
Noisy Optimization with Sequential Parameter
Optimization and Optimal Computational Budget

Allocation

Abstract

Sequential parameter optimization (SPO) is a heuristic that combines classical
and modern statistical techniques to improve the performance of search algorithms.
It includes a broad variety of meta models, e.g., linear models, random forest, and
Gaussian process models (Kriging). The selection of an adequate meta model can
have significant impact on SPO’s performance. A comparison of different meta
models is of great importance. A recent study indicated that random forest based
meta models might be a good choice. This rather surprising result will be analyzed
in this paper.

Moreover, Optimal Computing Budget Allocation (OCBA), which is an en-
hanced method for handling the computational budget spent for selecting new de-
sign points, is presented. The OCBA approach can intelligently determine the
most efficient replication numbers. We propose the integration of OCBA into
SPO.

In this study, SPO is directly used as an optimization method on different noisy
mathematical test functions. This is differs from the standard way of using SPO
for tuning algorithm parameters in the context of complex real-world applications.
Using SPO this way allows for a comparison to other optimization algorithms.

Our results reveal that the incorporation of OCBA and the selection of Gaus-
sian process models are highly beneficial. Moreover, SPO outperformed three
different alternative optimization algorithms on a set of five noisy mathematical
test functions.

1 Introduction
Sequential parameter optimization (SPO) is a heuristic that combines classical and
modern statistical techniques. It was originally developed for the analysis of search
algorithms [6]. Here, we will use SPO itself as a search algorithm, i.e., SPO is applied
to the objective function directly. An introduction to the state-of-the-art R implemen-
tation of SPO, the so-called sequential parameter optimization toolbox (SPOT), is
presented in [3, 2].

This paper focuses on some internal aspects of SPOT such as the class of meta
models used for generating new design points. Generally, two classes of meta mod-
els have been proven useful in the SPOT framework: (i) tree-based models such

1

as random forest and (ii) stochastic process models (Gaussian processes, Kriging).
Another aspect is the computational budget (number of function evaluations) that is
spent for selecting new design points. Here, we propose the integration of a control-
theoretic simulation technique called optimal computing budget allocation (OCBA)
into SPOT. The OCBA approach can intelligently determine the most efficient repli-
cation numbers.[11] The goal is to obtain the highest decision quality using a fixed
computing budget or to attain a desired simulation decision quality using a minimum
computing budget. The approach presented in our study relies on ideas developed by
Lasarczyk [16]. This SPOT-OCBA variant is compared to SPOT’s standard technique
of increasing the number of repeats.

The experimental study presented in this paper enables a comparison of SPOT with
prominent search algorithms such as covariance matrix adaptation evolution strategy
(CMA-ES), Nelder Mead (NM), and simulated annealing (SANN). Summing up, the
following research questions are investigated:
Q-1. Does OCBA improve SPOT?
Q-2. How do random-forest based meta models perform in comparison to Kriging-

based meta models?
Q-3. Regarding classical optimization algorithms: Does SPOT show a competitive

performance on standard test problems?
This paper is organized as follows. SPOT and OCBA are introduced in Section 2.

SPOT provides several meta models, which can be used for estimating objective func-
tion values. The meta models used for experiments described in this document are also
presented in this section.

Test functions considered in this study are presented in Sect. 3. An overview of the
general experiment setup is given in Sect. 4. Section 5 presents the results to our cor-
responding research questions and their analysis. Finally, Sect. 6 presents a summary
and an outlook.

2 Sequential Parameter Optimization
2.1 SPOT in a Nutshell
SPOT uses the available budget (e.g., simulator runs, number of function evaluations)
sequentially, i.e., it uses information from the exploration of the search space to guide
the search by building one or several meta models. Predictions from meta models are
used to select new design points. Meta models are refined to improve knowledge about
the search space. SPOT provides tools to cope with noise, which typically occurs when
real world applications, e.g., stochastic simulations, are run. It guarantees comparable
confidence for search points. Users can collect information to learn from this optimiza-
tion process, e.g., by applying exploratory data analysis (EDA) [20, 10]. Last, but not
least, SPOT provides mechanisms both for interactive and automated tuning [7, 5]. An
R version of this toolbox for interactive and automatic optimization of algorithms can
be downloaded from CRAN.1 Programs and files from this study can be requested from
the author.

1http://cran.r-project.org/web/packages/SPOT/index.html

As can be seen from Algorithm 1, SPOT requires the generation of an initial design.
Additionally, SPOT generates new design points during the sequential step. Latin
hypercube sampling was chosen as the generator of design points during the initial and
sequential SPOT steps. They were chosen, because they are easy to implement and
understand. Many design point generators are available in R, see, e.g., the CRAN Task
View: Design of Experiments (DoE) & Analysis of Experimental Data.2

There is a strong interaction between design generators and meta models, because
the optimality of a design point depends on the meta model [18, 19]. This paper mod-
ifies SPOT’s meta models, while design generators remain unchanged. The impact of
the variation of the design generators on the algorithm’s performance will be subject of
a forthcoming paper.

2.2 OCBA Introduction
SPOT provides tools for improving the confidence during the search. First approaches
increase the number of repeats. An early SPOT implementation proceeded as fol-
lows [6]:

At each step, two new designs are generated and the best is re-evaluated.
This is similar to the selection procedure in (1 + 2)-Evolution Strategies.
The number of repeat runs, k, of the algorithm designs is increased (dou-
bled), if a design has performed best twice or more. A starting value of
k = 2 was chosen.

