
Schriftenreihe CIplus, Band 4/2015

Herausgeber: T. Bartz-Beielstein, W. Konen, B. Naujoks, H. Stenzel

Sequential Parameter
Optimization in Noisy
Environments
Thomas Bartz-Beielstein, Christian Jung, Martin Zaefferer



Sequential Parameter Optimization in Noisy

Environments∗

Thomas Bartz-Beielstein, Christian Jung, Martin Zaefferer
SPOTSeven Lab

Cologne University of Applied Sciences
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Abstract

Sequential Parameter Optimization is a model-based optimization methodology, which

includes several techniques for handling uncertainty. Simple approaches such as sharp-

ening and more sophisticated approaches such as optimal computing budget allocation

are available. For many real world engineering problems, the objective function can be

evaluated at different levels of fidelity. For instance, a CFD simulation might provide

a very time consuming but accurate way to estimate the quality of a solution.The

same solution could be evaluated based on simplified mathematical equations, leading

to a cheaper but less accurate estimate. Combining these different levels of fidelity

in a model-based optimization process is referred to as multi-fidelity optimization.

This chapter describes uncertainty-handling techniques for meta-model based search

heuristics in combination with multi-fidelity optimization. Co-Kriging is one power-

ful method to correlate multiple sets of data from different levels of fidelity. For the

first time, Sequential Parameter Optimization with co-Kriging is applied to noisy test

functions. This study will introduce these techniques and discuss how they can be

applied to real-world examples.

1 Introduction

Sequential Parameter Optimization (SPO) is a meta-model based search heuris-
tic that combines classical and modern statistical techniques. It was originally
developed for the analysis of search heuristics such as simulated annealing, par-
ticle swarm optimization and evolutionary algorithms [6]. Here, SPO itself will

∗This is a preprint of the publication T. Bartz-Beielstein, C. Jung, M. Zaefferer. Uncer-
tainty Management Using Sequential Parameter Optimization. In G. Dellino and C. Meloni,
Carlo, editors, Uncertainty Management in Simulation-Optimization of Complex Systems,
Springer, 2015 (in print). The original publication is available at www.springerlink.com
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be used as a search heuristic, i.e., SPO is applied to the objective function di-
rectly. An introduction to the state-of-the-art R implementation of SPO, the
so-called sequential parameter optimization toolbox (SPOT), is presented in [8].

Meta models, also called surrogate models, simplify the simulation optimiza-
tion, because the run times are generally much shorter than the original function
evaluations (simulation runs) [2, 25]. Cost-intensive optimization problems in
engineering have often less costly, less accurate representations which can be
evaluated. That means, two functions of different fidelity are available for the
optimization process, the fine function (expensive, time-consuming, accurate)
and the coarse function. Intermediate fidelity levels can be available, too. In
the remainder of this chapter, Me denotes the expensive model, e.g., computa-
tionally expensive simulations or real-world experiments such as crash test. The
simplified (cheap) meta model will be denoted as Mc. The combination of infor-
mation from Mc and Me models will be referred to as multi-fidelity analysis[24].
An interesting aspect is the computational budget (number of function evalua-
tions) that is spent for selecting new design points and the relationship between
evaluations of the cheap and the expensive model. A powerful multi-fidelity
technique is co-Kriging [17], which exploits correlation between the different
fidelity levels to improve the meta model of the highest fidelity function.

Uncertainty may arise in many real-world optimization settings, e.g., from
noisy sensors, imperfect models, or the inherently stochastic nature of the simu-
lated system. Therefore, uncertainty-handling techniques are necessary [1, 21].
An elementary approach to cope with uncertainty is to increase the number
of function evaluations. SPOT integrates sharpening as a simple method,
which guarantees a fair comparison of the obtain solutions. Lasarczyk [27] and
Bartz-Beielstein et al. [3, 4] analyzed the integration of a more sophisticated
control-theoretic simulation technique called optimal computing budget alloca-
tion (OCBA) into SPOT. The OCBA approach can intelligently determine
the most efficient replication numbers [12]. The goal is to obtain the highest
decision quality using a fixed computing budget or to attain a desired simula-
tion decision quality using a minimum computing budget. This SPOT-OCBA
variant is compared to SPOT’s standard technique of increasing the number of
repeats.

