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Abstract Increasing computational power and the avail-
ability of 3D printers provide new tools for the combina-

tion of modeling and experimentation. Several simula-
tion tools can be run independently and in parallel, e.g.,
long running computational fluid dynamics simulations

can be accompanied by experiments with 3D printers.
Furthermore, results from analytical and data-driven
models can be incorporated. However, there are funda-
mental differences between these modeling approaches:

some models, e.g., analytical models, use domain knowl-
edge, whereas data-driven models do not require any in-
formation about the underlying processes. At the same

time, data-driven models require input and output data,
but analytical models do not. Combining results from
models with different input-output structures might im-

prove and accelerate the optimization process. The opti-
mization via multimodel simulation (OMMS) approach,
which is able to combine results from these different
models, is introduced in this paper.

Using cyclonic dust separators as a real-world simu-
lation problem, the feasibility of this approach is demon-
strated and a proof-of-concept is presented. Cyclones
are popular devices used to filter dust from the emit-
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ted flue gases. They are applied as pre-filters in many
industrial processes including energy production and

grain processing facilities. Pros and cons of this mul-
timodel optimization approach are discussed and expe-
riences from experiments are presented.
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1 Introduction

Modeling allows the estimation of system performance
under new conditions as well as the comparison of dif-

ferent operating conditions and parameterizations, e.g.,
new geometries. This article describes different model
types, namely analytical, surrogate, computational fluid
dynamics (CFD), and 3D printing models. Because ev-

ery modeling approach has its pros and cons, a combi-
nation, which uses information from several models at
the same time, might be beneficial. Starting with math-

ematical modeling, we will describe different modeling
approaches first.

Loosely speaking, mathematical modeling is “the

link between mathematics and the rest of the world”
(Meerschaert 2013). Mathematical modeling can be per-
formed using analytical and numerical models: Analyti-
cal models are mathematical models that have a closed

form solution, i.e., the solution to the equations used
to describe changes in a system can be expressed as
a mathematical analytic function. Nelson (1995) refers

to analytical models as “rough-cut models”, i.e., math-
ematically solvable and typically less detailed models.
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Numerical (simulation) models are mathematical mod-
els that use some sort of numerical time-stepping meth-
ods such as Newton’s method to simulate the model’s
behavior over time. In contrast to analytical models,

solutions of simulation models are usually presented
as tables or plots. Simulation is a widely used method
for studying complex real-world systems, because many

systems cannot be completely described by analytical
models and experimentation with the real system is in-
feasible or expensive (Law 2007).

Nowadays, CFD simulation is a well established tech-
nique. It is also used in many studies, which describe
the topic discussed in this publication: the optimization

of cyclone separator geometries (Hoffmann and Stein
2007; Elsayed and Lacor 2010).

Over the last decades, surrogate models, also known

as metamodels, gained importance (Jin et al. 2001; Bartz-
Beielstein and Zaefferer 2017). They are build from and
then used instead of the underlying real processes or
simulation models. Popular metamodelling techniques

include regression, radial basis functions, and Kriging
(Santner et al. 2003; Kleijnen 2008).

3D-printing is a popular modeling technique. It is
commonly used to validate the results, e.g., a certain
geometry, from CFD simulations. Recently, 3D-printing
was integrated into the optimization via simulation loop

(Preen and Bull 2014).

Although the model based approach can be consid-
ered a success story, it also causes some problems. Sev-

eral critical issues in simulation studies are related to
errors (Nelson 1995). These errors can be due to bias
(e.g., initial-condition effects) or to problems with the

pseudorandom-number generators. If feasible, an ana-
lytical analysis is in many cases preferable to simula-
tion, because of the lack of sampling error. Simula-
tion models can also be computationally demanding,

because each simulation describes only one single set-
ting. Therefore several repeats with varying input data
are necessary, whereas an analytical model allows the

calculation of the exact characteristics of the system for
several settings.

Furthermore, an inappropriate level of model de-

tail, failure to collect adequate system data, and using
wrong performance indicators for comparisons are com-
mon pitfalls in both analytical and numerical simula-

tion studies (Law 2007).

Many textbooks describe methods for finding the
best model, but do not discuss the combination of sev-

eral models. Nelson (1995) stated that textbooks “tend
to give the impression that there is a unique best model
of any real or conceptual system. This is not correct.”
More than one type of model will be used in prac-

tice. The increasing computational power and the avail-

ability of 3D printers provide tools for new modeling

approaches. Several simulations can be run in paral-
lel, e.g., long running CFD simulations can be accom-
panied by experiments with 3D printers, whereas the

analytical model is evaluated as a baseline. Combina-
tions of the following approaches are possible: (i) an-
alytical models, (ii) numerical simulation, (iii) surro-
gate models, (iv) lab experiments, and (v) field ex-

periments. The central question in this context is: Are
there any benefits in combining different simulation ap-
proaches and can the weakness of one approach be com-

pensated by other approaches? To answer this question,
an approach for combining these heterogenous results
is necessary. This article presents a new approach for
handling several simulation models in parallel, which

will be referred to as optimization via multimodel sim-
ulation (OMMS). The OMMS approach can be used
as the central part of the well-established optimiza-

tion via simulation methodology (Fu 1994). To exem-
plify OMMS, a real-world application is used: cyclone
dust collectors. This article presents results from an ex-

perimental study, which can be regarded as a proof-
of-concept for OMMS. For the experiments, we have
chosen a combination of four different modeling ap-
proaches:

