷ(x) = f(x)T β̂︸ ︷︷ ︸
regression function

+ r(x)
T
R−1 (y − Fβ̂)︸ ︷︷ ︸

observed residuals

, (1)

where β̂ =
(
FTR−1F

)−1
FTR−1y are the regression coefficients estimated in the

sense of least squares and F = (f(x1) · · · f(xk))
T

is the k×p matrix of regression
function values for each of the k designs. Analogously, the vector of correlations
between x and the already evaluated designs r(x) = (r(x,x1), . . . , r(x,xk))

T

and the k × k intercorrelation matrix R = (r(x1) · · · r(xk)) are defined in terms
of the correlation function r. Usually, a constant regression function f(x) = β1

3 Minimization problems are considered in this paper. Maximization problems can be
transformed to corresponding minimization problems minx∈X−y(x).

34 A Rank Transformation Can Improve SPO

Algorithm 7: Pseudocode of the considered SPO approach

Require: T {test instance}
l,u {ROI}
N {experimental budget}
Ninit {size of the initial design set}

1: D = LatinHypercubeSampling(l,u, Ninit) {generate initial design}
2: Y = runDesign(D) {perform experiments}
3: while entries(Y) < N do

4: Ỹ = transformLocal(Y) {transformation of the responses}
5: y = aggregateRuns(Ỹ) {calculate performance indices}
6: ỹ = transformGlobal(y) {transformation of the performance indices}
7: M = fitModel(D, ỹ) {fit empirical model of the response}
8: dnew = modelOptimization(M) {find promising design points}
9: Y = Y ∪ runDesign(dnew) {perform experiments and add results}

10: end while
11: return M, d∗ {return final Kriging model and the best design}

and a nonisotropic Gaussian kernel r(xj1 ,xj2) = exp
(
−
∑n
i=1 θi|xj1,i − xj2,i|2

)
are used. The model parameters θ control the activity of the Gaussian process
in each dimension. The model M based on the Gaussian correlation kernel is
infinite times differentiable.

Based on the strength of the correlations, also the corresponding prediction
uncertainty ŝ(x) can be computed [18]. The predictions can then be interpreted
to follow a normal distribution N (ŷ(x), ŝ(x)) with mean ŷ(x) and standard de-
viation ŝ(x). By these means, the incorporation of the accuracy of an evaluation
is possible [8, 16].

3 Approach

The framework of our SPO approach is shown in Algorithm 7. As usual, the
initial design D = {x1, . . . ,xNinit} for the model generation is obtained by
computing a Latin hypercube sample (LHS) [14] in the specified ROI. Then,
Rinit runs of the EA with different random seeds are performed for each design
x ∈ D on the test instance defined by T .

In the known SPO approaches, the aggregation (AG) into a single perfor-
mance value for each design is carried out directly. In contrast, we introduce a
local transformation (LT) step before the results of the different runs are aggre-
gated. The aim of LT is the preprocessing of the result distribution of each run
in order to improve the estimation of the performance index in AG, e. g., a sym-
metric distribution for the estimation of the mean and the standard deviation.
An approximately normal distribution of the results allows the uncertainty of the
evaluation to be incorporated into Kriging models with nugget effect [6, 8, 16].
By these means, the robustness of a design point can also be considered.

In this paper, we empirically analyze the statistically established logarith-
mic, Box-Cox [4] and rank transformation [5]. All transformations are rank-

A Rank Transformation Can Improve SPO 35

preserving, i. e., the ordering of the designs is not changed. The Box-Cox trans-
formation is a power transformation

y
(λ)
i =

{
yλi −1

λ(GM(y))λ−1 , if λ 6= 0

GM(y) log yi, if λ = 0
, (2)

where GM(y) denotes the geometric mean of all responses. It allows a continu-
ously defined change-over between no (λ = 1) and a logarithmic transformation
(λ = 0). Nevertheless, the logarithmic transformation is also considered since
it has already been used in the SPO framework before [10]. The exponent λ
in the Box-Cox transformations is usually optimized using maximum likelihood
estimation.

For a rank transformation, the responses are ordered and ranks are assigned
starting with 1 for the best response. Consequently, the data is transformed to
a uniform distribution given an complete order on the response. If ties occur,
all responses are substituted by the averaged rank, i. e., the ordered responses
y1 = 0.1, y2 = 0.3, y3 = 0.3, and y4 = 1 would become ỹ1 = 1, ỹ2 = 2.5,
ỹ3 = 2.5, and ỹ4 = 4. Whereas the Box-Cox transformation can be performed
design-wise using a fixed exponent λ estimated based on the whole data set,
the rank transformation has to be computed based on ranks calculated from all
available results. All these transformations can improve the characteristics of
the result distribution, such as skewness, kurtosis, and the fit with the normal
distribution.

After LT, the different results for each design are forwarded to AG. Usually,
the mean of the runs is used in SPO. The mean is defined as average over all ob-
served and transformed results making its estimation sensitive to outliers. Thus,
the use of the median – as a more robust performance index for AG – is addi-
tionally analyzed in this paper. As already observed by Hutter et al. [10], the LT
changes the actual aggregation of the individual responses. The combination of
the mean and a logarithmic LT results in the logarithm of the geometric mean of
the untransformed responses. This is particularly interesting with respect to of-
ten observed success or failure scenarios in multimodal optimization because the
geometric mean is well suited to aggregate binary random variables. Moreover,
a local Box-Cox transformation can provide a slight shift from the arithmetic to
the geometric mean.

The global transformation (GT) is performed after the aggregated responses
have been computed. In this step, two aims have to be achieved. For the mod-
eling, the responses should follow a multivariate Gaussian distribution. For the
sequential optimization, a clearer identification of the optimal basin is desired.
Hutter et al. [10, 11] have already shown that a logarithmic transformation is
able to achieve both aims for some selected test instances. In this paper, we con-
sider a Box-Cox and a rank transformation as possible alternatives. The Box-Cox
transformation is known for the ability to transform skewed, but still unimodal,
distributions to normality, whereas the rank transformation will result in almost
uniform distributions. Consequently, these transformations may act as extreme
solutions to achieve the before-mentioned aims.

36 A Rank Transformation Can Improve SPO

Finally, a Kriging model M is computed from the transformed results, as
described in the previous Sect. 2. In an optimization loop, the model is then used
to predict promising parameter configurations based on the second moment of
the expected improvement [19]. The new candidates are evaluated and the data
is fed back into the model.