Since Forrester et al. [17] describe co-Kriging for deterministic settings, it
is of great interest to extend this analysis to noisy environments. Currently,
there are only a few publications available, which analyze co-Kriging under
uncertainty. For example, Wankhede et al. [40] compare a co-Kriging based
optimization strategy with a standard Kriging based optimization strategy for
the design of a 2D combustor.

These considerations motivated the central question of this publication:

Are results from optimization runs under uncertainty, which are
based on a large quantity of cheap data and a small quantity of
expensive data, better than results from runs which are based on a
small quantity of expensive data?

This question motivated the following experimental setup. Two classes of meta
models, which have been proven useful in the SPOT framework, i.e., (i) tree-
based models such as random forest [10, 9, 28] and (ii) stochastic process models
(Gaussian processes, Kriging) [34, 29, 35], will be used. A comparison of the
rather simple tree-based techniques with sophisticated Kriging and co-Kriging

2



techniques is of great interest. To enable a fair comparison, a sweeping method
based on Latin hypercube sampling (LHS) is added to our experimental port-
folio [30]. Summarizing, the following portfolio is used: (i) simple sweep of
the search space by Latin hypercube sampling, (ii) random forest, (iii) Kriging,
and (iv) Co-kriging models. This setup allows the investigation of the following
research questions:

Question 1 Does co-Kriging perform well under the presence of noise, in com-
bination with uncertainty handling techniques like OCBA?

Question 2 How do random-forest based meta models perform in comparison
to Kriging-based meta models?

Results from this study are applicable to other meta-model search heuristics
such as sequential kriging optimization [19].

This chapter, which describes uncertainty-handling techniques for meta-
model based search heuristics in combination with multi-fidelity analysis, is
structured as follows. Section 2 introduces SPOT and the meta models such as
random forest, Kriging and co-Kriging, used in this study. Uncertainty-handling
techniques are described in Sec. 3. The experimental setup, e.g., objective func-
tion and run length, number of repeats etc. and results are presented in Sec. 4.
A real-world example is described in Sec. 5. Finally, the chapter concludes with
a Summary in Sec. 6.

2 SPO Variants

2.1 SPOT in a Nutshell

SPOT uses the available budget (e.g., simulator runs, number of function eval-
uations) sequentially, i.e., it uses information from the exploration of the search
space to guide the search by building one or several meta models. Predictions
from meta models are used to select new design points. Meta models are refined
to improve knowledge about the search space. SPOT provides tools to cope
with noise, which typically occurs when real-world applications, e.g., stochastic
simulations, are run. It guarantees comparable confidence for search points.
Users can collect information to learn from this optimization process, e.g., by
applying exploratory data analysis (EDA) [39, 11]. Last, but not least, SPOT
provides mechanisms both for interactive and automated tuning [7, 5]. An R
version of this toolbox for interactive and automatic optimization of algorithms
can be downloaded from CRAN.1 Programs and files from this study can be
requested from the author.

As can be seen from Algorithm 1, SPOT requires a mechanism to generate
an initial design. Additionally, SPOT generates new design points during the
sequential step. Latin hypercube sampling was chosen as the generator of design
points during the initial and sequential SPOT steps. LHS was chosen, because
it is easy to implement and understand. Many design point generators are
available in R, see, e.g., the CRAN Task View: Design of Experiments (DoE)
& Analysis of Experimental Data.2

1http://cran.r-project.org/web/packages/SPOT/index.html
2http://cran.r-project.org/web/views/ExperimentalDesign.html
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Table 1: SPOT meta models used in this study

Type Name of the SPOT plugin Abbrev.

Kriging (Gaussian Processes) spotPredictForrester KR
Co-Kriging (Multi-Output Gaus-
sian Processes)

spotPredictCoForrester CK

Random forest spotPredictRandomForest RF

There is a strong interaction between design generators and meta models,
because the optimality of a design point depends on the meta model [32, 35].
This paper modifies SPOT’s meta models, while design generators remain un-
changed. The impact of the variation of the design generators on the algorithm’s
performance will be subject of a forthcoming paper.