(M-A) analytical,
(M-C) CFD simulation,
(M-S) surrogate (metamodels), and

(M-P) 3D printing models.
This paper is structured as follows: Section 2 de-

scribes related work. Cyclone dust absorbers are briefly
described in Section 3. Section 4 presents the OMMS

loop. Section 5 compares results from different mod-
eling approaches. Experimental results based on these
modeling approaches are presented in Section 6. How

to combine results from various models via ensemble
building is shown in Section 7. Finally, Section 8 gives
a conclusion and an outlook.

2 Related Work

The idea of using different models with different res-

olutions has been discussed in the literature for many
years. Zeigler and Oren (1986) describe multiple levels
of model aggregation (resolution, abstraction). These
levels depend on the objectives, knowledge, and the

available budget (resources, e.g., time). Fishwick and
Zeigler (1992) present a formalism and a methodology
for developing multiple, cooperative models of physi-

cal systems from qualitative physics. Barzier and Perry
(1991) describe a two-level modeling approach for de-
veloping simulation models in the shipbuilding indus-

try. Chaudhuri et al. (2015) describe a flapping wing
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optimization task. They use multiple surrogates, mul-
tiple infill criteria, and multiple points for the same ex-
perimental data set. Kazemi et al. (2016) use different
machine learning approaches to create simple and reli-

able models for predicting granule size distributions. An
iterative procedure assisted by cross validation was im-
plemented to find out the best model among thousands.

The cyclone modeling, simulation, and optimization ap-
proach presented in our study is related to the work
from Preen and Bull (2014), who optimized vertical-

axis wind turbines using miniaturized 3D-printed wind
turbines.

Yang (2003) states that selection of one model can
be better when the errors in prediction are small and
that the model combination works better when the er-

rors are large. Simpson et al. (2012) present a thought-
ful review of several multimodel approaches. They state
that “the use of multiple surrogates (i.e., a set of sur-
rogates and possibly a weighted average surrogate) is

very appealing in design optimization due to the fact
that the best surrogate may not lead to the best re-
sult; and complementary because fitting many surro-

gates and repeating optimizations is cheap compared
to cost of simulation.” They also describe a multidis-
ciplinary approach which is not directly comparable to

OMMS, because independent models for different sub-
systems are combined rather than integrating several
models of the same system.

Furthermore, co-Kriging, which is a popular method
that combines results from fine and coarse grained mod-

els, can be mentioned in this context (Forrester et al.
2007). Typically, co-Kriging tries to combine data from
models which have different fidelity, e.g., a fine model
that is expensive to compute and a less accurate, coarse

model, which is cheaper to compute. In contrast to
single-fidelity Kriging models, co-Kriging attempts to
learn the correlation between the coarse and fine model,

thus being able to exploit the larger amount of data
derived from the coarse model to improve the represen-
tation of the expensive, fine model. This could be used

for the meta-modeling step, especially when different
levels of fidelity are available.

In general, there are two options to deal with mul-
tiple models: (i) selection of the best model and (ii)
combination of results from several models. Most ap-

proaches try to select one model, whereas OMMS com-
bines results from several models using stacked regres-
sion (Wolpert 1992; Bartz-Beielstein 2016). Our study

presents an integrated simulation and experimentation
methodology on various scales (or layers).
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DuDu

DuDu

hzhz

Fig. 1 Standard geometry of the cyclone considered in this
study. The corresponding geometry parameters, xg, are de-
scribed in Table 1.

3 Cyclone Dust Collectors

Cyclones are used in oil and gas, iron and steel, chem-
ical and food industry to filter a maximal amount of
dust from flue gas (Hoffmann and Stein 2007). They

can be applied in extremely harsh and demanding en-
vironments, but show a relatively low separation com-
pared to electrostatic dust collectors. An efficient cy-
clone requires the optimization of its geometry param-

eters, which are shown in Figure 1. Even with today’s
modern tools, the complexity of cyclone behavior is
such that experimental studies are necessary for a solid

understanding of the phenomena governing their be-
havior. The cyclone geometry can be specified by the
parameter vector, xg, with the following entries: inlet

width be, body diameter Da, diameter of the vortex
finder Dt, diameter of the dust exit Du, total height h,
inlet height he, vortex finder immersion ht, and cylin-
der height hz. In addition to these geometry parame-

ters, xg, the specification of the operating parameters,
xp, is necessary. The geometry and process parameter
sets are shown in Table 1. We will concentrate in this

study on the collection efficiency as specified in Löffler
(1988), which will be explained in Section 5.1.
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Table 1 Nomenclature from Löffler (1988). Values (L, M, S) refers to the values of the geometry parameters xg for the Löffler,
Muschelknautz E., and Stairmand high efficiency cyclones, respectively. The vortex finder immersion, ht, is modified for every
cyclone geometry. The type “xp” denotes operating parameters. Parameter values, which depend on other values, are labeled
as “*” in the Type column. Parameters to be optimized are labeled in the last column.