4 Experiments

Research Question: Is there a static combination of LT, AG, and GT that is
superior in general?
Preexperimental planning: Since we are interested in the effect of the trans-
formations in a practical parameter tuning scenario, the enhanced SPO is used to
tune standard EAs on established test problems. Moreover, we do not require to
define a theoretical noise distribution. The distribution is created by the charac-
teristics of the EA. To achieve general results, we are using two single-objective
and two multi-objective test instances, where the one is uni- and the other is
multimodal. The performance of a configuration is measured by the mean y∗

of the responses of the EA for the design d∗ returned as the best design by
SPO. The mean has been chosen since it penalizes outliers with bad results and
corresponds to the natural aggregation used in a Kriging model with nugget
effect [6, 8]. This study is a first step to analyze the effect of transformations in
SPO. Consequently, the estimation of the robustness of a design point, i. e., the
corresponding standard deviation of the results, is not considered. In line with
this decision, also the use of the nugget effect will be omitted in this study.
Task: The task is to analyze the effect of local and global transformation func-
tions when applied in SPO on different kinds of test instances T . In particu-
lar, the general and the problem-specific appearance of effects has to be distin-
guished.
Setup: The considered test cases T are summarized in Table 1. The multi-
objective problems S ZDT1 and R ZDT4 are taken from the CEC 2007 compe-
tition [9]. SPO is given a budget of N = 500 EA runs. As single-objective EA,
the (µ , λ)-Evolutionary Strategy (ES) [20] is chosen. It is using Gaussian muta-
tion with self-adapted step sizes. For the multi-objective problems, the S-metric-
selection-based multi-objective EA (SMS-EMOA) [2] is used. In this algorithm,
polynomial mutation with fixed step size ηm = 15 and probability pm = 1/n
and simulated binary crossover (SBX) [7] are applied. The corresponding tuning
parameters and their ROI are defined in Table 2. For each EA, three parame-
ters are to be tuned: population size µ, selection pressure λ/µ, and initial step
size σinit in the single-objective case and µ, distribution index ηc, and crossover
probability pc in the multi-objective case. The logarithmic transformations are
performed since DACE models are relying on a stationary GP, i. e., a constant
activity of the response over the considered domain (see, e. g. [3]). In contrast, a
change of the population size from µ = 1 to µ = 10 surely has a bigger effect on
the response compared to a change from µ = 100 to µ = 110. The change of the
magnitude of the parameter is more important than the change in the absolute

A Rank Transformation Can Improve SPO 37

value. The same holds for the the selection pressure λ/µ and the initial step size
σinit.

For the initial design D, Ninit = 30 design points and Rinit = 4 runs of each
design point are used. Consequently, less than a quarter of the experimental
budget is utilized for the initial design, thus focusing on the sequential model-
based optimization. On single-objective problems, the objective value can be
directly used as response of the corresponding run, whereas in the multi-objective
case the difference in the hypervolume indicator [13] with respect to a Pareto-
optimal reference set is computed. This is related to the measure internally
optimized in the SMS-EMOA.

Log and Box-Cox transformations are only valid in the domain R+. To ensure
this constraint to be met, we transform the responses shifted in the positive
domain Ỹ = transformLocal(Y −min{Y} + ε), where ε denotes the machine
precision. The effects of AG, LT, and GT are analyzed within a threeway analysis
of variance (ANOVA) [15]. In this ANOVA, the effects of the factors (grouping
variables) are evaluated by comparing the variance explained by the factors with
the variance that cannot be explained. The factors and factor levels considered
are summarized in Table 3.

Results/Visualization: The ANOVA tables for the test functions are shown
in Tables 4, 5, 6, and 7. The confidence intervals of selected multiple comparison
tests for interaction effects of LT and GT based on the results of the ANOVAs are
shown in Fig. 1 and Fig. 2. Histograms of the aggregated responses’ distributions
are provided in Fig. 3. Moreover, the effects of the global transformation on the
input data of the Kriging model are visualized. In Fig. 4 and 5, the distibutions
of the data before and after LT, AG, and GT are analyzed using histograms
based on the results of successful combinations. A combination of LT and GT
that leads to undesired results is shown in Fig. 6.

Observations: The most important main effect, which is significant at the 0.01
level in the ANOVAs of all considered test functions, is the one of AG. The effect
of GT is significant at the 0.01 level on Rastrigin and S ZDT1, but can only be
confirmed at the 0.05 level on the sphere function. In contrast, S ZDT1 is the sole
test case where LT shows a significant effect. The most important interaction
effect is the one of LT and GT, which is significant at the 0.01 level for S ZDT1
and at the 0.05 level for the sphere problem and Rastrigin. Consequently, we
focus on the main effect of AG and GT and the interaction between LT and GT
in the following.

Table 1: Overview of the test instances T used in the experiments.

Problem Variables Objectives Algorithm Evaluations Reference point

Sphere 30 1 (µ , λ)-ES 10000 –
Rastrigin 10 1 (µ , λ)-ES 50000 –
S ZDT1 30 2 SMS-EMOA 10000 (2.05, 10.45)T

R ZDT4 10 2 SMS-EMOA 20000 (4.15, 524.95)T

38 A Rank Transformation Can Improve SPO

Table 2: Summary of tuning parameters considered in the experiments including their
respective ranges and additional transformations.

(µ , λ)-ES SMS-EMOA

Parameter µ λ/µ σinit µ ηc pc

ROI {1, . . . , 100} [2, 100] [0.001, (u− l)/2] {1, . . . , 1000} [1, 50] [1/n, 1]
Transf. log10 log10 log10 log10 none none

Table 3: The factors of the full factorial design and their levels.

Factor LT AG GT

Default none mean none
Levels {none, Box-Cox, log, rank} {mean, median} {none, Box-Cox, log, rank}

A multiple comparison test based on the results of the ANOVA shows that
the mean aggregation always shows a significant improvement (α = 0.05) com-
pared to the median. Considering GT, a rank transformation is significantly
superior to the Box-Cox transformation on the sphere problem, a logarithmic or
no transformation on Rastrigin, and to all other transformations on S ZDT1. In
return, the rank transformation is not significantly outperformed by any other
GT. The confidence intervals with respect to the different combinations of LT
and GT are shown in Fig. 1 and Fig. 2. For the sphere problem and R ZDT4, no
plots are shown since no significant differences can be detected. On Rastrigin,
the Box-Cox transformation is superior to no GT when LT is omitted or a rank
transformation is performed. On S ZDT1, all pairwise combinations of Box-Cox
and logarithmic transformations result in a bad performance of SPO. This leads
to an outperformance of the logarithmic transformation by the approach using
no GT based on a grouping of all possible local transformations. Nevertheless,

Table 4: ANOVA table for the full factorial experiment on the sphere problem.

Source Sum Sq. d.f. Mean Sq. F Prob> F

Local Trans. (LT) 2.2e-5 3 7.4e-6 2.00 0.1119
Aggregation (AG) 2.7e-5 1 2.7e-5 7.40 0.0066 < 0.01
Global Trans. (GT) 3.0e-5 3 1.0e-5 2.76 0.0412 < 0.05
LT*AG 1.2e-5 3 3.9e-6 1.06 0.3655
LT*GT 7.6e-5 9 8.5e-6 2.30 0.0146 < 0.05
AG*GT 1.7e-5 3 5.5e-6 1.50 0.2133
LT*AG*GT 2.2e-5 9 2.5e-6 0.68 0.7316

Error 5.8e-3 1568 3.7e-6
Total 6.0e-3 1599

A Rank Transformation Can Improve SPO 39

Table 5: ANOVA table for the full factorial experiment on Rastrigin.