2.2 Meta Models Used During SPOT Runs

SPOT processes data sequentially, i.e., starting from a small initial design,
further design points are generated using a meta model. Many meta models
are available in R. Similar as for the design generators the user has the option
of choosing between state-of-the-art meta models for tuning his algorithm or
writing his own meta model and use it as a plugin for SPOT. The default
SPOT installation contains several meta models. The R implementation of
randomForest was chosen as SPOT’s default one. This is quite robust and
can handle categorical and numerical values needing only a comparably small
amount of computational resources. Table 1 summarizes meta models used for
experiments described in this document.

2.2.1 Random Forest-based Parameter Tuning

The random forest (RF) method from the R package randomForest implements
Breiman’s algorithm, which is based on Breiman and Cutler’s original Fortran
code, for classification and regression [9]. It is implemented as a SPOT plugin,
which can be selected via setting the command seq.predictionModel.func

according to Table 1 in SPOT’s configuration file. A detailed description of the
SPOT configuration is given in [8].

2.2.2 Kriging-based SPO

Kriging is one of the most promising surrogate models for optimization prob-
lems [26, 29]. It provides a very flexible and efficient way to model continuous
landscapes, providing a good predictive quality for finding solutions of increased
optimality in the design space. Kriging provides a way to estimate the local un-
certainty of the model. For deterministic problems the uncertainty is zero at
observed locations, and will increase with rising distance to such locations as
well as increased curvature of the model. This variance estimate allows for
an efficient way to balance between exploitation and exploration during the
optimization process. Jones et al. introduced this method as efficient global
optimization (EGO) [22]. Forrester et al. [17] also utilize variance estimates as
a penalty for imputation of failed target function evaluations.
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Several Kriging implementations are available in R, provided by packages
like mlegp, DiceKriging, kernlab or fields [15, 33, 23, 18]. SPOT includes
examples of interfacing with several different implementations. Most notably,
the SPOT package itself provides two implementations, which are a DACE (De-
sign and Analysis of Computer Experiments) based implementation [29] and an
implementation based on Code by Forrester et al. [17]. They were chosen to
be reimplemented in the SPOT R-Version, as they were also used in the ear-
lier SPOT matlab version. Both are numerically robust and show good perfor-
mance. While the former provides a flexible interface to choose different Kernels
or polynomial functions, the latter includes a co-Kriging implementation. Co-
Kriging will be introduced below. In this article, the Kriging implementation
based on Forrester et al. [17] is used.

2.2.3 Co-Kriging

For many real world engineering problems, the target function can be evaluated
at different levels of fidelity or granularity. For instance, a CFD simulation
might provide a very time consuming but accurate way to estimate the quality
of a solution.The same solution could be evaluated based on simplified analytical
equations, leading to a cheaper but less accurate estimate. Combining these
different levels of fidelity in a model-based optimization process is referred to as
multi-fidelity optimization. Kennedy and O’Hagan [24] explore ways in which
models with different fidelities can be used to make inference about the output
from the most expensive, complex or fine-grained model.

One possible approach to multi-fidelity optimization is co-Kriging. Co-
Kriging can be defined as a variant of kriging, which uses information from
an additional, highly correlated variable together with the primary variable to
improve estimates of the function values. Forrester et al. [16] introduce co-
Kriging together with a simple test function and a real-world example. They
show, how co-Kriging can employ the lower fidelity function to improve the
model of the higher fidelity function. The simple test-function introduced by
Forrester et al. [16] will be used in a slightly changed way for the experiments
described in Sec. 4.

It has to be noted, that in this study, co-Kriging requires the design points
evaluated on the fine target function to be nested into the larger design of the
coarse target function. In SPOT it is ensured that the designs of the different
fidelity levels are still space-filling. The creation of the lower levels design is
therefore always based on the upper levels design.

2.2.4 Kriging/co-Kriging and Noise

A standard Kriging model would not be perfectly suitable for a noisy problem,
because Kriging is a strictly interpolating approach. That means, the predicted
mean values exactly match with the known observations. However, a regular-
ization constant can be introduced (also called nugget effect) to transform the
model to a regressing one, where prediction and observation can deviate from
each other. If expected improvement (EI) [22] is used, this will lead to non-zero
variance estimates at already evaluated design points. This may deteriorate the
explorative properties of EGO. However, a reinterpolating approach can be used
to deal with this problem, both for Kriging [17] and co-Kriging [16].
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Besides this, repeated evaluation of design points has to be considered for the
coarse function. The uncertainty handling methods in SPOT, namely OCBA
and sharpening, are introduced in Sec. 3. They are methods to select design
points for re-evaluation, which are based on quality and/or variance. Sharpening
and OCBA are not directly applicable to the coarse function design from the
Mc model. The coarse function optimum can be completely meaningless for the
true function, which means that the quality value becomes rather meaningless.
A suitable method should therefore either focus on a good global fit of the
coarse function (e.g. even spread of repeats). This should be especially well
applicable when the function is indeed very cheap to evaluate. Or the coarse
function budget should focus on the area of interest, as identified by fine function
evaluations. In this study, a larger number of repeats is evenly spread over the
whole design space. Still, points of the fine function design, which are nested in
the coarse function design and chosen for repetition, will also be re-evaluated
on the coarse function.