Parameter Units Values (L, M, S) Type Description Optimized
be mm 12.8; 9.92; 7.97 xg inlet width yes
Da mm 80.64; 116.48; 39.97 xg body diameter yes
Dt mm 26.88; 29.12; 19.98 xg diameter of the vortex finder yes
Du mm 26.88; 39.04; 15.04 xg diameter of the dust exit yes
h mm 160; 160; 160 xg total height of the cyclone yes
he mm 38.4; 29.6; 19.98 xg inlet height yes
ht mm 0; 35; 44 xg vortex finder (outlet pipe) immersion yes
hz mm 44.8; 29.64; 59.95 xg cylinder height yes
ra mm Da/2 * cyclone radius no
ri mm Dt/2 * radius of the vortex finder no
hi mm h− ht * height of the imaginary cylinder CS no
re mm ra − be/2 * mean inlet pipe radius no
F - Fe/Fi * ratio between inlet and outlet area no
Fe mm2 he × be * inlet area no
Fi mm2 π × r2i * outlet area no
ve ms−1 20 xp inlet velocity no
λg - 0.005 xp load-free friction coefficient no
µ Pa s 1.8× 10−5 xp viscosity no
%f kg/m3 1.2000 xp gas density no
%p kg/m3 2700 xp particle density no
croh kg/m3 0.061 xp raw gas concentration no
B - B = croh/ρf * mass load no

vi ms−1 V̇ /(πr2i ) * velocity vortex finder (outlet pipe) no
vr(ri) ms−1 Eq. (1) * radial gas velocity on the outlet pipe no
vϕi ms−1 Eq. (2) * tangential velocity at CS no

V̇ m3/h Fe × ve * volumetric flowrate through the cyclone no

λ - λg(1 + 2
√
B) * wall friction factor; friction coefficient no

4 Optimization via Multimodel Simulation in
the Loop

In the optimization via simulation setting, the goal is

to perform runs of the simulation model in an efficient
manner and to determine those input variables, which
result in an optimal (or near optimal) solution (Fu 1994).

The OMMS approach extends the standard optimiza-
tion via simulation setting by integrating results from
several model types. In contrast to mathematical mod-

els, which usually require some input values only, data-
driven models require the specification of input and out-
put values. To clarify the data flow and model building
process in the OMMS approach, the following model

categories will be used:

– X-models use input parameters, e.g., geometry and
process parameters.

– XY -models use the input parameters as well as the

corresponding output values, e.g., collection efficiency.

So, the analytical (M-A), CFD (M-C), and 3D printing
(M-P) models are considered as X-models, whereas the
surrogate (M-S) models are XY -models.

The general concept of OMMS is illustrated in Fig-

ure 2. Here, we consider the optimization of the cy-
clone’s geometry parameters, which should be distin-

guished from the process parameters. It consists of the
following steps:

(S-1) Select an initial design. Set t = 1, where t de-
notes the number of parameter sets. The first set of
geometry parameters, x

(t)
g , is generated.

(S-2) Specify the process parameters xp. They are not

changed during the optimization.
(S-3) Select X-models (e.g., CFD, analytical). In ad-

dition to the geometry and process parameter sets,

further parameters might be necessary for each sep-
arate model. These model specific parameters will
be referred to as xm. For example, the CFD simula-
tor requires the specification of parameters for heat

transfer, surface properties, damping, collision, and
radiation. These parameters are not used in other
simulation models. They are not changed during the

optimization. The set x(t) = (x
(t)
g ,xp,xm) will be

used to build the X-models.
(S-4) Build X-models. For building these models no in-

formation about the dependent (output) variables
y is needed. In this step, one or several models (f1,
. . ., fp) from the set of X-models, which compre-
hends 3D-printed objects, analytical model formu-

las, or CFD simulation models, are generated. The
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Fig. 2 Optimization via multimodel simulation in the loop. Several simulation models are used in parallel. Elements of the first
set of models, i.e., during steps (S-3), (S-4), and (S-5), can be one or several CFD simulators, analytical models, or experiments
based on 3D-printed objects. Results from these different models are collected and optionally combined with additional results,
which were stored in a database. The second set of models is build during step (S-8). Models from the second set are classical
surrogate models, e.g., neural networks, linear regression models, or Kriging models. Because simulation results, i.e., y-values
are available at this stage of the multimodel simulation process, a broader set of models can be used than during the first steps
(S-3) to (S-5). Results from these models can combined in several ways. We describe an approach that is based on stacked
generalization (Wolpert 1992). Optimization is performed on the stacked model (S-9).

construction process results in several models, which
use the same set of parameters x(t).

(S-5) Evaluate models. The models are evaluated, i.e.,

each model generates an output: fj : x(t) → y
(t)
j .