Source Sum Sq. d.f. Mean Sq. F Prob> F

Local Trans. (LT) 1.4e+1 3 4.7e+0 1.94 0.1213
Aggregation (AG) 3.6e+1 1 3.6e+1 14.92 0.0001 < 0.01
Global Trans. (GT) 3.7e+1 3 1.2e+1 5.02 0.0018 < 0.01
LT*AG 4.1e+1 3 1.4e+1 5.57 0.0008 < 0.01
LT*GT 4.3e+1 9 4.7e+0 1.94 0.0429 < 0.05
AG*GT 1.2e+1 3 4.0e+0 1.64 0.1780
LT*AG*GT 2.9e+1 9 3.3e+0 1.34 0.2095

Error 3.8e+3 1568 2.4e+0
Total 4.0e+3 1599

Table 6: ANOVA table for the full factorial experiment on S ZDT1.

Source Sum Sq. d.f. Mean Sq. F Prob> F

Local Trans. (LT) 4.0e-4 3 1.3e-4 33.47 0.0000 < 0.01
Aggregation (AG) 2.7e-5 1 2.7e-5 6.77 0.0093 < 0.01
Global Trans. (GT) 5.8e-4 3 1.9e-4 48.21 0.0000 < 0.01
LT*AG 5.9e-6 3 2.0e-6 0.49 0.6872
LT*GT 1.3e-3 9 1.5e-4 37.26 0.0000 < 0.01
AG*GT 1.2e-5 3 4.1e-6 1.02 0.3835
LT*AG*GT 2.4e-5 9 2.6e-6 0.66 0.7476

Error 6.2e-3 1568 4.0e-6
Total 8.6e-3 1599

the worst results are obtained when performing no transformations at all, which
corresponds to the classical SPO approach.

In the histgrams of Fig. 3, all nontransformed distributions are heavily skewed
to the right. By applying a logarithmic transformation, the distribution becomes
left-skewed on the sphere and approximately symmetric on the Rastrigin prob-
lem, whereas the response distributions of the multi-objective problems are still
right-skewed. The Box-Cox transform is able to reduce the skewness on all con-
sidered test instances. Only on R ZDT4, the distribution is still slightly skewed
to the right. Based on the plots of transformed responses, it can be seen that the
distributions are not unimodal. Both the logarithmic and the Box-Cox transfor-
mation are rank-preserving. Consequently, they cannot change the modality of
the distribution.

In Fig. 4 and Fig. 5, which visualize the effect of the different transformation
steps for successful combinations of LT and GT, an improvement of the residu-
als’ fit with the normal distribution can be observed after the LT. Moreover, the
skewness of the original distribution of the aggregated responses can be reduced
by the GT. Nevertheless, no approximately normal distribution of the aggre-
gated responses can be obtained due to the multimodality. As shown Fig. 6, a

40 A Rank Transformation Can Improve SPO

Table 7: ANOVA table for the full factorial experiment on R ZDT4.

Source Sum Sq. d.f. Mean Sq. F Prob> F

Local Trans. (LT) 3.6e+1 3 1.2e+1 1.17 0.3201
Aggregation (AG) 6.3e+2 1 6.3e+2 61.28 0.0000 < 0.01
Global Trans. (GT) 2.0e+1 3 6.7e+0 0.65 0.5840
LT*AG 1.5e+1 3 4.9e+0 0.48 0.6998
LT*GT 9.3e+1 9 1.0e+1 1.01 0.4317
AG*GT 4.6e+1 3 1.5e+1 1.51 0.2112
LT*AG*GT 5.8e+1 9 6.4e+0 0.63 0.7739

Error 1.6e+4 1568 1.0e+1
Total 1.7e+4 1599

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

LT=rank,GT=rank

LT=none,GT=rank

LT=log,GT=rank

LT=boxcox,GT=rank

LT=rank,GT=none

LT=none,GT=none

LT=log,GT=none

LT=boxcox,GT=none

LT=rank,GT=log

LT=none,GT=log

LT=log,GT=log

LT=boxcox,GT=log

LT=rank,GT=boxcox

LT=none,GT=boxcox

LT=log,GT=boxcox

LT=boxcox,GT=boxcox

Fig. 1: Confidence intervals of the multiple comparison test for the interaction effect
of LT and GT based on the results of the ANOVA on Rastrigin. The colors indicate
significant differences (red outperforms blue) at the α = 0.05 level. The gray confidence
intervals are overlapping, thus, marking incomparable results.

combination of equal or similar, e. g., Box-Cox and logarithmic, transformations
can result in a severe change of the response distribution that deteriorates the
performance of SPO.

Discussion: Of course, the significance of the effect of AG is biased by the deci-
sion for using the mean over all runs as performance criterion. This decision was
made based on practical considerations, such as the robustness with respect to
negative outliers and the interpretation of a Kriging prediction as normal distri-

A Rank Transformation Can Improve SPO 41

0.022 0.0225 0.023 0.0235 0.024 0.0245 0.025 0.0255 0.026 0.0265 0.027

LT=rank,GT=rank

LT=none,GT=rank

LT=log,GT=rank

LT=boxcox,GT=rank

LT=rank,GT=none

LT=none,GT=none

LT=log,GT=none

LT=boxcox,GT=none

LT=rank,GT=log

LT=none,GT=log

LT=log,GT=log

LT=boxcox,GT=log

LT=rank,GT=boxcox

LT=none,GT=boxcox

LT=log,GT=boxcox

LT=boxcox,GT=boxcox

Fig. 2: Confidence intervals of the multiple comparison test for the interaction effect
of LT and GT based on the results of the ANOVA on S ZDT1. The colors indicate
significant differences (red outperforms blue) compared to the version without trans-
formations at the α = 0.05 level.

bution defined by the predicted mean ŷ(x) and standard deviation (uncertainty)
ŝ(x). This interpretation also motivates the use of LT for improving the fit of
the results’ empirical distribution for each run with a normal distribution, which
is shown to be successful in Fig. 4 and Fig. 5. However, the effect of LT in the
experiments is low since SPO uses a Kriging model without nugget effect, which
results in an uncertainty prediction of zero for the observed designs. It can be
assumed that the effect of LT will gain importance when using Kriging mod-
els with heterogenous nugget effect [16], because these models can incorporate
uncertainty estimates from the data.

The improvements obtained by the rank transformation on most of the con-
sidered problems are stunning. In particular with regard to the smooth and
continously defined Kriging models with Gaussian kernel, the good performance
is surprising since the rank transformation introduces a stair structure to the
modeled response. An explanation of this effect may be based on the skewness
of the aggregated responses. In Fig. 3 it is shown that the results’ distribution
over the runs in SPO is highly skewed. Continuous transformations can reduce
the skewness, but as shown on R ZDT4, they are not always successful. The
transformation to a uniform distribution, which is performed by a rank transfor-
mation, directly results in a non-skewed distribution (cf. Fig. 4). Consequently,
the center of mass is shifted to the center of the Gaussian process used for the

42 A Rank Transformation Can Improve SPO

No LT, no GT No LT, logarithmic GT No LT, Box-Cox GT

Sphere

Rastrigin

S ZDT1

R ZDT4

Fig. 3: Histograms of the aggregated responses’ distributions. In the left column, the
original data obtained by SPO runs with the default configuration are shown. In the
middle and right column, the histograms of the respective transformations of these
responses are presented.

Kriging prediction. This results in a higher efficiency of the sequential optimiza-
tion in SPO.

The absence of significant results on R ZDT4 is based on a floor effect. The
test function is to hard to be solved by any parameterization of the SMS-EMOA.
Thus, a better setup of SPO cannot provide significant improvements.