This simple approach did not use any information about the variance.
Lasarczyk was the first who combined SPOT and OCBA [16]. OCBA was de-

veloped to ensure a high probability of correct selection (PCS). To maximize PCS, a
larger portion of the available budget is allocated to those designs that are critical to the
process of identifying the best candidates. OCBA uses sample means and variances in
the budget allocation procedure in order to maximize PCS.

OCBA’s central idea can be explained as follows. Consider a number of simulation
replications, say T , which can be allocated to m competing design points with means
Y 1, Y 2, . . . , Y m and finite variances �

2
1 ,�

2
2 , . . . ,�

2
m, respectively. The Approximate

Probability of Correct Selection can be asymptotically maximized when

Ni

Nj
=

✓
�i/�b,i

�j/�b,j

◆2

, i, j 2 {1, 2, . . . ,m} , and i 6= j 6= b, (1)

Nb = �b

vuut
X

i=1,i 6=b

N

2
i

�

2
i

,

where Ni is the number of replications allocated to design i, and �b,j = Y b � Y i

denotes the difference of the i-th and b-th mean with Y b mini 6=b Y i. As can be
seen from (1), the allocated computing budget is proportional to variance and inversely
proportional to the difference from the best design.

2http://cran.r-project.org/web/views/ExperimentalDesign.html

Algorithm 1: SPOT-OCBA.
t0 = init.design.repeats, t = seq.ocba.budget,
l = seq.design.size, d = seq.design.new.size

// phase 1, building the model:
let F be the tuned algorithm;
// design considerations necessary:
generate an initial population X = {x̄1

, . . . , x̄

m} of m parameter vectors;
let t0 be the initial number of tests for determining estimated function values;
foreach x̄ 2 X do

evaluate F with x̄ t0 times to determine the estimated function value ŷ of x̄;
end
// phase 2, using and improving the model:
while termination criterion not true do

// OCBA:
let B ✓ X denote the subset of candidate solutions with best estimated function
value ŷ;
let t denote the OCBA budget;
distribute t among B, i.e., generate OCBA distribution O;
// model considerations necessary:

build meta model f based on X and {ŷ1
, . . . , ŷ

|X|};
// design considerations necessary:
generate a set X 0 of l new parameter vectors by random sampling;
foreach x̄ 2 X

0 do
calculate f(x̄) to determine the estimated function value f(x̄) of x̄;

end
select set X 00 of d parameter vectors from X

0 with best predicted utility (d ⌧ l);
evaluate F with B following the OCBA distribution O; // (improve

confidence)
evaluate F t0 times with each x̄ 2 X

00 to determine the estimated function values ŷ;
extend the population by X = X [X

00;
end

The OCBA implementation in our study is based on Lasarczyk’s work [16]. SPOT
with OCBA is shown in Algorithm 1. New design points which were proposed by
the meta model are evaluated several times, e.g., twice 3. During each SPOT step, a
certain budget (here: spot.ocba = 3, as can be seen from Table 4) is allocated to
the candidate solutions to ensure a high PCS for the best design point. Chen and Lee
present a comprehensive coverage of the OCBA methodology [11].

2.3 Meta Models Used During SPOT Runs
SPOT processes data sequentially, i.e., starting from a small initial design, further
design points are generated using a meta model. Many meta models are available in
R. Similar as for the design generators the user has the option of choosing between

3This value can be modified using the init.design.repeats variable in SPOT’s config file

Table 1: Six SPOT meta models used in this study
Type Name of the SPOT plugin Abbreviation

Gaussian processes (Kriging) spotPredictMlegp sMl
Gaussian processes (Kriging) with Quasi Newton spotPredictMlegpOptim sMlO
Random forest spotPredictRandomForest sRF
Random forest with Gaussian processes (Kriging) spotPredictRandomForestMlegp sRfM
Random forest with Particle Swarm Optimization spotPredictRandomForestPSO sPS
Random forest with Quasi Newton spotPredictRandomForestOptim sRfO

state-of-the-art meta models for tuning his algorithm or writing his own meta model
and use it as a plugin for SPOT. The default SPOT installation contains several meta
models. The R implementation of randomForest was chosen as SPOT’s default
one. This is quite robust and can handle categorical and numerical values needing only
a comparably small amount of computational resources. Table 1 summarizes meta
models used for experiments described in this document.

2.3.1 Random Forest-based Parameter Tuning

The Random Forest method from the R package randomForest implements Breiman’s
algorithm, which is based on Breiman and Cutler’s original Fortran code, for classifi-
cation and regression [9]. It is implemented as a SPOT plugin, which can be selected
via setting the command seq.predictionModel.func according to Table 1 in
SPOT’s configuration file.

Four different variations of the Random Forest plugin are used here.
• spotPredictRandomForest uses a random forest meta model, which will

be evaluated based on the created sequential design to find good new design
points. (package: randomForest).

• spotPredictRandomForestOptim uses a random forest meta model which
will be optimized by the R-internal optim function with the method BFGS
(Quasi-Newton) to determine promising design points (R packages: random-
Forest, base).

• spotPredictRandomForestPSO uses random forest and Particle Swarm
Optimization (R packages: randomForest, pso).