Note, some models generate a deterministic output,

e.g., CFD models, whereas other, e.g., 3D-printed
models, generate stochastic (noisy) outputs. There-
fore, repeats should be considered for the stochastic
models, to improve the quality of the measured val-

ues (Law 2007; Haftka et al. 2016).

(S-6) Collect results. Besides the set of pairs {(x(k), y
(k)
j )},

for k = 1, . . . , t and j = 1, . . . , p, additional results

{(x(m), y
(m)
l )}, for m = 1, . . . , s and l = 1, . . . , q,

e.g., from historical data or data from the literature,
can be used in the construction of the metamodels.

(S-7) Select XY -models. XY -models use the parame-

ter set, x(k) = (x
(k)
g ,xp) as well as the correspond-

ing output values y
(k)
i for model building, with k =

1, ..., (t+ s). In general the number of design points

(p+s) is required to be large enough to allow build-
ing reasonable models.

(S-8) Build metamodel. An ensemble engine builds a
metamodel by combining information from several

models, say Fi. It implements stacking methods.
The metamodel will be referred to as F ∗. The en-
semble engine selects several models from the huge

variety of surrogate models (e.g., random forest, or
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Kriging). These serve as basic or level-0 models.
Cross validation is used to build an ensemble model
from the portfolio of level-0 models. The level-1 train-
ing algorithm is typically a relatively simple linear

model. Instead of stacking, a weighted combination
of models Fi or co-Kriging can be used. If mod-
els of similar fidelity are combined, we would sug-

gest to employ to stacking. In a mixed case, a co-
Kriging model could be integrated into a stacked
metamodel (i.e., as a single model Fi). Other en-

semble techniques may also be applicable, e.g., bag-
ging or boosting (Murphy 2012). However, stack-
ing is very effective even when combining only few,
strong learners and it provides additional informa-

tion, e.g., the contribution of each of the combined
models to the ensemble.

(S-9) Optimize on the metamodel. The model F ∗ is

used as a surrogate for performing the optimiza-
tion step. The optimization results in a new set
of promising geometry parameters, which will be
evaluated in the following step. The counter for the

number of parameter sets t is incremented and the
new design can be referred to as x

(t)
g . Instead of in-

creasing t by one, several new design points, e.g.,

from models with different run times, can be added
to the parameter set.

(S-10) Check the termination criterion.

(S-11) Store the optimized design. Optionally, it can be
added to a database.

5 Modeling Approaches

To exemplify the OMMS approach, four different mod-
eling approaches are described in the following: analyti-

cal (M-A), surrogate (M-S), CFD simulation (M-C) and
3D printing (M-P) .

5.1 The Analytical Model (M-A)

A broad variety of analytical models intended to pre-

dict cyclone separation performance exists in the liter-
ature (Löffler 1988; Overcamp and Mantha 1998; Hoff-
mann and Stein 2007). The analytical approach devel-
oped by Barth (1956) and Muschelknautz (1972) can

be considered as standard. It will be referred to as the
Bart-Muschelknautz method of modeling. This method
is based on the assumption that a particle carried by

the vortex is influenced by two forces: a centrifugal force
and a flow resistance. They are expressed at the outlet
pipe radius ri where the highest tangential velocity oc-
curs. Some assumptions can be considered reasonable

enough to obtain a good compromise between accurate

prediction and simplification of the equations, e.g., the

particles are spherical, the particle motion is not influ-
enced by the presence of neighboring particles, and the
radial force on the particle is given by Stokes’s law.

Based on the geometry and operating parameters
from Table 1, the following calculations can be per-

formed. The equilibrium-orbit model assumes a cylin-
drical control-surface (CS), which is constructed by ex-
tending the vortex finder wall to the bottom of the cy-

clone. Let hi denote the height of the CS. The radial
velocity at ri equals to:

vr(ri) =
V̇

2πri(h− ht)
. (1)

For a given mass load B = croh/ρf , the wall friction
factor λ can be calculated as λ = λg(1 + 2

√
B). The

correction factor α for contraction is equal to:

α = 1.0−
(

0.54− 0.153

F

)
B

1
3
e .

Using the outlet pipe velocity vi = V̇
πr2i

, Barth (1956)

derived the following equation

vϕi
vi

= U =
1

Fα · rire + λ · hri
=

rireπ

αFe + hireπλ
. (2)

These velocities are used to determine the collection
efficiency. The equilibrium-orbit model is based on a
force balance on a particle that is rotating at radius

ri. Small particles leave the cyclone through the vortex
finder, whereas large particles are moving to the cyclone
wall. The cut size, x50, plays a central role in these cal-

culations. For cyclones, particles of size x50 have a 50-
50 chance of being captured, smaller particles are less
likely to be captured, larger particles are more likely
to be captured. The forces acting on a particle rotat-

ing on the CS, which is assumed to separate the outer
region of downward flow from the inner region of up-
ward flow, are (i) the centrifugal force acting outward

with a magnitude of πx3ρpv
2
ϕi/(6ri) and (ii) the Stoke-

sian drag acting inward 3πxµvr(ri). By equating these
forces, Barth (1956) developed an analytical model for

the cut size as follows:

x50 =

√
18µvr(ri)ri
(%p − %f )v2ϕi

.

