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Abstract

Sequential parameter optimization is a heuristic that combines classical
and modern statistical techniques to improve the performance of search al-
gorithms. It includes methods for tuning based on classical regression and
analysis of variance techniques; tree-based models such as CART and ran-
dom forest; Gaussian process models (Kriging), and combinations of different
meta-modeling approaches. The suitability of these different meta models
for parameter tuning is analyzed in this article. Automated and interactive
approaches are compared..

1 Introduction

Sequential parameter optimization (SPO) is a heuristic that combines classical and
modern statistical techniques to improve the performance of search algorithms.
Bartz-Beielstein [1] presents an introduction to the state-of-the-art R implemen-
tation of SPO, the so-called sequential parameter optimization toolbox (SPOT).
This article describes important aspects of parameter tuning related to algorithm
designs and meta models. A short case study illustrates our considerations. This
paper is organized as follows. The sequential parameter optimization is introduced
in Section 2. Exogenous parameters of algorithms such as population size define
an algorithm design. Algorithm design used in our experiments are described in
Sect. 3. SPOT uses several prediction models (meta models) in order to predict
the performance of an algorithm. Meta models are introduced in Sect. 4. In order
to compare different meta models, a case study is presented in Section 5. Tuning
procedures considered so far use SPOT in an automated manner. Section 6 presents
an interactive approach, which is related to classical response surface methodology
(rsm). Section 7 presents a summary and an outlook.

2 Sequential Parameter Optimization

Sequential parameter optimization uses the available budget (e.g., simulator runs,
number of function evaluations) sequentially, i.e., it uses information from the ex-
ploration of the search space to guide the search by building one or several meta
models. Predictions from the meta models are used to select new design points.
The meta model is refined to improve knowledge about the search space. SPOT
provides tools to cope with noise, which typically occurs when randomized search



Algorithm 1: Sequential parameter optimization toolbox (SPOT)

// phase 1, building the model:

let A be the tuned algorithm;
// design considerations necessary:

generate an initial population X = {x̄1, . . . , x̄m} of m parameter vectors;
let k = k0 be the initial number of tests for determining estimated utilities;
foreach x̄ ∈ X do

run A with x̄ k times to determine the estimated utility y of x̄;
end
// phase 2, using and improving the model:

while termination criterion not true do
let ā denote the parameter vector from X with best estimated utility;
let k the number of repeats already computed for ā;
// model considerations necessary:

build meta model f based on X and {y1, . . . , y|X|};
// design considerations necessary:

generate a set X � of l new parameter vectors by random sampling;
foreach x̄ ∈ X � do

calculate f(x̄) to determine the predicted utility f(x̄) of x̄;
end
select set X �� of d parameter vectors from X � with best predicted utility (d � l);
run A with ā once and recalculate its estimated utility using all k + 1 test

results; // (improve confidence)

let k = k + 1;
run A k times with each x̄ ∈ X �� to determine the estimated utility x̄;
extend the population by X = X ∪X ��;

end

heuristics are run. It guarantees comparable confidence for search points. Users can
collect information to learn from this tuning process, e.g., by applying exploratory
data analysis. Last, but not least, SPOT provides mechanisms both for interactive
and automated tuning. SPOT is described in [2, 3]. An R version of this toolbox
for interactive and automatic optimization of algorithms can be downloaded from
CRAN.1 Programs and files from this study can be downloaded from the author’s
WWW page.2 As can be seen from Algorithm 1, meta models are used to determine
new algorithm designs. This article compares several standard and non-standard
meta-modeling approaches.

3 Algorithm Designs

There is a strong interaction between meta models and algorithm designs, because
the optimality of an algorithm design depends on the meta model [4, 5].