• spotPredictRandomForestMlegp uses random forest and MLEGP, see
Sect. 2.3.2. (R packages: randomForest, mlegp). The set of new design
points is distributed among random forest and MLEGP, which are evaluated in
parallel.

2.3.2 Maximum Likelihood Estimates of Gaussian Processes

SPOT provides a plugin for the Maximum Likelihood Estimation of Gaussian process
(mlegp) package which is available in R. The package mlegp finds maximum likeli-
hood estimates of Gaussian processes for univariate and multi-dimensional responses,

Table 2: Coverage of difficulty criteria by test functions
Function 1 2 3 4

Branin + + + -
Six Hump + - + +
Mexican Hat + - + +
Rosenbrock + - - -
Rastrigin - - + +

for Gaussian processes with product exponential correlation structures; constant or lin-
ear regression mean functions; no nugget term, constant nugget terms, or a nugget
matrix that can be specified up to a multiplicative constant [12].

mlegp is implemented as a SPOT plugin, which can again be selected via setting
seq.predictionModel.func according to Table 1 in SPOT’s configuration file.
Two different variations of the mlegp plugin are used here.

• spotPredictMlegp. The model is evaluated based on the created sequential
design to find good new design points (package: mlegp).

• spotPredictMlegpOptim uses a MLEGP meta model which will be opti-
mized by the R-internal optim function with the method BFGS to find a good
new design point (R packages: mlegp, base).

3 Test Functions
3.1 Considerations
Our main goal when choosing the test functions was to obtain a preferably small num-
ber of these, which cover a variety of different difficulty criteria. The following criteria
were chosen beforehand:

1. The function’s optimum does not lie at the origin.
2. The function is not symmetric.
3. The function is multi-modal.
4. The function has many local minima.

In addition, the functions should be well known in the optimization community to
improve reproducibility and comparability of results.

The chosen test functions cover the different difficulty criteria as shown in Table
2. To gain some additional difficulty and stay consistent with SPOT’s original area
of application, we added fitness-proportional noise to all test functions. This is the
most common case for real-world settings: values and variability both change together.
We restricted ourselves to the two-dimensional instances of the test functions as the
higher dimensional instances require a much higher budget of target function evalua-
tions and thus a modified setup. The number of function evaluations was chosen as the
termination criterion.

3.2 Function Definitions
3.2.1 Branin

The Branin function

f (x1, x2) =

✓
x2 �

5.1

4⇡

2
x

2
1 +

5

⇡

x1 � 6

◆2

+10

✓
1� 1

8⇡

◆
cos(x1) + 10,

with region of interest x1 2 [�5, 10] and x2 2 [0, 15] was chosen as a test func-
tion, because it is multimodal and not symmetric. It has three global minima, ~x⇤

1 =

(3.1416, 2.2750), ~x⇤
2 = (9.4248, 2.4750) and ~x

⇤
3 = (�3.1416, 12.2750) with

y

⇤
= f (~x

⇤
i) = 0.3979, (i = 1, 2, 3).

3.2.2 Six Hump

The Six Hump function

f (x1, x2) =

✓
4� 2.1x

2
1 +

x

4
1

3

◆
x

2
1 + x1x2 +

�
�4 + 4x

2
2

�
x

2
2,

with region of interest x1 2 [�1.9, 1.9] and x2 2 [�1.1, 1.1] was chosen as a test func-
tion, because it is multimodal with many local minima. It is also not rotationally, but
point symmetric around the origin. It has two global minima, ~x⇤

1 = (0.089842,�0.712656)

and ~x

⇤
2 = (�0.089842,�0.712656) with

y

⇤
= f (~x

⇤
i) = �1.031628, (i = 1, 2).

3.2.3 Mexican Hat

The Mexican Hat function

f(x1, x2) =

sin

⇣p
x

2
1 + x

2
2

⌘

p
x

2
1 + x

2
2

,

with region of interest x1 2 [�8, 8] and x2 2 [�8, 8] was chosen as a test function,
because it is multimodal with many local minima and rotationally symmetric. It has its
global optima at ~x⇤ 2

�
~x 2 R2

/ k~x⇤k2 = 4.493409

with y

⇤
= f (~x

⇤
) = �0.217233.

3.2.4 Rosenbrock

The Rosenbrock function

f (x1, x2) = (1� x)

2
+ 100

�
y � x

2
�2

with region of interest x1 2 [�2, 2] and x2 2 [�2, 2] was chosen as a test function,
because it is unimodal; it has its global minimum at ~x⇤

= (1, 1) with y

⇤
= f(~x

⇤
) = 0.

The global minimum lies inside a long, narrow, parabolic shaped, slowly descending
valley, what makes it even harder to find. The function is not rotationally but axially
symmetric.

Table 3: General Setup
Generic Parameter Value

Number of Function Evaluations 100
Initialization LHD
Number of Algorithm Runs 10

3.2.5 Rastrigin

The Rastrigin function

f (x1, x2) = 20 +

2X

i=1

�
x

2
i � 10 cos (2⇡xi)

�

with region of interest x1 2 [�5.12, 5.12] and x2 2 [�5.12, 5.12] was chosen as a test
function, because it has a large number of local minima and only one global minimum
at ~x⇤

= (0, 0) with y

⇤
= f (~x

⇤
) = 0. The function is not rotationally but axially

symmetric.