The fractional efficiency curve assigns an efficiency to
the particle diameter. It is described by

T (x) =


1 +

2
(

x
x50

)3.564




−1.235

,
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Table 2 Particle size distribution table. Values correspond
to the dust used in the 3D printing experiments.

Particle Size x[µm] ∆x Mean
x̃
[µm]

∆Qe(x) Cumulative

0-1 1 0.5 0.1 0.1
1-2.7 1.7 1.85 0.1 0.2
2.7-5.5 2.8 4.1 0.1 0.3
5.5-8.7 3.2 7.1 0.1 0.4
8.7-12.7 4 10.7 0.1 0.5
12.7-16.9 4.2 14.8 0.1 0.6
16.9-21.2 4.2 19 0.1 0.7
21.2-25.4 4.2 23.25 0.1 0.8
25.4-30.8 5.4 28.1 0.1 0.9
30.8-63 31.2 46.9 0.1 1.0

where x is the particle size. The overall collection effi-

ciency E is predicted according to:

E =

∫ xmax

xmin

T (x)qe(x)dx ≈
xmax∑

xmin

T (x̃i)∆Qe(xi), (3)

where xmin is the lower bound of the particle size, xmax

is the upper bound of the particle size, x̃i is the mean

particle size in each fraction, ∆Qe(xi) is the change in
distribution of particle sizes and qe(x) = ∆Qe(xi)/∆xi.
The particle size distribution table, which was used in

our studies, is shown in Table 2. Results from our col-
lection efficiency E calculations for models from the
literature and for models used in our experiments are
shown in Table 3 and Table 5, respectively. The corre-

sponding function is available in the R package SPOT
as funCyclone().

5.2 CFD Simulations (M-C)

Computational Fluid Dynamics simulations have pro-

ven to be useful for studying the fluid and particle flows
in cyclones (Hoekstra et al. 1999). They have clear
advantages for understanding the details of the flow

in cyclones, but also limitations in terms of modeling
cyclone separation performance accurately (Hoffmann
and Stein 2007). Numerical simulations are performed

by solving the unsteady-state, three-dimensional Rey-
nolds averaged Navier-Stokes (RANS) equations com-
bined with a closure model for the turbulent stresses
and the large eddy simulation approach.

The CFD simulations were carried out with the open

source software OpenFOAM, which has been developed
for solving numerical problems (Konan and Huckaby
2015). The mesh for these CFD simulations consists of

approximately 30,000 to 50,000 hexahedral cells. The
transient MPPICFoam solver was chosen to calculate

the two-phase flow (Euler-Lagrange). The cyclone sim-

ulation from the OpenFOAM cyclone tutorial was used
as a basis (OpenFOAM Foundation 2016). The settings
for fvSchemes, fvSolution, transportProperties, and

turbulenceProperties were adapted to obtain the same
setup as for the 3D printing experiments. The settings
in the kinematicCloudProperties file were adjusted
to the characteristics of the used particles. The density

of the particles was changed to 2, 700 kg/m3 (as in Ta-
ble 1 above). Using the generalDistribution model,
the particle distribution from Table 2 can be precisely

mapped. In the simulations, 20, 000 parcels represent
the entirety of the particles, where each parcel has the
same mass. The amount of 20, 000 parcels was chosen

to minimize the represented mass per parcel and not
to blow up the calculation time for each timestep. The
minimization causes a lower error when a parcel escapes
at an outlet.

The heatTransfer, surfaceFilm, damping, sto-

chasticCollision, and radiation submodels were left
unchanged at the “off” state. In the experiments, a to-

tal of 6 g was spread over 10 thrusts and the waiting
time between each thrust was approximately 3 seconds.
The simulation takes only one thrust of 0.6 g instead
of performing the 10 repetitions in order to avoid very

long simulation times. The particle velocity in the sim-
ulation was set to the same value as the determined
velocity of the air at the inlet. Overall, a time frame

of 3 seconds is simulated. For this, a total calculation
time of approximately 96 hours (wall clock time) us-
ing 16 processor cores is required. The simulation was

controlled by the time step and relaxation factors and
behaved relatively stable.

After each experiment, a certain amount of dust re-
mains in the cyclone. We consider dust as separated, if

it leaves the cyclone through the dust exit (usually at
the bottom of the cyclone). The evaluation of the sim-
ulation results is shown in column (M-C) in Table 5. If

the remaining dust in the cyclone is also considered as
separated, the collection efficiency is increased.