3 Uncertainty Handling Techniques

3.1 Sharpening

In the presence of noise, averaging over several function evaluations may help to
manage uncertainty and to improve confidence. In the context of evolutionary
algorithms, Stagge [36] demonstrated that a reduction of noise is not necessary
for every single point in the search space but only for the best ones. The decision
which ones are the best is facilitated by averaging but possibly a small number of
evaluations is enough for that decision. Stagge [36] experimentally demonstrated
that this idea can reduce the number of function evaluations significantly.

SPOT provides tools for managing uncertainty and improving the confidence
during the search. First approaches increased the number of repeats. An early
SPOT implementation proceeded as follows [6]:

At each step, two new designs are generated and the best is re-
evaluated. This is similar to the selection procedure in (1 + 2)-
Evolution Strategies. The number of repeat runs, k, of the algorithm
designs is increased (doubled), if a design has performed best twice
or more. A starting value of k = 2 was chosen.

A slightly modified approach, which will be referred to as sharpening (SHRP),
is implemented in more recent SPOT versions. Sharpening consists of two
phases, (i) the model construction and (ii) sequential improvement. Phase (i)
determines a population of initial designs in algorithm parameter space and
runs the algorithm k times for each design. Phase (ii) consists of a loop with
the following components: By means of the obtained data, the model is built or
updated, respectively. Then, a possibly large set of design points is generated
and their predicted utility computed by sampling the model. A small set of the
seemingly best design points is selected and the algorithm is run k+ 1 times for
each of these. The algorithm is also run once for the current best design point
and k is increased by one. Note, other update rules for the number of repeats,
k, are possible. The new design points are added to the population and the loop
starts over if the termination criterion is not reached (usually a preset budget is
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granted to the process). In consequence, this means that the number of repeats
is always increased by one if the current best design point stays at the top of
the list or a newly generated one gets there. Due to nondeterministic responses
of the algorithm, it may however happen that neither of these is found at the
top of the list after finishing the loop. In this case, k may effectively shrink as
performance comparisons have to be fair and thus shall be based on the same
number of repeats.

3.2 Optimal Computing Budget Allocation

The sharpening approaches from Sec. 3.1 do not use any information about the
uncertainty (variance). Here come techniques such as optimal computing budget
allocation (OCBA) into play [13, 20, 14]. OCBA was developed to ensure a high
probability of correct selection (PCS). To maximize PCS, a larger portion of
the available budget is allocated to those designs that are critical to the process
of identifying the best candidates. OCBA uses sample means and variances in
the budget allocation procedure in order to maximize PCS.

OCBA’s central idea can be explained as follows. Consider a number of
simulation replications, say T , which can be allocated to m competing design
points with means Y 1, Y 2, . . . , Y m and finite variances σ2

1 , σ
2
2 , . . . , σ

2
m, respec-

tively. The approximate probability of correct selection can be asymptotically
maximized when

Ni

Nj
=

(
σi/δb,i
σj/δb,j

)2

, i, j ∈ {1, 2, . . . ,m} , and i 6= j 6= b, (1)

Nb = σb

√√√√ ∑
i=1,i6=b

N2
i

σ2
i

,

where Ni is the number of replications allocated to design i, and δb,j = Y b−Y i

denotes the difference of the i-th and b-th mean with Y b ≤ mini 6=b Y i. As can
be seen from (1), the allocated computing budget is proportional to variance
and inversely proportional to the difference from the best design. Chen and Lee
present a comprehensive coverage of the OCBA methodology [12].