SPOT generates new design points during the init and during the sequential step.
Many algorithm designs generators are available in R, see, e.g., the CRAN Task

1
http://cran.r-project.org/web/packages/SPOT/index.html

2
http://www.gm.fh-koeln.de/campus/personen/lehrende/thomas.bartz-beielstein/

00489/



Table 1: SPOT initial design plugins

Type Name of the SPOT plugin R package
Fractional factorial design (Resolution III) spotCreateDesignDoe3 FrF2
Factorial design spotCreateDesignBasicDoe AlgDesign
Latin hypercube spotCreateDesignLhd SPOT
Latin hypercube spotCreateDesignLhs lhs

Table 2: SPOT meta models

Type Name of the SPOT plugin R package
Linear model spotPredictLm base
Response surface methodol-
ogy

spotPredictLmOptim rsm

Regression trees spotPredictTree rpart

Random forest spotPredictRandomForest random forest

Gaussian processes (Kriging) spotPredictMlegp mlegp

Tree based Gaussian pro-
cesses

spotPredictTgp tgp

View: Design of Experiments (DoE) & Analysis of Experimental Data.3 This is one
of the main reasons why SPOT is implemented inR. The user can use state of the art
design generators for tuning his algorithm. Or, he can write his own design generator
and use it as a plugin for SPOT. The default SPOT installation contains several
design plugins (and further design plugins will be added in forthcoming versions).
Table 1 summarizes design plugins from the current SPOT version (0.1.888).4

A Latin hypercube design (LHD) was chosen as the default initial design in Sect. 5,
because it is easy to implement and understand. Section 6 uses fractional-factorial
designs, because classical RSM techniques are used. This paper modifies SPOT’s
meta models, while design generators remain unchanged. The impact of the vari-
ation of the design generators on the algorithm’s performance will be subject of a
forthcoming paper.

4 Meta Models

SPOT processes data sequentially, i.e., starting from a small initial design, further
design points (parameter settings for the algorithm) are generated using a meta
model. Many meta models are available in R. The user can use state of the art
meta models for tuning his algorithm. Or, he can write his own meta model and
use it as a plugin for SPOT. The default SPOT installation contains several meta
models (and further meta models will be added in forthcoming versions). Table 2
summarizes meta models from the current SPOT version (0.1.888).

The R implementation of randomForest was chosen as SPOT’s default meta model,
because it is quite robust and can handle categorical and numerical values.

3
http://cran.r-project.org/web/views/ExperimentalDesign.html

4The command spotVersion() displays the actual version of your local SPOT package.



Note, these meta models and design plugins should be considered as templates. They
were implemented in order to demonstrate how the interfaces should look like. We
strongly recommend an adaptation of these plugins to your specific needs, if real-
world tuning tasks are performed. However, we will use these simple and generic
plugins for the following case study.

5 Case Study: Tuning Simulated Annealing

5.1 Goals of this Study

The following case study is devoted to the question: “Which meta models can be
recommended for tuning algorithms?” The experimental setup is generic, i.e., we
have chosen a set of meta models from statistics (linear models, tree based models,
Gaussian processes or Kriging) which were used for tuning an algorithm (stochastic
search heuristic), i.e., simulated annealing.

5.2 Simulated Annealing

Simulated annealing (SANN) belongs to the class of stochastic global optimiza-
tion methods. The R implementation, which was investigated in our study, uses
the Metropolis function for the acceptance probability. It is a variant of the sim-
ulated annealing algorithm given in [6]. SANN uses only function values but is
relatively slow. It will also work for non-differentiable functions. By default the
next candidate point is generated from a Gaussian Markov kernel with scale pro-
portional to the actual temperature. Temperatures are decreased according to the
logarithmic cooling schedule as given in [6]; specifically, the temperature is set to
temp/ log(((t− 1)/tmax)× tmax+ exp(1)), where t is the current iteration step and
temp and tmax are specifiable via control. SANN is not a general-purpose method
but can be very useful in getting to a good value on a very rough surface.

SANN uses two design variables, which were tuned during our study:

temp is the starting temperature for the cooling schedule. Defaults to 10.

tmax is the number of function evaluations at each temperature. Defaults to 10.

The interval from 1 to 50 was chosen as the region of interest (ROI) for both
design variables in our experiments. The total number of function evaluations (of
the Branin function, see Sect. 5.3) was set to maxit = 250 for all experiments. The
starting point, i.e., the initial value for the parameters to be optimized over, was
�x0 = (10, 10).

5.3 Description of the Objective Function

The Branin function
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Figure 1: Plots of the Branin function. The contour plot (left) shows the location of the
three global minima

with
x1 ∈ [−5, 10] and x2 ∈ [0, 15]. (1)

was chosen as a test function, because it is well-known in the global optimiza-
tion community, so results are comparable. It has three global minima, �x∗

1 =
[3.1416, 2.2750], �x∗

2 = [9.4248, 2.4750] and �x∗
3 = [−3.1416, 12.2750] with y∗ = f(�x∗

i ) =
0.3979, (i = 1, 2, 3), see Fig. 1.