5.3 Surrogate Modeling (M-S)

Computational fluid dynamics simulations are compu-
tationally expensive. Data-driven models of cyclone sep-

arators, which are substantially cheaper to evaluate,
can be used instead. Well-known approaches to handle
costly objective functions is to employ response surface
or surrogate models (Jin 2003; Kleijnen 2008). That is,

data-driven surrogate models may be constructed based
on experimental results. Then, an optimization algo-
rithm may work on the surrogate model instead of the

actual objective function. To exemplify this approach,
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Table 3 Results from the analytical model (M-A) for cyclone geometries from Hoffmann and Stein (2007). Proportions of the
geometries shown in the first three rows (Löffler, Muschelknautz, and Stairmand) were used for the 3D printing experiments.
All values were scaled by the height h0 of the real cyclone. Since the printed cyclones have an absolute height of 160 mm,
the relative values from columns three to nine are multiplied with 160. The Barth model, i.e., Eq. (3), was used to determine
the collection efficiency E shown in the last column. It uses the process parameters from our study and the scaled geometry
parameters of the original cyclones. For example, the same particle size distribution (silica sand) was used for the calculations
to obtain comparable results. The last row shows the geometry parameters and collection efficiency, which were obtained during
the metamodel optimization step (S-9) (see Section 7).

Type h0 [mm] he/h0 be/h0 Dt/h0 ht/h0 hz/h0 Da/h0 Du/h0 E

Löffler 25,000 0.2400 0.0800 0.1680 0.2600 0.2800 0.5040 0.1680 89.3334
Muschelknautz E. 9,340 0.1852 0.0621 0.1820 0.3330 0.1852 0.7281 0.2441 89.9122
Stairmand high eff. 12,650 0.1249 0.0498 0.1249 0.1249 0.3747 0.2498 0.0941 89.0490

Muschelknautz D. 8,630 0.2167 0.0626 0.1379 0.3685 0.3036 0.4137 0.2260 89.5968
Storch 4 16,160 0.1609 0.0235 0.0724 0.1089 0.5625 0.1609 0.0563 91.4006
Storch 3 8,210 0.2034 0.0731 0.1303 0.2436 0.5627 0.2339 0.1121 86.9871
Storch 2 10,970 0.1714 0.0483 0.0985 0.2179 0.4230 0.2051 0.0766 89.6379
Storch 1 19,430 0.0515 0.0515 0.0633 0.0726 0.2820 0.1879 0.0329 92.4774
Tengbergen C 9,300 0.1075 0.1075 0.1204 0.1559 0.2011 0.3624 0.1204 90.4930
Tengbergen B 6,040 0.2964 0.0927 0.1854 0.3709 0.5364 0.3477 0.1854 83.8606
Tengbergen A 6,470 0.2087 0.1144 0.1731 0.2427 0.2782 0.4281 0.3122 87.7651
TSN -11 9,590 0.1919 0.0563 0.1418 0.2523 0.2284 0.3629 0.1606 89.3807
TSN -15 11,240 0.1477 0.0534 0.1406 0.3114 0.5240 0.2367 0.1059 86.6353
Stairmand high flow 7,550 0.1868 0.0940 0.1868 0.2185 0.3748 0.2517 0.0940 81.2173
Van Tongeren AC 12,310 0.1210 0.0544 0.0812 0.2640 0.3542 0.2640 0.1056 92.1290
Vibco 7,200 0.1542 0.1250 0.1542 0.1722 0.3167 0.3972 0.0917 88.6851
Lapple GP 11,310 0.1247 0.0628 0.1247 0.1565 0.5004 0.2502 0.0628 88.8657

Metamodel 160 0.1266 0.0235 0.0640 0.2929 0.1853 0.7267 0.0330 94.8474

data from Table 3 was used to fit a simple surrogate

model (standard linear regression with variable selec-
tion) that models efficiency E as a function 17 different
geometries, which were specified in Table 3 (rows 1-17):

E = 95.56− 0.58Dt + 0.11Da. (4)

The diameter of the vortex finder, Dt, and the cyclone
body diameter, Da, have the greatest effect on the col-
lection efficiency. Although this model already shows

good accuracy, e.g., adjusted R-squared 0.94, more so-
phisticated linear models or Kriging models can be fit-
ted (Turner et al. 2013; Kleijnen 2014). Optimization
can be performed on this model, e.g., to improve the col-

lection efficiency for a given pressure drop. Even multi-
objective optimization techniques can be applied (El-
sayed and Lacor 2012; Zaefferer et al. 2014).

5.4 3D-printing Model (M-P)

3D-printing experiments used standard laboratory equip-
ment: Erlenmeyer flask, stand, pressure gauge, preci-
sion scale, and a vacuum cleaner. To ensure compara-

bility and interchangeability of the results, the same
design and process parameters as in the other mod-
eling approaches was used for the 3D-printing mod-

els. Table 4 shows the parameters of the printed cy-
clones and process parameters, xp, are described in Ta-

ble 1. The model building step (S-4 in the OMMS ap-
proach) consists of the (i) 3D computer model gener-

ation and the (ii) printing step. The 3D models, de-
scribed in the STereoLithography, Standard Tessella-
tion Language (STL) are created using a Python script,

which uses the FreeCad Python library.1 The model is
exported to an .STL file, which can be interpreted by a
large number of 3D printers. The printed cyclone mod-

els are shown in Figure 3.