5 Conclusion and Outlook

Based on four test instances representing different problem classes, we analyzed
the utility of applying different AG, LT, and GT functions within the SPO frame-
work. Given the mean performance as quality criterion, the mean was superior
to the more robust median estimate. Furthermore, a rank-transformation of the
aggregated data before the modeling improved the results of SPO. An additional

A Rank Transformation Can Improve SPO 43

Fig. 4: Histograms of the complete set of observed responses before (left) and after
(center) the LT and of the final aggregated responses after GT (right) for the successful
combination of a logarithmic LT and a rank GT on the sphere problem. At the bottom,
the effect of the LT on the normality of the residuals, which are computed based on
the estimated mean and standard deviation of each parameter vector, is shown.

transformation – rank, logarithmic, or Box-Cox – prior to the aggregation re-
sulted in an improved fit of the residuals with the normal distribution, but did
not show significant improvements for all considered test instances. Nevertheless,
this LT has to be in accordance with the GT after the aggregation since a strong
interaction between both transformations exists.

The superiority of the rank transformation has been shown based on an
established and well-chosen, but small set of test instances. All these test in-
stances result in heavily right-skewed distributions of aggregated response val-
ues. By transforming the results to a uniform distribution, the rank GT obtains a
non-skewed training sample for Kriging. Additional experiments on further test
instances should be performed in order to support this result’s generality. The
weak effect of the LT may be related to the chosen Kriging approach without
nugget effect. Thus, the analysis of LT should also be performed in the con-
text of Kriging models with homo- and heterogeneous nugget effect. Based on
the variety of different kinds of problems, an adaptive approach that selects the
transformation function based on a data analysis of the observed responses is
still desired. We have developed first adaptive approaches we are analyzing right
now.

44 A Rank Transformation Can Improve SPO

Fig. 5: Histograms of the complete set of observed responses before (left) and after
(center) the LT and of the final aggregated responses after GT (right) for the successful
combination of a rank LT and a Box-Cox GT on S ZDT1. At the bottom, the effect of
the LT on the normality of the residuals, which are computed based on the estimated
mean and standard deviation of each parameter vector, is shown.

Acknowledgments This paper is based on investigations of the collaborative
research center SFB/TR TRR 30, which is kindly supported by the Deutsche
Forschungsgemeinschaft (DFG).

References

1. Bartz-Beielstein, T., Lasarczyk, C., Preuss, M.: Sequential parameter optimization.
In: McKay, B., et al. (eds.) Proc. 2005 IEEE Congress on Evolutionary Computa-
tion (CEC 2005). pp. 773–780. IEEE press, Los Alamitos, CA (2005)

2. Beume, N., Naujoks, B., Emmerich, M.: SMS-EMOA: Multiobjective selection
based on dominated hypervolume. European Journal of Operational Research
181(3), 1653–1669 (2007)

3. Biermann, D., Joliet, R., Michelitsch, T., Wagner, T.: Sequential parameter op-
timization of an evolution strategy for the design of mold temperature control
systems. In: Fogel, G., Ishibuchi, H., et al. (eds.) Proc. 2010 IEEE Congress on
Evolutionary Computation (CEC 2010). IEEE Press, Las Alamitos, CA (2010)

4. Box, G.E.P., Cox, D.R.: An analysis of transformations. Royal Statistical Society,
Series B 26(2), 211–252 (1964)

5. Conover, W.J., Iman, R.L.: Rank transformations as a bridge between parametric
and nonparametric statistics. American Statistician 35(3), 124–129 (1981)

A Rank Transformation Can Improve SPO 45

Fig. 6: Histograms of the complete set of observed responses before (left) and after
(center) the LT and of the final aggregated responses after GT (right) for the poorly
performing combination of a logarithmic LT and GT on Rastrigin. At the bottom, the
effect of the LT on the normality of the residuals, which are computed based on the
estimated mean and standard deviation of each parameter vector, is shown.

6. Cressie, N.A.C.: Statistics for Spatial Data. John Wiley and Sons, New York (1993)

7. Deb, K., Agrawal, R.B.: Simulated binary crossover for continuous search space.
Complex Systems 9, 115–148 (1995)

8. Huang, D., Allen, T.T., Notz, W.I., Zheng, N.: Global optimization of stochastic
black-box systems via sequential kriging meta-models. Global Optimization 34(4),
441–466 (2006)

9. Huang, V.L., Qin, A.K., Deb, K., Zitzler, E., Suganthan, P.N., Liang, J.J.,
Preuss, M., Huband, S.: Problem definitions for performance assessment of multi-
objective optimization algorithms. Tech. rep., Nanyang Technological Univer-
sity, Singapore (2007), http://www3.ntu.edu.sg/home/epnsugan/index_files/

CEC-07/CEC07.htm

10. Hutter, F., Bartz-Beielstein, T., Hoos, H.H., Leyton-Brown, K., Murphy, K.: Se-
quential model-based parameter optimisation: an experimental investigation of au-
tomated and interactive approaches. In: Bartz-Beielstein, T., Chiarandini, M., Pa-
quete, L., Preuss, M. (eds.) Empirical Methods for the Analysis of Optimization
Algorithms, pp. 361–411. Springer, Berlin Heidelberg (2010)

11. Hutter, F., Hoos, H.H., Leyton-Brown, K., Murphy, K.P.: An experimental inves-
tigation of model-based parameter optimisation: SPO and beyond. In: Raidl, G.,
et al. (eds.) Proc. Genetic and Evolutionary Computation Conf. (GECCO 2009).
pp. 271–278. ACM, New York, NY (2009)

46 A Rank Transformation Can Improve SPO

12. Journel, A.G., Deutsch, C.V.: Rank order geostatistics: A proposal for a unique
coding and common processing of diverse data. In: Baafi, E., Schofield, N. (eds.)
Geostatistics Wollongong ’96. vol. 1, pp. 174–187. Kluwer Academic (1997)

13. Knowles, J.D., Thiele, L., Zitzler, E.: A tutorial on the performance assessment
of stochastic multiobjective optimizers. Tech. rep., Computer Engineering and
Networks Laboratory (TIK), Swiss Federal Institute of Technology (ETH) Zurich
(2005)

14. McKay, M.D., Conover, W.J., Beckman, R.J.: A comparison of three methods for
selecting values of input variables in the analysis of output from a computer code.
Technometrics 21(1), 239–245 (1979)

15. Montgomery, D.C.: Design and Analysis of Experiments. John Wiley and Sons,
New York, 4. edn. (1997)

16. Picheny, V., Ginsbourger, D., Richet, Y.: Noisy expected improvement and on-
line computation time allocation for the optimization of simulators with tunable
fidelity. In: Rodrigues, H., et al. (eds.) Proc. 2nd Int’l Conf. Engineering Optimiza-
tion (EngOpt 2010) (2010)

17. Sacks, J., Welch, W.J., Mitchell, T.J., Wynn, H.P.: Design and analysis of computer
experiments. Statistical Science 4(4), 409–435 (1989)

18. Santner, T.J., Williams, B.J., Notz, W.: The Design and Analysis of Computer
Experiments. Springer, New York, NY (2003)