Lasarczyk was the first who combined SPOT and OCBA [27]. The OCBA
implementation in this study is based on Lasarczyk’s work. SPOT with OCBA
is shown in Algorithm 1. New design points which were proposed by the meta
model are evaluated several times, e.g., twice. This value can be modified using
the init.design.repeats variable in SPOT’s config file. During each SPOT
step, a certain budget (here: spot.ocba = 3, as can be seen from Table 2) is
allocated to the candidate solutions to ensure a high PCS for the best design
point.

4 Experiments

4.1 Objective Function

To demonstrate the effectiveness of different approaches the one-variable test-
function, that Forrester et al. [17] introduced, is investigated in the experiments.
Although this function is rather simple, it allows a comparison with previous
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Algorithm 1: SPOT-OCBA.
t0 = init.design.repeats, t = seq.ocba.budget,
l = seq.design.size, d = seq.design.new.size

// phase 1, building the model:

let F be the tuned algorithm;
// design considerations necessary:

generate an initial population X = {x̄1, . . . , x̄m} of m parameter vectors;
let t0 be the initial number of tests for determining estimated function
values;
foreach x̄ ∈ X do

evaluate F with x̄ t0 times to determine the estimated function value
ŷ of x̄;

end
// phase 2, using and improving the model:

while termination criterion not true do
// OCBA:

let B ⊆ X denote the subset of candidate solutions with best
estimated function value ŷ;
let t denote the OCBA budget;
distribute t among B, i.e., generate OCBA distribution O;
// model considerations necessary:

build meta model f based on X and {ŷ1, . . . , ŷ|X|};
// design considerations necessary:

generate a set X ′ of l new parameter vectors by random sampling;
foreach x̄ ∈ X ′ do

calculate f(x̄) to determine the estimated function value f(x̄) of x̄;
end
select set X ′′ of d parameter vectors from X ′ with best predicted
utility (d� l);
evaluate F with B following the OCBA distribution O; // (improve

confidence)

evaluate F t0 times with each x̄ ∈ X ′′ to determine the estimated
function values ŷ;
extend the population by X = X ∪X ′′;

end
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Table 2: SPOT Setup

SPOT Setup Parameter Value

auto.loop.nevals 100
init.design.size 10
init.design.repeats 2
init.design.func ”spotCreateDesignLhd”
init.design.retries 100
spot.ocba TRUE — FALSE
seq.ocba.budget 3
seq.design.size 200
seq.design.oldBest.size 3
seq.design.new.size 3
seq.design.func ”spotCreateDesignLhd”

results and is therefore well suited to demonstrate the applicability of specific
approaches, especially to find answers for Questions 1 and 2 as stated in Sec. 1.
The expensive function, which is associated with the fine model Me, is defined
as

fe(x) = (6x− 2)2 × sin(12x− 4),

and the cheap function associated with Mc as

fc(x) = 0.5fe(x) + 10x− 10.

The optimization is performed on the unit interval between zero and one. For
the purpose of the experiments, noise is added to both functions. The noise
term is additive, normally distributed with zero mean and standard deviation
one. In Fig. 1, the functions are depicted with and without a noise sample. The
deterministic term, without noise, will only be used to evaluate the quality of
the best found solution. The optimum of the deterministic fine function is at
xopt ≈ 0.76, the related function value reads fe(xopt) ≈ −6.02.

4.2 Pre-experimental Planning

To compare the different modeling approaches based on their performance on
the above described test function, the following problem setup is used. Two
function evaluation budgets are tested, the first with n = 20 and the second
with n = 50 evaluations, respectively. For the former case, the initial design
size will be chosen with 5 points, for the latter case 10 points. In both cases,
points from the initial design are evaluated twice. This setup splits the available
budget between initial design and sequential design points in such a manner that
not more than 50 percent of the budget is used for the initial design.

Six different combinations are tested, with respect to the models random
forest, Kriging and co-Kriging as well as the uncertainty handling techniques
sharpening and OCBA. To enable a fair comparison with random forest, no
EI criterion is used, leading to a pure model-exploitation situation. While it
would be possible to get a variance estimate (and thus EI) from a random-
forest model by integrating results from individual trees, this variance estimate
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Figure 1: The one variable test-functions for multi-fidelity optimization, with
and without noise. The solid line denotes fe, whereas a dashed line is used to
illustrate the cheap function fc
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Table 3: SPOT configuration for the experimental runs.