4 Statistical Comparison
4.1 General Setup
All experiments share the general setup summarized in Table 3. In order to obtain reli-
able results, each algorithm is run ten times, with varying seeds. Fitness-proportionate
noise, calculated as follows, was added to all objective function values:

noise = (y � yopt)⇥ �✏ ⇥
rnorm(1)

100

,

where y is the function value at the current position, yopt is the value of the func-
tions global optimum, �✏ describes the noise level factor, �✏ 2 {1.0, 10.0}, whereas
rnorm(1) is R’s random number generator for the normal distribution. The final best
solution is evaluated on the noise free test function, i.e., we calculate f (~x) based on
the parameters ~x determined by the algorithm.

SPOT uses a budget of one hundred target function evaluations and an initial design
size of ten. As our target functions are noisy, each initial design point is evaluated
twice. So the first twenty of one hundred function evaluations are spend on the initial
design, which is created by the SPOT internal Latin Hypercube Design function. Each
sequential step is then allowed to use two hundred evaluations of the meta model to
detect good new design points. The best three design points will be used as the new
design and evaluated by the target function. To deal with noise, there will also be
repeated evaluations of the old design, depending on the chosen sequential step method
(with or without OCBA). OCBA is used to adapt the number of repeats for each design
point more efficiently and is allowed to use a budget of three design points for repeated

Table 4: SPOT Setup
SPOT Setup Parameter Value

auto.loop.nevals 100
init.design.size 10
init.design.repeats 2
init.design.func "spotCreateDesignLhd"
init.design.retries 100
spot.ocba TRUE | FALSE
seq.ocba.budget 3
seq.design.size 200
seq.design.oldBest.size3
seq.design.new.size 3
seq.design.func "spotCreateDesignLhd"

evaluation in each sequential step. If OCBA is not used, the three best points of the
old design will always be repeated.

The settings according to the description above can also be find in Table 4. How-
ever, the prediction model for the sequential step in SPOT (seq.predictionModel.func)
is not mentioned in this table, since it is listed in Table 1.

4.2 Statistical Analysis
We are comparing nine algorithms (six SPOT variants and three optimization algo-
rithms) on five test functions with two different noise levels. A typical question at this
point is "Which comparison method should be used?"

The first step of our analysis relies on EDA. EDA comprehends methods such as
plotting the raw data, e.g., histograms, plotting simple statistics such as mean plots,
standard deviation plots, box plots, and main effects plots of the raw data. We will
use Trellis plots which position the graphical output so as to maximize our natural
pattern-recognition abilities, such as using multiple plots per page.

The second step comprehends statistical tools such as analysis of variance (ANOVA).
First, we have to decide whether we want to compare results with a reference algorithm.
This procedure is adequate if one well established algorithm is the gold standard. Given
n algorithms, this techniques requires n � 1 comparisons only. Otherwise, pairwise
comparisons can be used. Note, the combinatorial complexity of pairwise comparisons
is large, i.e., n algorithms require

C(n) = n⇥ (n� 1)/2 (2)

comparisons. A standard approach from statistics reads as follows.
S-1. Use classical analysis of variance to determine whether there are differences be-

tween the treatment means. Under normality assumptions, use ANOVA for per-
forming one-way location analysis. Otherwise, Kruskal-Wallis Rank Sum Test
or its equivalent for two groups, the Wilcoxon rank sum test can be used. [15]

S-2. Next, if the answer from the first step is positive, analyze which means differ us-
ing multiple comparison methods. Under normality assumptions, Tukey Honest
Significant Differences (TukeyHSD) can be used. Otherwise, the Dunnett-Tukey-
Kramer Pairwise Multiple Comparison tests is recommended. [13]

5 Research Questions
We are following an approach for performing the experimental analysis and reporting
results which has been proposed in [6, 1]. Due to the limited space in this paper, the
corresponding twelve steps proposed are condensed to four steps: (i) research question,
(ii) experimental setup, (iii) analysis, and (iv) scientific relevance.

5.1 Q-1: Does OCBA improve SPOT’s performance?
5.1.1 Research Question

This research question is devoted to the influence of OCBA on SPOT’s performance.
Does the integration of OCBA improve SPOT’s performance?

5.1.2 Experimental Setup

The set of five well known test functions as described in Sect. 3 was used for this
comparison. Two different noise levels (�✏ 2 {1.0, 10.0}) are used. Two variants of
the SPOT implementation are compared in this experiment. SPOT version 0.1.1065 as
available on the Comprehensive R Archive Network (CRAN), and SPOT with OCBA
(Algorithm 1) as presented in this paper.

5.1.3 Analysis

Figure 1 presents an overview. The noise level was set to �✏ = 1.0. A similar plot
can be obtained for �✏ = 10.0. Each panel illustrates SPOT’s results for one objective
function. This simple visual inspection provides a good starting point for a deeper sta-
tistical analysis. Figure 1 clearly indicates that OCBA improves SPOT performance.

Since the objective function values are distributed non normally, rank-based tests
will be used. While optimizing Branin, SixHump and Mexican Hat, statistical signifi-
cant differences can be detected (Table 5). Wilcoxon rank sum tests reveal that OCBA
does improve SPOT’s performance significantly on three of the five test functions.
Rosenbrock and Rastrigin do not show a significant improvement. However, OCBA
does not lead to a performance degression in any case. Similar results were obtained
with the increased noise level, i.e., �✏ = 10.0. The overall analysis shows that SPOT
can be improved by integrating OCBA.