19. Schonlau, M., Welch, W.J., Jones, D.R.: Global versus local search in constrained
optimization of computer models. In: Rosenberger, W.F., Flournoy, N., Wong,
W.K. (eds.) New Developments and Applications in Experimental Design, vol. 34,
pp. 11–25. Institute of Mathematical Statistics, Hayward, CA (1997)

20. Schwefel, H.P.: Evolution and Optimum Seeking. Wiley-Interscience, NY, USA
(1995)

21. Singh, A.K., Ananda, M.M.A.: Rank kriging for characterization of mercury con-
tamination at the East Fork Poplar Creek, Oak Ridge, Tennessee. Environmetrics
13(5–6), 679–691 (2002)

Optimizing Support Vector Machines for
Stormwater Prediction

Patrick Koch, Wolfgang Konen, Oliver Flasch, and Thomas Bartz-Beielstein

Department of Computer Science, Cologne University of Applied Sciences,
51643 Gummersbach,Germany {patrick.koch, wolfgang.konen, oliver.flasch,

thomas.bartz-beielstein}@fh-koeln.de

Abstract. In water resource management, efficient controllers of stormwa-
ter tanks prevent flooding of sewage systems, which reduces environmen-
tal pollution. With accurate predictions of stormwater tank fill levels
based on past rainfall, such controlling systems are able to detect state
changes as early as possible. Up to now, good results on this problem
could only be achieved by applying special-purpose models especially
designed for stormwater prediction. The question arises whether it is
possible to replace such specialized models with state-of-the-art machine
learning methods, such as Support Vector Machines (SVM) in combina-
tion with consequent parameter tuning using sequential parameter op-
timization, to achieve competitive performance. This study shows that
even superior results can be obtained if the SVM hyperparameters and
the considered preprocessing is tuned. Unfortunately, this tuning might
also result in overfitting or oversearching – both effects would lead to de-
clined model generalizability. We analyze our tuned models and present
possibilities to circumvent the effects of overfitting and oversearching.

1 Introduction

Environmental engineering offers important concepts to preserve clean water and
to protect the environment. Stormwater tanks are installed to stabilize the load
on the sewage system by preventing rainwater from flooding the sewage network
and by supplying a base load in dry periods. Mostly, heavy rainfalls are the
reason for overflows of stormwater tanks, causing environmental pollution from
wastewater contaminating the environment. To avoid such situations, the effluent
of the stormwater tanks must be controlled effectively and possible future state
changes in the inflow should be detected as early as possible. The time series
regression problem of predicting a stormwater tank fill level at time t from a fixed
window of past rainfall data from time t back to time t−W will be referred to
as the stormwater problem in the remainder of this paper.

A model that predicts fill levels by means of rainfall data can be an important
aid for the controlling system. Special sensors (Fig. 1) record time series data
which can be used to train such a model.

Although many methods exist for time series analysis [4], ranging from classi-
cal statistical regression to computational statistics, such methods often require

48 P. Koch, W. Konen, O. Flasch, and T. Bartz-Beielstein

Fig. 1: Left: rain gauge (pluviometer). Right: stormwater tank.

time-consuming investigations on the hyperparameter selection and preprocess-
ing of the data. Besides that, the results are often worse than special-purpose
models which are designed from scratch for each new problem. This situation is
of course very unsatisfying for the practitioner in environmental engineering, be-
cause new models have to be created and parameters have to be tuned manually
for each problem.

For this reason, it would be an advantage to have some standard repertoire
of methods which can be easily adapted to new problems. In this paper we use
support vector machines (SVMs) [6] for Support Vector Regression as a state-
of-the-art method from machine learning and apply them to the stormwater
problem. SVMs are known to be a strong method for classification and regres-
sion. It has to be noted here, that because of the data sets are time series, records
are not necessarily independent of each other, as in normal regression. Therefore
we investigate generic preprocessing operators to embed time series data and
to generate new input features for the SVM model. In addition, we use sequen-
tial parameter optimization (SPOT) [2] and a genetic algorithm (GA) to find
good hyperparameter settings for both preprocessing and SVM parameters. We
analyze the robustness of our method against overfitting and oversearching of
hyperparameters. Preliminary work in stormwater prediction has been done by
Hilmer [9], Bartz-Beielstein et al. [3] and Flasch et al. [7]. A conclusion of these
previous publications is that good results can be obtained with specialized mod-
els (which are ’hand-crafted’ and carefully adapted to the stormwater problem).
The main hypotheses of this paper are:

H1 It is possible to move away from domain-specific models without loss in
accuracy by applying modern machine learning algorithms and modern pa-
rameter tuning methods on data augmented through generic time-series pre-
processing operators.

H2 Parameter tuning for stormwater prediction leads to oversearching, yielding
too optimistic results on the dataset during tuning.

Hypothesis H2 puts emphasis on the fact that a distinction between validation
set (used during tuning) and test set (used for evaluation) is essential to correctly
quantify the benefits from parameter tuning in data mining. The oversearching

Optimizing Support Vector Machines for Stormwater Prediction 49

issue is prevalent in data mining since the output function to tune shows often a
high variance when the data used for training or tuning are selected differently.

2 Methods

2.1 Stormwater Tank Data

Time series data for this case study are collected from a real stormwater tank
in Germany and consists of 30,000 data records, ranging from April to August
2006. Rainfall data are measured in three-minute intervals by a pluviometer as
shown in Fig. 1. As training set we always used a 5,000 record time window (Set
2, Fig. 2) in order to predict another 5,000 record time window for testing (Set
4) which is not directly successive with regard to time to the training period
(see Tab. 1). Later, we conducted a hyperparameter tuning with SPOT and
feature selection where we used all 4 different datasets {Set1, Set2, Set3, Set4},
each containing 5,000 records to analyze the robustness of our approach against
oversearching and overfitting.

0 1000 2000 3000 4000 5000

0
20

40
60

80
10

0

Time(min.)

Fi
ll

Le
ve

l(%
)

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

R
ai

nf
al

l(m
m

/m
in

.)

Fig. 2: Time window used for training (Set 2) containing rainfall and fill level of the
stormwater tank.

Table 1: Real-world time series data from a stormwater tank in Germany.

Set Start Date End Date

Set 1 2006-04-28 01:05:59 2006-05-15 09:40:59
Set 2 2006-05-15 09:40:59 2006-06-01 18:20:59
Set 3 2006-06-19 03:01:00 2006-07-06 11:41:00
Set 4 2006-07-23 20:21:00 2006-08-10 05:01:00

50 P. Koch, W. Konen, O. Flasch, and T. Bartz-Beielstein

2.2 Evaluation of Models

The prediction error on the datasets is taken as objective function for SPOT and
for the GA. For comparing models, we calculate the root mean squared error
(RMSE) as a quality measure, where 〈·〉 denotes averaging over all measurements:

RMSE =
√
〈(Ypredicted − Ytrue)2〉 (1)

We also incorporate a näıve prediction, always predicting the mean value of
the training period.

2.3 Sequential Parameter Optimization

The main purpose of SPOT is to determine improved parameter settings for
search and optimization algorithms and to analyze and understand their perfor-
mance.