Parameter Value

Surrogate model Random Forest or Kriging or co-Kriging

Surrogate optimization
Algorithm Bounded Nelder-Mead
Restarts true
Budget 1000

Design and repeats
Initial design size 5 or 10
Initial evaluations per point 2
Max. evaluations per design point 10
New points evaluated per step 1
Old points reevaluated per step 3
Use OCBA true or false
Size of coarse function design 20
Coarse function evaluations per point 5

Table 4: Statistical properties of the results with Random Forest. (S) indicates
short runs, i.e., n = 20 and (L) indicates long runs with a budget of n = 50
function evaluations

RF+SHRP (S) RF+OCBA (S) RF+SHRP (L) RF+OCBA (L)

Min -6.021 -6.016 -6.021 -6.020
1Q -5.947 -5.944 -6.020 -5.994
Med -5.867 -5.663 -6.017 -5.955
Mean -5.536 -5.324 -6.000 -5.905
3Q -5.393 -5.091 -6.007 -5.864
Max -1.490 -1.600 -5.871 -5.477

would have different properties than the Kriging one. All other important, non-
default settings are identical for each of the experimental runs. The settings are
summarized in Table 3. Each experimental run is repeated 50 times to produce
statistically sound results.

As a reference for the comparison with the model-based approaches (RF
and Kriging), a sweep of the search space was performed: the whole budget
was used to evaluate randomly generated design points, and each design point
is evaluated twice. A space-filling design (Latin hypercube sampling) was used
to cover the search space. All approaches that perform worse than this basic
sampling approach should be disregarded.

4.3 Results: Random Forest

Figure 2 presents a boxplot all experimental results. The statistical properties
of the results with random forest are summarized in Table 4. Random forest
does not perform well in case of the 20 function evaluations budget. It does not
manage to outperform the basic LHS approach, regardless of the insignificant
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Figure 2: Boxplot of optimization results with 20 function evaluation budget
(upper graph) and 50 evaluations (lower graph). Depicted are the true deter-
ministic fine function values of the best points as identified by the optimization
process, fe(xopt).
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Figure 3: The prediction of the final model after an optimization run with 50
evaluations with Random Forest and OCBA (upper graph) or Sharpening (lower
graph).

influence of OCBA and sharpening. However, if more evaluations (n = 50)
are used, RF with sharpening performs quite good. It is at least competitive,
even though it seems to produce a slightly larger number of outliers than the
Kriging based models do. RF with OCBA, however, is still not better than the
LHS. Unlike the 20 function evaluation budget, OCBA and sharpening differ
significantly in the long run.

Figure 3 shows one example of how the RF model looks like, after a com-
pleted long optimization run with n = 50 function evaluations. As can be seen,
the global structure is represented in a very rough way. It can be observed
that the RF models behavior is not linked to the chosen uncertainty handling
technique. This is despite the significant difference between the overall opti-
mization performance. This can be explained by the main dependence of the
global structure on the initial design, which is identical for both. The advantage
of sharpening is therefore not linked to an actual improvement of the model,
but rather to an improved identification of optimal points in the evaluated solu-
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Table 5: Statistical properties of the results with Kriging. (S) indicates short
runs, (L) indicates long runs

KR+SHRP (S) KR+OCBA (S) KR+SHRP (L) KR+OCBA (L)

Min -6.021 -6.021 -6.021 -6.021
1Q -5.949 -5.948 -6.020 -6.018
Med -5.770 -5.692 -6.012 -6.012
Mean -5.393 -5.242 -5.993 -6.011
3Q -5.409 -5.152 -5.976 -6.007
Max -1.490 -1.431 -5.874 -5.963

tions. Sharpening focuses the budget only one the best of the known solutions,
being more exploitative. OCBA allow the selection of even slightly less optimal
points for repetition, which results in a more explorative and less exploitive be-
havior. It seems like the RF models structure works better with the exploitive
approach.