5.4 Results from Default and Random Settings

As a baseline for our experiments, we run SANN one hundred times—first, with
default parameters (tmax = temp = 10), and second, with randomly chosen param-
eter values from the interval [1, 50].5 These experiments were performed to quantify
the benefit of tuning for our experiments. Results from theses two experiments are
shown in the first and second result row from Tab. 3. SANN was not able to deter-
mine the optimal function value with these settings. Now that the baseline results
are available, we can examine SANN’s tunability.

5.5 SPOT Setup

The SPOT based tuning procedure uses the following parameter settings: SPOT
uses a budget of one hundred algorithm runs (auto.loop.nevals = 100) and an
initial design size of ten (init.design.size = 10). Each initial design point was
evaluated twice (init.design.repeats = 2). A Latin hypercube design was chosen
as the initial design. The interval from 1 to 50 was chosen as the ROI for both design
variables, i.e., temp and tmax, respectively, in our experiments.

5SPOT can generate one hundred randomly chosen design points of the SANN by using the
following setting in the CONF file: init.design.size = 100 and init.design.repeats = 1.



Table 3: SANN results. Results from n = 100 repeats. Smaller values are better. The
optimal function value is y∗ = 0.3979

Model Min. 1st Qu. Median Mean 3rd Qu. Max.
Default 0.3982 0.4037 0.4130 0.8281 0.5032 6.1120
Random 0.3988 0.5326 1.2160 2.0720 2.9820 8.8800
Tree (rpart) 0.3979 0.4001 0.4044 0.4184 0.4106 0.8576
RF 0.3979 0.3987 0.4000 0.4010 0.4022 0.4184

lm 0.3981 0.4034 0.4077 0.5325 0.4789 4.1570
mlegp 0.3980 0.4022 0.4089 0.4691 0.4349 2.7180
tgp 0.3979 0.3991 0.4002 0.4030 0.4034 0.4530
rsm + rpart 0.3979 0.3987 0.3997 0.4014 0.4027 0.4203

5.6 Tree-based Parameter Tuning

The first tuning procedure uses a (simple) regression tree, which is implemented
in SPOT as a plugin (seq.predictionModel.func = "spotPredictTree"). This
meta model plugin uses R’s rpart package. The function rpart follows [7] very
closely. The final best solution from the SPOT tuning run reads temp = 3 and
tmax = 31.

Finally, one hundred SANN runs were performed with this design point. Results
are shown in the third result row in Tab. 3. The tree-tuned SANN algorithm was
able to detect the global minimum.

5.7 Random Forest-based Parameter Tuning

Next, a random forest based meta model was used in the SPOT. randomFor-
est from the R package random forest implements Breiman’s algorithm, which
is based on Breiman and Cutler’s original Fortran code, for classification and regres-
sion. It is implemented as a SPOT plugin which can be selected via the command
seq.predictionModel.func = "spotPredictRandomForest" in SPOT’s configu-
ration file. The best algorithm design point determined by random forest is temp =
1.116 and tmax = 38. Finally, one hundred SANN runs were performed with this
design point. Results are shown in the fourth result row in Tab. 3. The SANN
algorithm with SPOT tuned parameters was able to detect the global minimum.

5.8 Linear Model-based Parameter Tuning

A standard linear regression model was used as a meta model in the SPOT. It is
implemented as a SPOT plugin, which can be selected via the command seq.pre-

dictionModel.func = "spotPredictLm" in SPOT’s configuration file. The best
algorithm design point determined by this linear model is temp = 5.0664 and tmax =
49. Finally, one hundred SANN runs were performed with this design point. Results
are shown in the fifth result row in Tab. 3. The SANN algorithm with tuned
parameters, which were generated with a linear regression model was not able to
detect the global minimum. However, SANN with these tuned algorithm design



obtained better function value than the SANN algorithm with standard or the
randomized algorithm design points.