Today, a broad variety of 3D printers as well as dif-
ferent materials are available. The printing technique as
well as the material have to meet certain requirements.
The cyclone has to be robust, because it is fixed into

position for the experiments and it has to withstand
the flow of air and dust. Due to the hollow shape of
the cyclone a ProJet CJP 660pro printer was chosen,

which uses gypsum powder (Visijet PXL) as printing
substrate. This way, the entire cyclone can be printed
in one step. The gypsum powder has to be hardened af-
ter surplus gypsum powder has been removed from the

interior. Cyan acrylate (“ColorBon”) was used to avoid
electrostatic charging. It produces a sufficiently smooth
surface and improves the stability. Experiments were

performed at room temperature. Significantly higher
temperatures may require a different choice of mate-
rial. Printing a single cyclone model takes about three

1 http://www.freecadweb.org
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Fig. 3 Three printed cyclone models, which were used with
three different ht values in the (M-P) experiments. From left
to right : Löffler, Muschelknautz, Stairmand. See Table 4.

hours, plus one hour for refinishing, dust removal, and
infiltration, and another hour for curing.

Besides the selection of a printer and material, the

characteristics of the dust have to be selected. The dis-
tribution of particle sizes should not vary to prevent
fluctuations in the results. If the particles are too large,

they may be too easy to separate from the gas. If there
are too many, they may even block the flow inside the
cyclone. If the particles are too small, the task of sepa-

ration may become near to impossible. The chosen dust
is silica sand with a maximal particle size of 63µm. Its
particle size distribution is shown in Table 2. Three dif-
ferent values for the depth of the outlet pipe ht, were

chosen for each of the three cyclone shape. Since ev-
ery experiment was repeated five times, altogether 45
experiments were performed.

6 Single Models: Experimental Results

An experimental design was set up to measure the ef-
fects of the cyclone shapes and the outlet depth ht on
the collection efficiency E in the 3D printing (M-P) ex-

periments. Three different cyclone geometries, namely
Löffler, Muschelknautz, and Stairmand, and three dif-
ferent values (ht = 0, 35, 44 mm) of the outlet pipe
immersion were used, see Figure 3. Each experiment

was repeated five times. Measurements with unusual
collection efficiency values were considered as outliers.
For example, an efficiency value larger than 100% was

probably a result of insufficient cleaning of the cyclone
between tests. These outliers occurred at the beginning
of every series of tests and may be caused by dust parti-

cles from previous experiments. Results from these ex-
periments are shown in column (M-P) in Table 5.

●

●

L M S

85
90

95

●

0 35 44

85
90

95

Fig. 4 Collection efficiencies (in %) of the the three differ-
ent cyclones (left: Löffler, Muschelknautz, Stairmand) and
geometries (right: 0, 35, 44 mm) used in the (M-P) experi-
ments. The boxplots indicate that collection efficiency might
be improved if Stairmand cyclones and an increased ht value
are used. Thick bars indicate the median values.

Figure 4 shows boxplots, which visualize the collec-

tion efficiencies of the three different cyclones and outlet
pipe immersions. As can be seen in Figure 4, the median
of the collection efficiency values of the Löffler cyclone

is lower than 90%, whereas it is larger than 90% for the
Muschelknautz and Stairmand cyclones. According to
the (M-P) column in Table 5, the Stairmand cyclone has
the highest average efficiency. The efficiency at every

depth is higher than the previous two cyclones with the
same outlet pipe immersions. Furthermore, results from
the Stairmand cyclones are more robust, i.e., smaller

variances, than results from the other two cyclones. A
very small outlet pipe immersion value (0 mm) results
in an reduced collection efficiency as can be seen in Fig-

ure 4. This result could be observed consistently for all
cyclone types. The results from the 3D printing experi-
ments can be summarized as follows: (i) there are high
variances in the measured values, and (ii) the experi-

mental results indicate that the collection efficiency, E,
increases with increasing vortex finder immersion, ht,
values.

In addition to the discussion of the results from
the 3D printing experiments, we consider results from
the CFD simulations. The experimental CFD results
indicate that the collection efficiency is worst if the

vortex finder immersion values are zero. This mostly
agrees with the findings for the 3D-printed cyclones. In
contrast to that observation, data from the analytical

model (M-A) show a negative effect of the immersion
length, ht, on the efficiency: smaller ht values result in
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Table 4 Geometries, i.e., xg values, of the 3D printed cyclones shown in Figure 3. A total height, h of 160 mm was chosen.
This table shows absolute values, which were determined using the relative values from Table 3 multiplied by 160.

Type be Da Dt Du h he ht hz

Löffler 12.8 80.64 26.88 26.88 160 38.4 0 44.8
Löffler 12.8 80.64 26.88 26.88 160 38.4 35 44.8
Löffler 12.8 80.64 26.88 26.88 160 38.4 44 44.8
Muschelknautz E. 9.92 116.48 29.12 39.04 160 29.6 0 29.64
Muschelknautz E. 9.92 116.48 29.12 39.04 160 29.6 35 29.64
Muschelknautz E. 9.92 116.48 29.12 39.04 160 29.6 44 29.64
Stairmand high eff. 7.97 39.97 19.98 15.04 160 19.98 0 59.95
Stairmand high eff. 7.97 39.97 19.98 15.04 160 19.98 35 59.95
Stairmand high eff. 7.97 39.97 19.98 15.04 160 19.98 44 59.95

Table 5 Summary of the results from different modeling ap-
proaches. Collection efficiency E (in %) as defined in Eq. (3)
for three different cyclone types, three different outlet pipe
immersions (ht), and four different modeling approaches (M-
A), (M-C), (M-P), and (M-S). 3D-print column (M-P) shows
mean (and standard deviation) from five repeats. Obvious
outliers were removed. Column (M-S) is based on Eq. (4).