4.4 Kriging

In case of the short optimization runs with a budget of n = 20 function evalua-
tions, Kriging (KR) performs very similar to RF, also not outperforming LHS,
regardless of the chosen uncertainty handling technique. For the longer runs
with n = 50 evaluations, however, Kriging shows a different behavior. While
KR with SHRP performs slightly worse, KR with OCBA produces good re-
sults, with less outliers than RF with SHRP but showing otherwise very similar
behavior. It can be seen that the trend towards OCBA is rather small, but at
least, OCBA does not degrade performance with KR, as seen with RF. The sta-
tistical properties of the results with Kriging are summarized in Table 5. The
earlier examples of final model shape seen for RF in Fig. 3 can also be compared
to the respective graphs for KR in Fig. 4. It can be clearly seen that the KR
model approximates the true global shape much better, which is no surprise, as
the problem is a continuous one which can hardly be modeled in much detail
by the discontinuous RF approach. When an exact representation of the global
landscape would be desired, KR would be clearly preferred over RF.

4.5 Co-Kriging

The most striking advantage of co-Kriging (CK) in this experiment can be ob-
served for the short optimization runs. It outperforms all other approaches
significantly. Still, it shares the feature that uncertainty handling techniques do
not impact the performance for short runs. For the longer runs, CK is on par
with the other methods, thus being over-all the most recommendable method in
this situation and the only one to steadily outperform the LHS approach. The
lack of improvement for the longer runs is probably due to the fact that the sim-
ple Kriging model can already model this very simple test-function sufficiently
well. Exploiting additional information from the coarse function can not yield
further progress in this setting. The statistical properties of the results with
co-Kriging are summarized in Table 6. This is supported by the very similar
shape of the Kriging models in Fig. 4 and the co-Kriging models Fig. 5, although
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Figure 4: The prediction of the final model after an optimization run with 50
evaluations with Kriging and OCBA (upper graph) or sharpening (lower graph).

Table 6: Statistical properties of the results with co-Kriging. (S) indicates short
runs, (L) indicates long runs,

CK+SHRP (S) CK+OCBA (S) CK+SHRP (L) CK+OCBA (L)

Min -6.021 -6.021 -6.021 -6.021
1Q -6.020 -6.020 -6.019 -6.019
Med -6.017 -6.017 -6.011 -6.014
Mean -5.951 -5.936 -5.993 -6.012
3Q -6.014 -6.014 -5.976 -6.009
Max -2.807 -2.041 -5.874 -5.981
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Figure 5: The prediction of the final model after an optimization run with 50
evaluations with co-Kriging and OCBA (upper graph) or Sharpening (lower
graph).

the RMSE is improved for the co-Kriging Models. The improved RMSE can
be observed for most experiments, but does not lead to improved optimization
performance.

In a real-world use case, one would of course have to consider that CK needs
increased effort. This additional effort includes the evaluations of the coarse
(supposedly cheap) target function, as well as the more complex model building
and prediction. Thus, it’s usefulness would depend on the difference in time
consumption for the coarse and fine function, as well as the time consumption
of the model building for the given design space dimensionality and number of
observations.

4.6 Discussion of the Experimental Results

The experiments described are of course only related to a single one-dimensional
test-function. This has several implications. Firstly, things might look different
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for different functions of various dimensionality. Secondly, real-world problems
present a large array of additional challenges not considered here, for instance
the handling of failed target function evaluations. Still, the results do show that
co-Kriging can help to improve the optimization performance in the presence of
noise. This gives a preliminary answer to Question 1. Although this result is
rather vague, it could be shown that co-Kriging is beneficial even in optimization
under uncertainty.

Another important lesson to be learned from these experiments is that
there can be no general recommendation towards a single uncertainty handling
method. This clearly depends on the available budget as well as the choice of
optimization process parameters, e.g., the chosen meta model. Problem fea-
tures like the type of noise will also have an effect, but are not considered here.
Therefore, no simple answer can be given to Question 2.

OCBA and SHRP do have different influences on the optimization pro-
cess behavior, promoting either exploration or exploitation. A similar effect to
OCBA could be assumed when expected improvement comes into play because
it is a method to balance towards exploration as well. The difference here is
of course, that OCBA explores the number of samples for each known location
in the design space, while EI explores regions not yet well represented by the
learned meta model.

5 Real-world Example: Heavy Width Reduc-
tion of Steel Slabs

5.1 The Hot Steel Rolling Process

One important quality parameter in the complex process of hot steel rolling is
the prediction and optimization of the width for plates and strips. Rectangular
steel slabs, which are used for the manufacture of all flat steel products such as
coils, are hot rolled. Width reduction has become increasingly important in the
production of hot steel strips.