5.9 Maximum Likelihood Estimates of Gaussian Processes

SPOT provides a plugin for the maximum likelihood estimation of Gaussian process
(mlegp) package which is available in R. The package mlegp finds maximum likeli-
hood estimates of Gaussian processes for univariate and multi-dimensional responses,
for Gaussian processes with product exponential correlation structures; constant or
linear regression mean functions; no nugget term, constant nugget terms, or a nugget
matrix that can be specified up to a multiplicative constant [8].

mlegp is implemented as a SPOT plugin, which can be selected via the com-
mand seq.predictionModel.func = "spotPredictMlegp" in SPOT’s configura-
tion file. The best algorithm design point determined by mlegp is temp = 5.3510
and tmax = 37. Finally, one hundred SANN runs were performed with this design
point. Results are shown in the sixth result row in Tab. 3. The SANN algorithm
with mlegp-tuned parameters was not able to detect the global minimum. However,
SANN with these tuned algorithm design obtained better function value than the
SANN algorithm with standard or the randomized algorithm design points.

5.10 Treed Gaussian Process Models

tgp is an R package for fully Bayesian nonstationary, semiparametric nonlinear
regression and design by treed Gaussian processes with jumps to the limiting linear
model [9]. The SPOT plugin to tgp can be invoked via seq.predictionModel.func
= "spotPredictTgp" in SPOT’s configuration file. The best algorithm design point
determined by tgp is temp = 1.4692 and tmax = 34. The SANN algorithm with
SPOT tuned parameters was able to detect the global minimum.

5.11 Comparison of the Meta Model Results

Random forest was able to determine an algorithms design point which reduced the
variance between different SANN runs and enables SANN to determine the optimal
function value, y∗, or a value close to y∗. The tgp tuned SANN shows a similar
performance. Random forest is preferred, because tgp runs require significantly
more CPU time than random forest runs, or, as stated by Gramacy [10]: “Fully
Bayesian analyses with MCMC are not the super-speediest of all statistical models.”

We used random forest to generate a sensitivity plot.6 Figure 2 shows sensitivity
plots based on results from different meta models used in the tuning process.

All plots show that temp affects SANN’s performance significantly, whereas tmax

has nearly no effect at all. Smaller temp values improve the algorithms performance.

6SPOT provides a report plugin to generate theses plots. The report plugin was written by
Wolfgang Konen and can be invoked via report.func = "spotReportSens" in SPOT’s CONF
file.
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Figure 2: Sensitivity plots (generated by random forest). Top left: One hundred random
samples, Top right: Regression tree, Middle left: Random forest. Middle right:

Linear model, Bottom left: Mlegp, and Bottom right: Tree Gaussian process
models



Dots denote the best design points with respect to the normalized ROI. These
sensitivity plots reveal that random forest and rpart were able to explore the search
space better than their competitors. The results from these sensitivity plots are in
accordance with results from the response surface analysis which will be discussed
later on, see Fig. 4.

6 Interactive Tuning

In Sect. 5, SPOT was run as an automatic tuner. Steps from the automatic mode
can be used in an interactive manner: The user can perform one of the tasks init,
seq, run, or rep sequentially, see [1]. She can also add and delete design points or
modify the region of interest.

In the following, different meta models, namely tree based regression (rpart) and
response surface modeling (rsm), are combined and the region of interest is adapted.

6.1 Designs

A central composite design (CCD) was chosen as the starting point of the tuning
process. SPOT’s spotCreateDesignFrF2 plugin can be used to generate CCD
points. After the first run is finished, we can use SPOT’s report facility to analyze
results. In the following, we will useRSM. [11] describes an implementation ofRSM
in R. This R package rsm has many useful tools for an analysis of the results from
the SPOT runs. After evaluating the algorithm in these design points, a second
order regression model with interactions is fitted to the data. Functions from the
rsm package were used by the SPOT plugin spotPredictLmOptim. Before meta
models are build, data are standardized. Data in the original units are mapped to
coded data, i.e., data with values in the interval [−1, 1].

6.2 Response Surface Models and Gradient Information

Based on the number of design points, SPOT automatically determines whether a
first-order, two-way interaction, pure quadratic, or second order model can be fitted
to the data. The CCD generated by spotCreateDesignFrF2 allows the fit of an
second-order model which can be summarized as shown in Fig. 3.