5.1.4 Scientific Relevance

Results from this experimental study are statistically significant. However, the reader
might consider the small set of objective functions. Hence, these results can be seen

Y
2

4
6

0 1

● ●

●
●

●

●

●

●

●

●

●

●
●●●
●●

Branin

−0
.2
15

−0
.2
10

−0
.2
05

−0
.2
00

0 1

● ●

●

●

●

●

●●
●

●

●

●

●●

●

●
●
●

MexicanHat
0

5
10

15
20

0 1

●
●

●

●

●

●
●●

Rastrigin

0
2

4
6

0 1

● ●

●

●

●

●
●●●

Rosenbrock

−1
.0
0
−0
.9
5
−0
.9
0
−0
.8
5
−0
.8
0
−0
.7
5

0 1

●
●

●

●

●

●

●

●

●

●●

●

SixHump

Figure 1: Trellis plots visualizing SPOT’s performance without and with OCBA, 0
respectively 1. Noise level �✏ = 1.0, fitness proportionate. Smaller values are better

Table 5: Q-1. Results from Wilcoxon Rank Sum Tests, noise level �✏ = 1.0. The same
data as in Fig. 1 were used for these tests

Function p-value significant

Branin 0.006246 yes
Six Hump 0.005859 yes
Mexican Hat 0.00233 yes
Rosenbrock 0.2547 no
Rastrigin 0.1388 no

as an indicator. Further experiments are necessary. Taking these preliminaries into
consideration, we recommend using OCBA.

5.2 Q-2: How do Tree-based Models perform compared to Kriging
models?

A recent study demonstrated that random forest performs surprisingly well compared
to other meta models in the SPOT framework [4]. A stochastic search algorithm was
optimized in this study. Can this result be generalized for other settings? Here, we will
consider classical test functions with varying noise strengths.

5.2.1 Research Question

Will tree-based meta models outperform Kriging model based approaches?

5.2.2 Experimental Setup

The set of five well known test functions as described in Sect. 3 was used for this
comparison. As a consequence from Q-1, we will restrict our analysis to OCBA-based
approaches.

5.2.3 Analysis

Figure 2 presents a graphical overview. These Trellis plots reveal that Kriging-based
models, i.e., sMl and sMlO, perform best (acronyms are explained in Table 1). One
exception form this rule can be observed for Rastrigin with �✏ = 10.0: The Kriging
based approaches are outperformed by random forest (sRf).

Following the methodology introduced in Sect. 4.2, we will perform a Kruskal-
Wallis test first. The six SPOT meta models are compared on every test function and
for every noise level separately.

A Kruskal-Wallis rank sum test revealed a significant effect of the meta model on
performance Y for Branin, Six Hump, Mexican Hat, and Rosenbrock, but no signif-
icant difference for Rastrigin. This might be an explanation for the seemingly better
performance of the random forest models—it might be only an artefact caused by noise.
The box plots in the first column from Fig. 2 illustrate this result. Now, that we have

Y
2

4
6

sMl sMlO sPS sRf sRfM sRfO
● ● ● ● ● ●●

●

●●

1
Branin

0.
5
1.
5
2.
5

sMl sMlO sPS sRf sRfM sRfO
● ● ● ● ● ●●

●

●

10
Branin

−0
.2
16

sMl sMlO sPS sRf sRfM sRfO
● ● ● ● ● ●● ●

●
●

●

1
MexicanHat

−0
.2
17
0

sMl sMlO sPS sRf sRfM sRfO
● ● ● ● ●

●● ●●

●

●

●
●

●

10
MexicanHat

0
5
10

15

sMl sMlO sPS sRf sRfM sRfO

● ● ● ● ● ●

●

●

1
Rastrigin

0
2
4
6
8

sMl sMlO sPS sRf sRfM sRfO

●
● ● ●

● ●

●

10
Rastrigin

0.
0
1.
0
2.
0

sMl sMlO sPS sRf sRfM sRfO
● ●

● ●
●

●●

● ●

●

●
●

1
Rosenbrock

0
1
2
3
4

sMl sMlO sPS sRf sRfM sRfO
● ● ● ● ● ●●

● ●
●

●

10
Rosenbrock

−1
.0
0
−0
.9
0

sMl sMlO sPS sRf sRfM sRfO
● ● ● ● ● ●

●

●
●

1
SixHump

−1
.0
2

−0
.9
6

sMl sMlO sPS sRf sRfM sRfO
● ● ●

●
●

●●●

●

●

10
SixHump

Figure 2: Comparison of SPOT runs with respect to noise level (first row in each panel,
1 or 10) and objective function (second row in each panel). OCBA was used in every
run for each of the six SPOT variants, see Table 1

Table 6: Q-1. Results from Kruskal-Wallis Tests, noise levels �✏ = 1.0 and �✏ = 10.0.
The same data as in Fig. 2 were used for these tests

�✏ = 1.0 �✏ = 10.0

Function p-value sign. p-value sign.