During the first stage of experimentation, SPOT treats an algorithm A as a
black box. A set of input variables x, is passed to A. Each run of the algorithm
produces some output y. SPOT tries to determine a functional relationship
F between x and y for a given problem formulated by an objective function
f : u→ v. Since experiments are run on computers, pseudorandom numbers are
taken into consideration if:
– the underlying objective function f is stochastically disturbed, e.g., mea-

surement errors or noise occur, and/or
– the algorithm A uses some stochastic elements, e.g., mutation in evolution

strategies.
SPOT employs a sequentially improved model to estimate the relationship

between algorithm input variables and its output. This serves two primary goals.
One is to enable determining good parameter settings, thus SPOT may be used
as a tuner. Secondly, variable interactions can be revealed for helping in under-
standing how the tested algorithm works when confronted with a specific prob-
lem or how changes in the problem influence the algorithm’s performance. Con-
cerning the model, SPOT allows for insertion of virtually any available model.
However, regression and Kriging models or a combination thereof are most fre-
quently used. The Kriging predictor used in this study uses a regression constant
λ which is added to the diagonal of the correlation matrix. Maximum likelihood
estimation was used to determine the regression constant λ [1, 8].

2.4 The INT2 Model for Predictive Control of Stormwater Tanks

In previous works [3, 12], the stormwater tank problem was investigated with
different modeling approaches, among them FIR, NARX, ESN, a dynamical
system based on ordinary differential equations (ODE) and a dynamical system
based on integral equations (INT2). All models in these former works were sys-
tematically optimized using SPOT [2]. Among these models the INT2 approach
turned out to be the best one [3]. The INT2 model is an analytical regression

Optimizing Support Vector Machines for Stormwater Prediction 51

model based on integral equations. Disadvantages of the INT2 model are that it
is a special-purpose model only designed for stormwater prediction and that it is
practically expensive to obtain an optimal parameter configuration: the param-
eterization example presented in [3] contains 9 tunable parameters which must
be set. In this paper we compare hand-tuned INT2 parameters with the best
parameter configuration found by SPOT in former study [3].

2.5 Support Vector Machines

Support Vector Machines have been successfully applied to regression problems
by Drucker et al. [6], Müller et al. [14], Mattera and Haykin [13], and Chan and
Lin [5]. In these studies the method has been shown to be superior to many other
methods especially when the dimensionality of the feature space is very large.

x

y +ε

-ε

0ξ

Fig. 3: Example for Support Vector Regression. A tube with radius ε is learned to
represent the real target function. Possible outliers are being regularized considering a
positive slack variable ξ.

Support Vector Machines transform the input space of the training data to a
higher-order space using a non-linear mapping, e.g. a radial basis function. In this
higher order space a linear function is learned, which has at most ε deviation
from the real values in general and outliers are regularized by means of the
parameter ξ. An example for Support Vector Regression and its parameters ε
and ξ is depicted in Fig. 3. The transformation to a higher-order space by a non-
linear kernel function with parameter γ is not shown here. For a more detailed
description of SVM we therefore refer to Smola and Schölkopf [16].

2.6 Preprocessing for Time Series Modeling

In an accompanying work [11] we have analyzed the effects of different pre-
processing methods for the stormwater problem. Time series prediction models
can benefit from preprocessing operators which generate new features based on
the input data. It turns out that best results were obtained with the following
preprocessing ingredients:

– Embedding of the input data [10]. Here, the fill level of stormwater overflow
tanks l(t) can be represented by a function F on past input features, more

52 P. Koch, W. Konen, O. Flasch, and T. Bartz-Beielstein

precisely by the rainfall r(t) up to r(t − W), where t indicates time and
W ∈ N+ is the embedding dimension:

l(t) := F (r(t), r(t− 1), r(t− 2), ..., r(t−W)) (2)

– Leaky integration of rainfall (termed leaky rain) which is computed as fol-
lows:

L(t) =

T∑
i=0

(
λi · r(t− i)

)
(3)

where λ ∈ [0, 1] and T ∈ N+ is the length of the integration window. Best
results with SVM and leaky rain preprocessing can be obtained with two
different leaky rain functions using two different values λ1, λ2 and T1, T2,
resp (see Fig. 4).

– More details on the preprocessing are given in [11]. Sequential Parameter
Optimization (SPOT) was used to tune the SVM and the preprocessing
parameters.

0
40

80

Fi
ll

Le
ve

l (
%

) Real
Predicted

Fig. 4: Prediction for stormwater set 4: the dark line represents the predicted fill level
of a SVM model against the shaded area as real fill level. The result was obtained by
the best SPOT-tuned SVM model using two leaky rain kernels.

The results of the SPOT tuning are shown in Tab. 2 and Tab. 3. It might
be surprising at first sight that the RMSE for Set 2, the data set on which each
SVM was trained, is considerably larger than for all other test sets. This is in
contrast to normal overfitting where one would expect the training set error to
be lower than all other errors. But here Set 2 (see Fig. 2) is considerably more
difficult than all other data sets since it contains long time intervals with 100%
fill level which are difficult to reproduce from the observed rainfall alone for any
predictive model.

In Tab. 3 the evaluation of the SPOT-tuned SVM model, a näıve predictor
(predicting the mean value of the training set) and the special-purpose model
INT2 on data sets 1-4 is shown. The worst result is obtained with the näıve
prediction, which is no surprise, because no learning is included in this approach.
SVM (default) gives mediocre results, while SVM (SPOT-tuned) is comparable
to INT2. Tuning was done using the RMSE on Set 4. As a first conclusion
drawn out of these results it seems to be possible to achieve competitive results
to special-purpose models using our tuned Support Vector Regression model for
the fill level problem.

Optimizing Support Vector Machines for Stormwater Prediction 53

Table 2: Best SPOT parameter configuration for all tuned parameters evaluated on set
4. The region of interest (ROI) bounds are the final values after preliminary runs.

Type Parameter Best Value found ROI Remark

Embedding W1 39 [2, 60] embed. dimension 1
W2 16 [2, 60] embed. dimension 2
T1 114 [50, 120] leaky window size 1
T2 102 [50, 120] leaky window size 2
λ1 0.0250092 [0.00001, 0.3] leaky decay 1
λ2 0.225002 [0.00001, 0.3] leaky decay 2

SVM γ 0.0116667 [0.005, 0.3] RBF kernel width
ε 0.0116667 [0.005, 0.3] ε-insensitive loss fct.
χ 1.25 [0, 10] penalty term

Table 3: Evaluation of all models on time windows 1-4. Shown are the RMSE values,
when trained on set 2. SVM (default) means results with default SVM kernel parame-
ters, while SVM (SPOT-tuned) represents mean values obtained in five runs of SPOT.

Model type Set 1 Set 2 Set 3 Set 4

Näıve prediction 33.56 42.39 34.63 33.34
INT2 (hand-tuned) 7.74 24.27 12.39 10.61
SVM (default) 11.81 44.82 18.55 14.33
SVM (SPOT-tuned) 10.45 43.92 12.93 7.69

3 Experiments: The Effects of Tuning and Selection

The experimental analysis here and in [11] is based on the radial basis SVM
kernel from the e1071 SVM-implementation in R, since we achieved best results
with this kernel choice.