The response surface analysis (cf. Fig. 3) determines the following stationary point on
the response surface: (0.48868220.2712242), or, in the original units temp = 37.47271
and tmax = 32.14499. The eigenanalysis shows that the eigenvalues (λ1 = 1.848425;
λ2 = −2.010494) have different signs, so this is a saddle point, as can also be seen in
Fig. 4. SPOT determines the most steeply rising ridge in both directions, see also
[11] for details. In addition to the points from the steepest descent, the best point
from the first design, i.e., (1,50) is evaluated again, see Fig. 5.

Now, these points are evaluated and a new rsm model is build. Summarizing, the
SPOT tasks init, run, seq, run, seq, run, seq, run, seq were performed. Each
seq step generates information as shown in Fig. 3 and a plot of the response surface
as shown in Fig. 4. The resulting surface plots from four steps of these procedure
are shown in Fig. 4.



Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 2.7383 0.5075 5.396 0.0125 *

x1 2.0779 0.3995 5.201 0.0138 *

x2 -0.7664 0.3987 -1.922 0.1503

x1:x2 -0.4677 0.4467 -1.047 0.3720

x1^2 -1.9963 0.9581 -2.084 0.1286

x2^2 1.8342 0.9591 1.912 0.1518

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.8934 on 3 degrees of freedom

Multiple R-squared: 0.9242, Adjusted R-squared: 0.798

F-statistic: 7.319 on 5 and 3 DF, p-value: 0.06605

Stationary point of response surface:

x1 x2

0.4886822 0.2712242

Stationary point in original units:

TEMP TMAX

37.47271 32.14499

Eigenanalysis:

$values

[1] 1.848425 -2.010494

Figure 3: Output from the first regression model in the interactive approach

6.3 Automatic Adaptation of the Region of Interest

SPOT modifies the region of interest, if seq.useAdaptiveRoi = TRUE. This proce-
dure consists of two phases, which are repeated in an alternating manner.

During the orientation phase, the direction of the largest improvement is determined
as described in Sect. 6.2. Based on an existing design and related function values,
the path of the steepest descent is determined. A small number of points is chosen
from this path. Optimization runs are performed on these design points. In some
situations, where no gradient information is available, the best point from a large
number of design points, which were evaluated on the regression model, is chosen as
the set of improvement points.

The recalibration phase determines the best point �xb. It can be selected from the
complete set of evaluated design points or from the points along the steepest descent
only. The best point �xb defines the new center point of a central composite design.
The minimal distance of �xb to the borders of the actual region of interest defines the
radius of this design. If �xb is located at (or very close to) the borders of the region
of interest, a Latin hypercube design which covers the whole region of interest is
determined. This can be interpreted as a restart. To prevent premature convergence
of this procedure, one additional new design point is generated by a tree based model.
Next, the orientation phase is repeated.

This tuning process, which is based on regression models (rsm) and tree based re-
gression (rpart), results in a tuned algorithm design point with temp =1 and tmax =
50. As in Sect. 5, one hundred repeats of the best solution from this tuning process
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Figure 4: Response surface model based on the initial design. rsm was used to generate
this plot

TEMP TMAX

1.0000 50.0000

42.3560 32.4335

39.9060 32.2865

37.4805 32.1395

35.0305 31.9925

32.5805 31.8455

Figure 5: Second algorithm design. The best design point is evaluated again and five new
design points are determined. Gradient information was used to generate this
design



are generated. Results are shown in the last result row from Tab. 3.

7 Summary

All meta model improved SANN’s performance. Random forest perform very well
compared to other meta models. The interactive approach provides additional in-
formation, e.g., gradient, eigenvalues, plots of the response surface, which might
accelerate the tuning process. Users can add or delete design points manually, e.g.,
after studying the response surface or using additional tools from exploratory data
analysis. However, this feature was not used in the current study. In comparison to
the automated approaches, the interactive approach performed competitively. This
short study recommends random forest meta models for “lazy” tuning of algorithms.
As an additional interesting feature, random forests can handle categorical and nu-
merical design variables in one model.

Note, results from this study shed some light on the behavior of meta models in the
tuning process. However, we do not claim that these results are correct in every
situation. Further studies, which include different algorithm design generators as
well, are necessary.
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