Branin 0.0002686 yes 0.3361 no
Six Hump 4.162e-05 yes 0.0006707 yes
Mexican Hat 0.002555 yes 0.0009408 yes
Rosenbrock 8.4e-05 yes 0.2172 no
Rastrigin 0.8615 no 0.2724 no

detected a difference, we are interested which meta model performs best. Equation 2
reveals that a pairwise comparison of the six models results in 15 combinations. To
reduce complexity, we decided to split the set of meta models into two subsets. The
first subset includes the Kriging-based models, whereas random forest based models
can be found in the second subset. In the following, we will determine the best model
from each subset. These two models will be compared in a second step.

The two Kriging models, namely sMl and sMlO, will be analyzed first. Based
on the methodology from Sect. 4.2, we can detect significant statistical differences
between these models. Visual inspection based on EDA (Fig. 2) supports this claim.
Therefore, we conclude that sMlO outperforms sMl.

Next, we will consider random forest based approaches, asking the same question:
which random forest based model performs best? The statistical analysis reveals that
there is no difference in the performance of the random forest based meta models.
Therefore, the standard random forest (sRf) was chosen for the following compar-
isons. Finally, we have to compare sMlO with sRf. The analysis shows that the
Kriging based model clearly outperforms random forest.

5.2.4 Scientific Relevance

Results from a recent study could not be transferred to our test set [4]. The Kriging
based approach outperforms random forest model approaches in our scenario. How-
ever, [4] did not use OCBA. The combination of Kriging with OCBA might be the
reason for this performance improvement.

5.3 Q-3: How does SPOT perform on standard test set compared
to classical algorithms?

First, we will take a global view on the data, divided by algorithm type. Figure 3 indi-
cates that SPOT based algorithms show at least a competitive performance compared
to their classical counterparts. Results from answering research questions Q-1 and Q-2
lead to the conclusion that SPOT performs best with OCBA and sMlO (Kriging).

●
●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●●

●
●
●●●

●●

●●

●
●
●

●
●
●
●
●
●

●●

●

●

●
●
●●

●
●●

● ●●
●

●

●
●●
●●
●
●

●
●●●
●
●

●

●

●

●

●

●

●
●

●

●

●

●
●●●

●
●●
●

●●
●
●
●●

●●

●●

●● ●

●

●●

●
●

●
●
●●
●●
●

●●

●
●
●

●

●
●● ●●●●

●

●

●●●

●
●
●

●
●
●

●

●

●●

●

●
●

●●

●

●

●●
●

●

●

●
●●●
●●●
●●

●

●

●●

●

●
●

●

●

●●

●

●

CMA NM SA sMl sMlO sPS sRf sRfM sRfO

0
20

40
60

80

Method

Y

Figure 3: Results from a bird’s eye perspective indicate competitive performances of
the SPOT algorithms. Smaller values are better

5.3.1 Research Question

Does SPOT show a competitive performance compared to standard optimization algo-
rithms?

5.3.2 Experimental Setup

The SPOT variant with OCBA and Kriging (sMlO) will be used in this comparison
with standard algorithms from optimization. To improve reproducibility of our results,
we have chosen two general-purpose optimization algorithms from R’s optim pack-
age. Since cmaes is considered as state-of-the-art optimizer by several authors, an
R implementation was included into our algorithm portfolio.[14] The following algo-
rithms were chosen for our comparison:

1. Nelder-Mead Simplex (NM). This method is an implementation of that of Nelder
and Mead [17].

2. Simulated Annealing (SANN). This is a variant of simulated annealing provided
in Belisle [8]. Simulated-annealing belongs to the class of stochastic global op-
timization methods. It uses only function values but is relatively slow. It will
also work for non-differentiable functions. The implementation at hand uses the
Metropolis function for the acceptance probability.

3. Covariance Matrix Adaptation Evolution Strategy (CMA-ES). Mersmann’s and
Arnu’s R implementation, which is available as an R package via CRAN, was
used in our study. This variant is based on [14].

5.3.3 Analysis

First, a visual inspection is performed. Trellis plots provide a comprehensive overview
and indicate that SPOT’s performance is at least competitive. Next, we generate a
normal QQ plot of the values in Y . As can be seen from Fig. 4, data are non nor-
mally distributed. A Kruskal-Wallis test (p-value = 0.001433) indicates that there is a
difference in means.

Because this first test is positive, we can analyze which means differ using Dun-
nett’s Pairwise Multiple Comparison Test. This is a pairwise multiple comparison test
for mean differences with unequal sample sizes and no assumption of equal population
variances. Results from this test are shown in Fig. 5. Consider the first line (95 %
confidence interval) which is labeled "sMlO-SA". Since this interval does not contain
0, it indicates that SPOT-OCBA (MLEGP plus optimization used as a meta model)
outperforms simulated annealing. A numerical summary is given in Table 7. Simi-
lar results were obtained in the experiments with Six Hump, Branin, Rosenbrock, and
Mexican hat. None of the classical algorithms outperformed SPOT. Results from
Dunnett’s Pairwise Multiple Comparison Test are in correspondence with Figure 6:
SPOT outperforms the three classical optimization algorithms from this study.