All SVM models obtained in this work are sensitive to the parameters for
preprocessing and modeling. It has been shown in [11] that a too large number
of irrelevant input features can lead to significantly worse results. Although the
input features have been extended first by leaky rain embedding and then tuned
by a model-based parameter optimization technique (SPOT), it is not clear if

1. the model is generic enough to perform well on different test data and
2. all input features determined by SPOT are really relevant to achieve a good

prediction accuracy.

For clarifying the first point, we investigate if our models lead to misleading
fits when we evaluate them on different test sets. A misleading model in machine
learning can be characterized by the terms oversearching and overfitting [15].
Oversearching occurs when the learned concept is misleading due to its tailoring
to the training goal caused by a too extensive search. In contrast to the well-
known concept of overfitting, an oversearched model must not necessarily be
“overcomplex”, but rather misleading due to a too extensive search for the best
hyperparameters, i.e. model and preprocessing parameters.

54 P. Koch, W. Konen, O. Flasch, and T. Bartz-Beielstein

The second point can be clarified by a consequent feature selection mecha-
nism, that creates subsets of input features which are used to build models and
then evaluated. Here we perform a model optimization by GA feature selection,
where a binary string defines the feature set of the embedded leaky rain input
features.

The following list of experiments describes our route for a critical investi-
gation of issues related to overfitting and oversearching caused by parameter
tuning and feature selection:

T1 Parameter tuning using SPOT for SVM parameters and preprocessing pa-
rameters, where the objective function for SPOT is evaluated on different
validation sets;

T2 Feature Selection by Genetic Algorithms applied to the optimal parameter
configurations of T1;

T3 Final parameter tuning using SPOT for parameter configuration obtained
on the reduced feature set from step T2;

3.1 T1: Oversearching by SPOT

In our last models we used the prediction error gathered on the test data set as
the objective function value for the hyperparameter tuning with SPOT. In the
real world this value is unknown and when available during optimization it adds
unrealistic benefits to the tuned model. In order to perform a fair comparison
and to show the benefits of parameter tuning in a more realistic setting, we
should use a different objective function. Otherwise the test set error might be
too optimistic due the model being tuned and tested on the same set. In Tab. 4,
we present the mean results of five SPOT runs for the SVR model to determine
optimal parameter settings which are then alternately evaluated on the sets 1,3,4.
Again, data set 2 has been used for training. The best configuration found by
SPOT is then applied in turn to the other sets (columns) resulting in 3 RMSE
values for each parameter configuration. We used the Matlab version of SPOT
allowing a total budget of 200 SVM models to be built and a maximum number
of 500 samples in the metamodel.

A good indicator for oversearching is when best values are often present in
the diagonal of the table. It can be seen that this is the case for all validation
sets of Tab. 4. Besides this, standard deviations of the offdiagonal values are also
larger than the values on the diagonal.

We quantify the oversearching effect by evaluating the following formula: let
Rvt denote the RMSE for row v and column t of Tab. 4. We define

Vt =
St −Rtt
Rtt

with St =
1

3

(
4∑
v=1

Rvt −Rtt

)
(4)

With St we evaluate the mean off-diagonal RMSE for the columns t = {1, 2, 3}
which is an indicator of the true strength of the tuned model on independent
test data. The diagonal elements Rtt are considerably lower in each column of

Optimizing Support Vector Machines for Stormwater Prediction 55

Table 4: Results of SPOT tuning on the stormwater problem. In each row 1-3 of the
table, SPOT tunes the RMSE on validation set 1,3,4 leading to different SPOT-tuned
parameter configurations. These configurations were applied to the test sets (columns)
to make the results comparable. Each experiment was repeated five times with different
seeds and we show the mean RMSE; the numbers in brackets indicate the standard
deviations.

Test

Set 1 Set 3 Set 4

Validation
Set 1 9.11 (0.56) 16.40 (6.42) 12.88 (5.50)
Set 3 10.82 (1.55) 12.78(0.34) 12.36 (3.46)
Set 4 10.45 (0.28) 12.93 (0.35) 7.69 (0.48)

St 10.64 14.67 12.62
Vt 16.7% 14.7% 64.1%

Tab. 4. In case of no oversearching, a value of Vt close to zero would be expected,
whereas values larger than zero indicate oversearching.

In summary, a consequent tuning is beneficial but the tuned RMSE is often
subject to oversearching effects. E.g. in our case the RMSE on a certain test set
was on average 32% higher1 when the tuned model had not seen the test data
before (the realistic case) as compared to the lower value when the test data
were used during tuning (T=V).

3.2 T2: Feature Selection

A Genetic Algorithm (GA) is used to determine good feature subsets for the
SVM regressor. We rely here on the GA approach because it has some advantages
compared to other feature selection methods: Iterative search algorithms can be
used to determine feature subsets, where more features are added or eliminated
to build the final feature set (Feature Forward Selection and Feature Backward
Elimination). Unfortunately these methods often get stuck in locally optimal
feature subsets where they finally converge. GAs offer the possibility to flee out
of such local optima and find the global optimum given enough iterations.

Experimental Setup In our experimental analysis we started five GA runs, each
with a population size of 100, elitist selection strategy (e.g. the best 20% of total
population were definitely survivors) and termination after 100 generations. GA
parameters where chosen by means of preliminary runs. Each GA individual has
N genes, each of which representing whether a certain feature should be included
in the model or not. The basis input feature set consisted of all features drawn
from a sample SPOT-tuned configuration set as described in Sec. 3.1. Here, the
gene length N equals the sum of the embedding dimensions for the two leaky
rain functions, ranging from 55 to 92. The candidate solution is mapped to a
feature vector which is passed to the feature selection preprocessing script before

1 average of all Vt in Tab. 4

56 P. Koch, W. Konen, O. Flasch, and T. Bartz-Beielstein

the SVM model is built. This process has an overall runtime of about 17 hours
on a 2.4 GHz Intel Xeon CPU.

Results In each objective function, the RMSE was calculated on the validation
sets as defined in Sec. 2.1. This resulted in different feature vectors, which were
evaluated again on each validation set. The number of selected features ranges
from a minimal feature set of 5 (mean value of GA runs when set 1 was used
for evaluation) up to a maximum feature set of 50 (mean value of 5 GA runs).
The number of features only vary slightly for runs of the same configuration, but
usually differ for different configurations.

The evaluation is presented in Tab. 5. Again it has to be noted, that all
configurations seem to suffer from oversearching, when the validation set V (the
set on which the GA was performed) is equal to the test set T : the diagonal
in Tab. 5 shows always the seemingly best values. Compared with the results
gathered by the SPOT tuning (Tab. 4), GA feature selection leads to a slightly
better predictive performance if we look at St, the mean off-diagonal RMSE.

Table 5: Mean results of five runs using feature selection by genetic algorithms. SVM
and preprocessing parameters were obtained using the SPOT configurations 1,3,4 (see
Sec. 3.1). The table shows the RMSE values for feature subsets on the validation sets
leading to different feature configurations (rows). These configurations were evaluated
on the test sets (columns); values in brackets indicate the standard deviation over five
runs.