The rolling process is divided into several passes. Each pass can consist of
a thickness (horizontal rolling) and a width reduction (vertical rolling). The
width reduction is only performed in forward passes and the vertical rolling
process has no effect in the backwards direction. This situation is depicted in
Fig. 6.

In general the vertical rolling process is performed before the horizontal
rolling process. During this vertical rolling process a so called dogbone shape
is added to the product which will then again be flattened in the horizontal
rolling process. The dogbone shape cannot be measured because it only occurs
between the vertical and horizontal stands of the steel mill and there are no
measurement systems available which are working properly in this environment.
Contrary to the plate and strip thickness the width after each pass cannot be
set directly and an accurate model is needed to obtain a proper width shape
of the product. Each deformation step without any width reduction results in
an increased product width. The number of passes in reversing mills, say N ,
has always to be odd because normally the product is transferred to further
processes away from the furnace. This leads to (N+1)/2 forwards passes and
(N-1)/2 backwards passes. Usually, the reversing mills are equipped only with
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Figure 6: Illustration of a rolling process step in several passes. The entry
side is on the left. Measurements are available on the right after each forward
pass, whereas no measurements can be obtained on the left. The rolling process
consists of several, e.g., N = 7 forward and backward passes.
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one width gauge at the exit side of the stand so there are only measurements
after each forward pass. Due to the fact that the width cannot be measured
at the entry side, a hidden state problem occurs. The dogbone shape, which
results after the width reduction process, is hard to describe analytically. This
has only been done for a few standard steel grades within narrow geometric
confines. Sophisticated time-consuming methods have to be applied to cope
with the different working points. The occurrence of the dogbone will result
in an additional spread in the following process of horizontal rolling. Assuming
that the incoming geometries of the product before the first deformation process
are known then there are two successional processes which modify the product
width.

5.2 Modeling

Various models can be constructed to represent the process described above.
They are based on the following input parameters:

• product attributes such as geometry (thickness, width), material compo-
nents (chemical decomposition), and thermo-mechanical properties

• process parameters such as roll gap settings, velocity, and cooling.

The output parameter is the width of the product.
To model the complete physical process every deformation step should be

modeled separately, including a model of the dogbone shape. However, this is
not possible, because measurements are not available between the vertical and
horizontal rolling step. Therefore, the following two models will be considered
further:

1. a model, which describes each pass with its input and output parameters,
ignoring the dogbone shape

2. a model, which neglects the hidden state after the backwards pass.

These two models can be built based on different approaches:

1. using a data-driven approach, which processes real-world data, or alter-
natively

2. using an analytical model, for example as presented in [31, 37, 38].

This classification allows the generation of four different models. Subject of
our current research is the implementation of models using different levels of
fidelity. Two models will be considered further. The first, high-fidelity model
Me will be called the data-driven model. It uses data from the real-world process
to generate a Kriging model. The second, coarse or lower fidelity model, say
Mc, describes the input-output relationship using the simple analytical formula.
The second model will be referred to as the analytical model. Co-Kriging could
additionally exploit information from the lower fidelity analytical model. Note,
that for all data-driven models, expensive data pre-processing is necessary.
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6 Summary

This article illustrates that co-Kriging can work under the presence of noise in
the coarse and fine target function, and can be combined with the uncertainty
handling techniques included in SPOT. Starting point of our experimental anal-
ysis was the co-Kriging test function, which was introduced by Forrester et
al. [17]. We demonstrated that co-Kriging can be beneficial in uncertain envi-
ronments. Unsurprisingly, no general recommendations for uncertainty handling
techniques can be given. Each experimental setup has different requirements.
Modifications of the computational budget, e.g., increasing the number of func-
tion evaluations from n = 20 to n = 50 leads to different results. As a rule
of thumb, we can state that complex models such as Kriging require larger
computational budgets than simple models such as random forest. However,
this difference vanishes if information from cheap and expensive models can be
combined. Co-Kriging seems to be a promising approach for costly real-world
optimization problems.

The hot steel rolling process was introduced as an important real-world opti-
mization problem. This problem is subject of our current research. A modeling
approach, which combines information from a simple mathematical model with
information from an expensive data-driven Kriging model was presented. This is
only one significant real-world problem where multi-fidelity models are of great
importance, which can be adapted to other areas.
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