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1. INTRODUCTION
Most parameter tuning methods feature a number of pa-

rameters themselves. This also holds for the Sequential Pa-
rameter Optimization [1] Toolbox (SPOT1). It provides de-
fault values, which are reasonable for many problems, but
these defaults are set to favor robustness over performance.

By default, a Random Forest (RF) [2] model is used for
the surrogate optimization. The RF model is built rather
fast. It runs robustly (i.e. it does not crash) and can handle
non-ordered parameters (i.e. factors) very well. However,
the RF model does provide poor optimization performance
for a number of problems, due to the inbuilt discontinuities.
It would often be more reasonable to use Kriging models
[4]. These usually perform well for small and medium sized
decision space dimensions. For use with the SPOT pack-
age, there are several existing packages that provide Kriging
methods that often fit the required problem well (DiceKrig-
ing, mlegp, etc.). However, these methods have one thing in
common, they are not robust. Especially when several de-
sign points (samples in the decision space) are close to each
other, those functions often fail. Hence, in SPOT versions
greater 1.0, a Kriging model based on the Matlab code by
Forrester et.al. [3] was introduced.

2. RESEARCH GOALS AND QUESTIONS
To examine SPOT parameterizations, we invoke SPOT as

an optimization method on a number of 2 dimensional op-
timization problems. These test functions are Ackley (f1),
Branin (f2), Goldstein-Price (f3), Griewank (f4), Mexican-
Hat (f5), Rastrigin (f6), Rosenbrock (f7), Sphere (f8) and

1SPOT and all other used R packages can be retrieved from
the CRAN homepage, i.e. http://cran.r-project.org.
Detailed information on the algorithms can be found in the
package documentations published there.
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Weierstrass (f9)2. Since first results indicate that Forrester
modeling performs much better than RF models, we seek
for configurations where the RF approach outperforms the
Forrester one and want to know why one model is superior
to the other one in the corresponding situations. Moreover,
we look for suggestions on how to parameterize SPOT in
general and the Forrester approach in particular.

In detail, we investigate the influence of the parameter
seq.design.new.size (i.e. the number of new points eval-
uated on a target function in each sequential step). Addi-
tionally, we vary the size of the region of interest on the
test functions around the global optimum (ROI size). For
all approaches, the initial solutions are chosen randomly
inside these boundaries. Moreover, we compared different
optimization methods for solving the internal optimization
problem for the maximum likelihood estimation in Forrester.
Besides comparing different parameterizations among each
other, these are tested against reference algorithms. There-
fore, we considered Simulated Annealing (SANN), Broyden-
Fletcher-Goldfarb-Shanno (BFGS) and Covariance Matrix
Adaptation Evolution Strategy (CMAES) according to their
R implementations.

For internal optimization purposes within SPOT, we em-
ployed Limited-memory BFGS with Bounds (L-BFGS-B)
and CMAES. Note, that L-BFGS-B is different to the refer-
ence algorithm BFGS.

3. EXPERIMENTAL SETTINGS
Due to the fact that SPOT and it’s default settings were

developed for noisy optimization, some of these settings have
to be set to non-default values. To this end, we do not use
SPOT’s OCBA functionality and set all repeats to 1, i.e.
spot.ocba = FALSE, init.design.repeats = 1,

seq.design.maxRepeats = 1.
Moreover, we specified how many design points are evalu-

ated on the surrogate model in each sequential SPOT step,
i.e., 2 000. When using the RF model, all 2 000 evaluations
were used for a Latin Hypercube Design (LHD). For the
Forrester model, only 1 600 were used for LHD, the remain-
ing 400 evaluations were used for optimization on the sur-
rogate featuring the L-BFGS-B approach. The reason for
only using LHD sampling on the RF are discontinuities in
the model. We allowed 100 function evaluations on the test
functions for each algorithm.

2All functions used are part of the soobench R-package,
which also provides further information on these functions
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Figure 1: Parallel axes plot of all results found, sep-
arated by function and method. Each line shows
results of a unique combination of one seed and one
ROI size.

4. RESULTS
The parallel axes plot in Fig.1 summarizes the found re-

sults. Despite of the parameters that have been distin-
guished in the plot, i.e. test function, optimization algo-
rithm, points on one line have been received with the same
combination of random seed and ROI size We present dif-
ferent plots for the 9 test functions from section 2. The
algorithms are laid on the x axis. Next to the 3 classical
approaches, we feature the RF approach and two Forrester
ones, i.e. employing L-BFGS-B (FB) and CMAES (FC).
All these SPOT based approaches are further distinguished
according to the values of the seq.design.new.size param-
eter {1, 2, 3}. The y axis indicates the final gap between the
received function value and the global optimum in logarith-
mic scale.

The experiments showed that BFGS performed best on
any problem where the boundaries were close to the global

optimum. Choosing the boundaries this way basically re-
duces the test instance to a local optimization problem. On
larger distances, SPOT managed to outperform BFGS occa-
sionally, in particular if the functions are multi modal. On
other functions, it receives comparable results. However,
when SPOT is able to locate an optimum, it often does not
do so with the same precision as BFGS or SANN.

One problem in these results is that the implementation of
BFGS sometimes used significantly more evaluations on the
target function than specified, even exceeding 200 instead
of stopping after 100 evaluations. For a better comparison,
this should be taken care of in future experiments.

It has to be noted that SPOT requires a longer run time
because building the surrogates is time consuming. There-
fore, we suggest to apply SPOT for real world applications
if the function evaluations dominate the overall run time.

On any function except for f9 (Weierstrass), Forrester
(FB, FC) outperforms RF by a large margin. One reason
for RF performing this well on f9 might be the rectangu-
lar regions in the Weierstrass function. These are probably
rather well modeled by the RF, as RF models also subdivide
the modeled space into rectangular areas.

Regarding the choice of the seq.design.new.size in SPOT,
the experiments did not show results in favor of any of the
three in general. We observed that a new design size of 2 or 3
was sometimes better for Forrester. Thus, for future exper-
iments a seq.design.new.size of 3 is advisable since this
leads to a reduced run time of SPOT, as the surrogate mod-
els are built less frequently. Concerning the optimization
problem of the maximum likelihood estimation in Forrester,
no clear difference between L-BFGS-B (FB) and CMAES
(FC) can be observed.

5. SUMMARY AND OUTLOOK
The proposed versions of SPOT are able to outperform

classical optimization approaches on some of the functions
in our limited test environment. We seek to enlarge the
test bed in future experiments, e.g. with the BBOB test
set. Further parameters of SPOT have to be examined as
well. At present, we suggest to consider SPOT optimization
with Forrester models and a new design size of 3 due to the
findings presented.
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