Test

Set 1 Set 3 Set 4

Validation
Set 1 9.36 (0.11) 15.48 (0.90) 11.44 (0.91)
Set 3 10.80 (0.19) 12.11(0.59) 7.78 (0.30)
Set 4 10.99 (0.07) 13.04 (0.04) 7.36 (0.03)

St 10.90 14.26 9.61
Vt 16.40% 17.75% 30.57%

Even when feature selection does not produce much better results than SPOT
tuning alone, it has an obvious positive effect on the RMSE ranges: the standard
deviations of the configurations are considerably smaller with feature selection
than without, leading to better generalizing models. Also the variance between
the three off-diagonal RMSE’s is lower than the high off-diagonal variance ob-
served in experiment T1. A reason for this might be the complexity decrease of
the models due to the lower number of input features. In addition to this, the
runtime for model-building is also reduced.

3.3 T3: Final Optimization Using SPOT

One might expect that the best parameter configuration of SVM and embedding
parameters has changed with the reduced feature subset found by GA. To check
this hypothesis we have conducted SPOT again for two runs of the GA feature

Optimizing Support Vector Machines for Stormwater Prediction 57

configurations, leading to tuned parameter configurations for the reduced feature
sets. Although we observed slight improvements on the validation data set used
for tuning, the results got worse on the test sets which indicates overtuning
caused by this optimization. As a consequence we claim that the parameter
configurations of T1 are still valid after GA optimization. Nevertheless we cannot
exclude that this final step can be important in other applications. We suggest
to perform a parameter tuning, as soon as there is a change in the input to the
regression model, at least for a few runs.

4 Conclusion and Outlook

We analyzed different predictive models based on Support Vector Machines
(SVM) for a practical application named stormwater prediction. The results
gathered by the general SVM method are in most cases better than the best-
known special-purpose model (INT2). This can be seen as a confirmation of our
hypothesis H1. It might have a great impact for applications which need a lot of
similar models to be built since with our approach most of the time-consuming
work of defining and tuning domain-specific models can be replaced by automatic
processes.

Our results have also shown that one has to be careful when optimizing
data-mining models by means of parameter tuning, e.g. with SPOT and GA:
parameter tuning will often lead to oversearching and to too optimistic error
estimates on the data sets used for tuning (as measured by Vt in Tab. 4 and
Tab. 5), which was the statement of our hypothesis H2. Therefore the distinc-
tion between validation data sets (used for tuning) and independent test sets is
essential to obtain a realistic estimate on the improvement reached by tuning.
Nevertheless, our results have shown that tuning leads to better models as mea-
sured by independent test set RMSE. Also feature selection led to more stable
results in our case study, which indicates better-generalizing models. In a nut-
shell, feature selection and SPOT tuning can help to improve results, but must
always be validated on different test sets to recognize possible overfitting and
oversearching effects.

Although the user is satisfied with the current results, we plan to extend and
validate our study on other datasets, first by applying our methodology to dif-
ferent stormwater tanks and more comprehensive data (time periods stretching
over several years). Also we want to increase the prediction horizon to larger val-
ues, enabling longer response times for the effluent control. Furthermore, other
time series problems will be investigated, especially problems where no good
preprocessing is known yet.

Acknowledgements This work has been supported by the Bundesministerium
für Bildung und Forschung (BMBF) under the grants FIWA and SOMA (AiF
FKZ 17N2309 and 17N1009, ”Ingenieurnachwuchs”) and by the Cologne Univer-
sity of Applied Sciences under the research focus grant COSA. We are grateful

58 P. Koch, W. Konen, O. Flasch, and T. Bartz-Beielstein

to Prof. Dr. Michael Bongards, his research group and to the Aggerverband
Gummersbach for discussions and for the stormwater tank data.

References

1. Bartz-Beielstein, T.: SPOT: An R package for automatic and interac-
tive tuning of optimization algorithms by sequential parameter optimiza-
tion. Tech. Rep. arXiv:1006.4645. CIOP TECHNICAL REPORT 05-10.
COLOGNE UNIVERSITY OF APPLIED SCIENCES (Jun 2010), http:

//arxiv.org/abs/1006.4645, comments: Article can be downloaded from:
http://arxiv.org/abs/1006.4645. Related software can be downloaded from
http://cran.r-project.org/web/packages/SPOT/index.html

2. Bartz-Beielstein, T.: Experimental Research in Evolutionary Computation—The
New Experimentalism. Natural Computing Series, Springer, Berlin, Heidelberg,
New York (2006)

3. Bartz-Beielstein, T., Zimmer, T., Konen, W.: Parameterselektion für komplexe
modellierungsaufgaben der wasserwirtschaft – moderne CI-verfahren zur zeitrei-
henanalyse. In: Mikut, R., Reischl, M. (eds.) Proc. 18th Workshop Computational
Intelligence. pp. 136–150. Universitätsverlag, Karlsruhe (2008)

4. Brockwell, P.J., Davis, R.A.: Time series: theory and methods. Springer Verlag
(2009)

5. Chang, C., Lin, C.: IJCNN 2001 challenge: Generalization ability and text de-
coding. In: Neural Networks, 2001. Proceedings. IJCNN’01. International Joint
Conference on Neural Networks. vol. 2 (2001)

6. Drucker, H., Burges, C., Kaufman, L., Smola, A., Vapnik, V.: Support vector re-
gression machines. Advances in neural information processing systems pp. 155–161
(1997)

7. Flasch, O., Bartz-Beielstein, T., Koch, P., Konen, W.: Genetic programming
applied to predictive control in environmental engineering. In: Hoffmann, F.,
Hüllermeier, E. (eds.) Proceedings 19. Workshop Computational Intelligence. pp.
101–113. KIT Scientific Publishing, Karlsruhe (2009)

8. Forrester, A., Sobester, A., Keane, A.: Engineering Design via Surrogate Modelling.
Wiley (2008)

9. Hilmer, T.: Water in Society – Integrated Optimisation of Sewerage Systems and
Wastewater Treatment Plants with Computational Intelligence Tools. Ph.D. thesis,
Open Universiteit Nederland, Heerlen (2008)

10. Kantz, H., Schreiber, T.: Nonlinear time series analysis. Cambridge Univ. Press
(2004)

11. Koch, P., Flasch, O., Konen, W., Batz-Beielstein, T.: Predicting fill levels: Generic
preprocessing and tuning of support vector regression models. in preparation for
http://arxiv.org (2010)

12. Konen, W., Zimmer, T., Bartz-Beielstein, T.: Optimierte Modellierung von
Füllständen in Regenüberlaufbecken mittels CI-basierter Parameterselektion. at
– Automatisierungstechnik 57(3), 155–166 (2009)

13. Mattera, D., Haykin, S.: Support vector machines for dynamic reconstruction of a
chaotic system. In: Advances in kernel methods. pp. 211–241. MIT Press (1999)

14. Müller, K., Smola, A., Rätsch, G., Schölkopf, B., Kohlmorgen, J., Vapnik, V.:
Predicting time series with support vector machines. Artificial Neural Networks–
ICANN’97 pp. 999–1004 (1997)

Optimizing Support Vector Machines for Stormwater Prediction 59

15. Quinlan, J.R., Cameron-jones, R.M.: Oversearching and layered search in empirical
learning. In: In Proceedings of the Fourteenth International Joint Conference on
Artificial Intelligence. pp. 1019–1024. Morgan Kaufmann (1995)

16. Smola, A., Schölkopf, B.: A tutorial on support vector regression. Statistics and
Computing 14(3), 199–222 (2004)