5.3.4 Scientific Relevance

Summarizing, we can conclude that SPOT with OCBA and Kriging outperforms the
other approaches. Figure 6 illustrates this result. SPOT with Kriging (sMlO) shows

●●●●●●●●●●

●

●
●●●

●

● ●●

●

●●●● ●●●●
●

●
● ●●● ●● ●●●● ● ●● ●● ●●● ● ●●●●●●● ●● ●● ●●●●●● ●● ●● ● ● ●●● ●● ●●●●●●●● ● ●● ●● ●

●

●● ●●●●● ●

●

●●●●●●●

●

●●
●

● ●●
● ●●●●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●●

●

●

●

●●● ●

●

● ●●

●

●

●●● ●
●

●● ●●
●

● ●
●

●●
●

●

●

● ●●●●● ●●●●●● ●●●●● ●●●● ●●● ●●● ●● ●● ● ●●●● ●●●● ●● ●●●● ●●● ●●
●

●●
●
●

● ●

●

●
●

●●

●

●●●● ●

●

●

● ●● ●

●

● ●●● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●
●

●

●

●

●

●

●

●

●●●●●●●●●●

●

●
●●●

●

● ●●

●

●●●● ●●●●
●

●
● ●●● ●● ●●●● ● ●● ●● ●●● ● ●●●●●●● ●● ●● ●●●●●● ●● ●● ● ● ●●● ●● ●●●●●●●● ● ●● ●● ●

●

●● ●●●●● ●

●

●●●●●●●

●

●●
●

● ●●
● ●●●●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●●

●

●

●

●●● ●

●

● ●●

●

●

●●● ●
●

●● ●●
●

● ●
●

●●
●

●

●

● ●●●●● ●●●●●● ●●●●● ●●●● ●●● ●●● ●● ●● ● ●●●● ●●●● ●● ●●●● ●●● ●●
●

●●
●
●

● ●

●

●
●

●●

●

●●●● ●

●

●

● ●● ●

●

● ●●● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●
●

●

●

●

●

●

●

●

●●● ●●●●●●●
●● ●●●● ●●●● ●●●● ●●●●● ● ●●●●●●●●●●●

●●●●
●

●

●

●
●● ● ●●●●●●●●

●●● ●●●● ●●● ● ●●●●●●●●● ● ●●●●●●● ●●

●●
●●

●

●
●

●
●

●
●●● ●●●●●●●

● ● ●●●● ●●● ● ●●●● ●● ●●●● ● ●●● ●●●● ●●
●●
●

●

●

●

●

●

●
●

●●●●●●●●●●
●● ●●●● ●●●● ●● ●●●●● ●●● ● ●● ●●● ●●● ●

●

●
●

●

●

●

●

●

●
●

−3 −2 −1 0 1 2 3

0
20

40
60

80

Normal Q−Q Plot

Theoretical Quantiles

Sa
m

pl
e

Q
ua

nt
ile

s

Figure 4: Quantile-quantile (QQ) plot. Since data coming from a normal distribution
are expected to obtain a straight line, data from our experiments are non normal

−20 −15 −10 −5 0 5 10 15

Mean Difference

M
ea

n
C

om
pa

ris
on

N
M
−C

M
A

SA
−C

M
A

sM
lO
−C

M
A

SA
−N

M
sM

lO
−N

M
sM

lO
−S

A

95% Confidence Intervals

●

●

●

●

●

●

Figure 5: Dunnett’s Pairwise Multiple Comparison Test. Rastrigin Function, noise
level �✏ = 1.0. Numerical results are shown in Table 7

Table 7: Q-3. Results from Dunnett’s Pairwise Multiple Comparison Test (significance
level = 0.05), Rastrigin function, noise level �✏ = 1.0. The same data as in Fig. 6 were
used for these tests

Algorithms Diff Lower CI Upper CI

NM-CMA 5.486697 -2.890826 13.864219
SA-CMA -1.042051 -8.697670 6.613568
sMlO-CMA -8.126343 -14.341739 -1.910948
SA-NM -6.528748 -14.669059 1.611564
sMlO-NM -13.613040 -20.416518 -6.809562
sMlO-SA -7.084292 -12.976061 -1.192524

a robust behavior (only a few outliers). Results from this study can be seen as first
indicators. Further studies are necessary.

6 Summary
The paper investigates some interesting questions concerning the parametrization of
the sequential parameter optimization toolbox SPOT. To this end, we applied SPOT
to noisy mathematical test functions to mimic the stochastic behavior of its natural
application area, the parametrization of stochastic optimization methods.

First investigations focused on the budget allocation for new design points within
SPOT. Our results show that incorporating OCBA really improves the quality of re-
sults. This is of course accounted to OCBA’s way to distribute the budgets to different
design points incorporating sample means as well as variances of the design points
(approximated) quality.

Secondly, we examined the internal model that is used within SPOT to suggest
new design points. Random forest models are compared to Gaussian process models
(Kriging). The results received indicate an advantage of the latter models, however, the
computational effort of these is higher than for the standard models. Based on these
results we concentrated on the way to incorporate Kriging models and found out that
an optimization on the models using simple gradient based techniques are beneficial.

Finally, we compared the resulting best SPOT variant to classical optimization tech-
niques. Here, SPOT with OCBA, Kriging, and model-based optimization was able to
outperform the other approaches in the study, i.e., a Nelder-Mead simplex method,
the simulated annealing algorithm, and the CMA-ES. Note that results from this study
shed some light on the behavior of meta models in the tuning process. However, we
do not claim that these results are correct in every situation. Further studies, which in-
clude different design point generators as well, are necessary. We are going to expand
our experiments to more test functions and, in particular, test functions with a higher
dimensional search space.

Y
1
2
3
4
5

CMA NM SA sMlO
● ● ● ●

●●

●●●● ●●●●

1
Branin

0
20

60

CMA NM SA sMlO
● ● ● ●

●

●

●

●

●● ●●

●●

10
Branin

−0
.2
0
−0
.1
0

CMA NM SA sMlO
● ● ● ●●

●

●

● ●●●●

●●●

1
MexicanHat

−0
.2

0.
0

CMA NM SA sMlO
● ● ● ●

●●

●●

●●

●●●

10
MexicanHat

0
10
20
30

CMA NM SA sMlO

●
●

●

●

●

●
●

1
Rastrigin

0
10
20
30

CMA NM SA sMlO

●

●
●

●

●●

●

10
Rastrigin

01
23

45

CMA NM SA sMlO
● ● ● ●

●
●
●
●

●●
●
●
●
●

●●

1
Rosenbrock

02
0
60

CMA NM SA sMlO
● ● ● ●●●

●●

●●
●

10
Rosenbrock

−1
.0

−0
.4

CMA NM SA sMlO
● ● ● ●

●● ●●

●●●

1
SixHump

−1
0
1
2
3

CMA NM SA sMlO
●

●

● ●
●●●● ●●

●●

10
SixHump

Figure 6: Comparison of classical optimization algorithms with SPOT

References
[1] T. Bartz-Beielstein. Experimental Research in Evolutionary Computation—The

New Experimentalism. Natural Computing Series. Springer, Berlin, Heidelberg,
New York, 2006.

[2] T. Bartz-Beielstein. SPOT: An R package for automatic and interactive tuning of
optimization algorithms by sequential parameter optimization. CIOP Technical
Report 05/10, Research Center CIOP (Computational Intelligence, Optimization
and Data Mining), Cologne University of Applied Science, Faculty of Computer
Science and Engineering Science, Jun 2010.

[3] T. Bartz-Beielstein, M. Chiarandini, L. Paquete, and M. Preuss, editors. Exper-

imental Methods for the Analysis of Optimization Algorithms. Springer, Berlin,
Heidelberg, New York, 2010.

[4] T. Bartz-Beielstein, O. Flasch, P. Koch, and W. Konen. SPOT: A toolbox for
interactive and automatic tuning in the R environment. In F. Hoffmann and
E. Hüllermeier, editors, Proceedings 20. Workshop Computational Intelligence,
pages 264–273. Universitätsverlag Karlsruhe, 2010.

[5] T. Bartz-Beielstein, C. Lasarczyk, and M. Preuss. The sequential parameter
optimization toolbox. In T. Bartz-Beielstein, M. Chiarandini, L. Paquete, and
M. Preuss, editors, Experimental Methods for the Analysis of Optimization Algo-
rithms, pages 337–360. Springer, Berlin, Heidelberg, New York, 2010.

[6] T. Bartz-Beielstein, K. E. Parsopoulos, and M. N. Vrahatis. Design and analy-
sis of optimization algorithms using computational statistics. Applied Numerical
Analysis and Computational Mathematics (ANACM), 1(2):413–433, 2004.

[7] T. Bartz-Beielstein and M. Preuss. The future of experimental research. In
T. Bartz-Beielstein, M. Chiarandini, L. Paquete, and M. Preuss, editors, Ex-
perimental Methods for the Analysis of Optimization Algorithms, pages 17–46.
Springer, Berlin, Heidelberg, New York, 2010.

[8] C. J. P. Belisle. Convergence theorems for a class of simulated annealing algo-
rithms. Journal Applied Probability, 29:885–895, 1992.

[9] L. Breiman. Random forests. Machine Learning, 45(1):5 –32, 2001.

[10] J. Chambers, W. Cleveland, B. Kleiner, and P. Tukey. Graphical Methods for
Data Analysis. Wadsworth, Belmont CA, 1983.

[11] C.-H. Chen and L. H. Lee. Stochastic simulation optimization. World Scientific,
2011.

[12] G. M. Dancik and K. S. Dorman. mlegp. Bioinformatics, 24(17):1966–1967,
2008.

[13] C. Dunnett. Pairwise multiple comparisons in the unequal variance case. Journal
of the American Statistical Association, 75:796–800, 1980.

[14] N. Hansen. The CMA evolution strategy: a comparing review. In J. Lozano,
P. Larranaga, I. Inza, and E. Bengoetxea, editors, Towards a new evolutionary
computation. Advances on estimation of distribution algorithms, pages 75–102.
Springer, 2006.

[15] M. Hollander and D. A. Wolfe. Nonparametric Statistical Methods. John Wiley
& Sons, 1973.

[16] C. W. G. Lasarczyk. Genetische Programmierung einer algorithmischen Chemie.
PhD thesis, Technische Universität Dortmund, 2007.

[17] J. Nelder and R. Mead. A simplex method for function minimization. Computer
Journal, 7:308–313, 1965.

[18] F. Pukelsheim. Optimal Design of Experiments. Wiley, New York NY, 1993.

[19] T. J. Santner, B. J. Williams, and W. I. Notz. The Design and Analysis of Com-
puter Experiments. Springer, Berlin, Heidelberg, New York, 2003.

[20] J. Tukey. The philosophy of multiple comparisons. Statistical Science, 6:100–
116, 1991.