Type ht (M-A) (M-C) (M-P) (M-S)

Löffler 0 90.19 88.57 86.80(±4.39) 89.80
Löffler 35 89.49 90.91 92.13(±5.12) 88.95
Löffler 44 89.27 90.19 90.84(±3.84) 88.73
Muschelk. 0 91.14 82.04 88.50(±8.24) 92.13
Muschelk. 35 90.37 82.55 93.67(±2.17) 91.28
Muschelk. 44 90.15 82.43 92.87(±2.94) 91.06
Stairmand 0 89.44 91.20 90.53(±5.68) 88.79
Stairmand 35 88.70 95.95 94.29(±1.34) 87.93
Stairmand 44 88.45 95.60 95.50(±2.50) 87.71

an increased collection efficiency E. This appears to be
a systematic error in the Bart-Muschelknautz method

of modeling.
Overall, there are some inconsistencies in the data and
in the analytical model that will be considered in forth-
coming studies. Some of the required steps to fix these

problems are obvious: the variance in the (M-P) model
can be reduced by improving the experimental proce-
dure, e.g., by enhancing the cleaning process between

the experiments. However, even if the data itself do
not enable to draw reliable conclusions for designing an
optimal cyclone geometry, they are suitable for demon-
strating the OMMS approach.

7 Metamodel-based Optimization

A set of surrogate models has to be chosen in step (S-
7) of the OMMS approach. As level-0 models, a simple

regression model (lm), a random forest (rf), and a Krig-
ing (kr) model were used in this study. The metamodel
F ∗ from step (S-8) in the OMMS approach can be used

for optimizing the geometry parameters xg. This level-1
model, which combines results from the level-0 models,

uses the following coefficients:

Ensemble: − 65.02 + 0.29 lm + 0.76 rf− 0.77 kr,

i.e., the stacked model uses mainly the information from

the rf and kr surrogate (level-0) models, and includes
information from the lm surrogate model to a lesser
amount as well. To perform the optimization step, the

freely available R package SPOT (sequential parameter
optimization toolbox ) can be used. It implements sev-
eral tools for the analysis and optimization of complex
problems (Bartz-Beielstein et al. 2005). The SPO func-

tion buildEnsembleStack implements the metamodel
building step (S-8). After generating an objective func-
tion from the fit, an optimizer can be applied (S-9). In

our example, differential evolution was used, but any
other optimizer is fine.

Results from the optimization are as follows: he =
0.13, be = 0.02, Dt = 0.06, ht = 0.29, hz = 0.19,

Da = 0.73, Du = 0.03. All values are relative to the
cyclone height h0 = 160 mm. This geometry results in
an estimated efficiency of 94.85 %. The values are also

shown in the last row of Table 3, allowing a comparison
to reported data from the literature. The model sug-
gest a value for the outlet depth ht at medium level.
Notably, the efficiency of the proposed solution is lower

than some of the single-model results for the cyclone
variants shown in Table 5. These differences are proba-
bly caused by noise in the real-world experiments and

impreciseness of the models.

The optimization results are compared to the search
bounds in Figure 5. This figure illustrates the recom-
mendations from the optimization on the metamodel.

For example, the proposed solution requires a minimal
diameter of the dust outlet, Du, and a minimal diam-
eter of the vortex finder, Dt. On the other hand, the
body diameter, Da, should be maximal, and the height

of the inlet should have intermediate values.

If the optimization budget is not exhausted, these
recommendations can be used to print a new cyclone

(M-P) or to perform a CFD simulation and start the
next iteration of the OMMS loop.
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Fig. 5 Optimization on the metamodel (S-9). Barplot of the
optimized geometry parameters. Comparing lower and upper
bound of decision space with optimum.

8 Conclusion and Outlook

This article explores a new approach for combining dif-

ferent simulation approaches. Based on stacking, a flex-
ible methodology for combining results from different
models is presented. The experimenters, who carried

out the 3D printing experiments, faced complex techni-
cal difficulties. Experience from practice plays a crucial
role for these experiments. While 3D printing reduces

the cost of experiments significantly compared to full-
scale simulations, the experiments themselves are still
time-consuming and require material resources. With
the cost of experiments, noise of evaluation (due to

manufacturing as well as measurement inaccuracies),
and the inherent complexity of the search-space due to
its combinatorics, the modeling based on 3D-printed

cyclones poses a major challenge. Due to some techni-
cal difficulties and the complexity of the experimental
setup, the (M-P) results presented in this study are not

yet conclusive. However, we were able to demonstrate
how to collect data from (M-P) models and how to com-
bine these results with different modeling approaches.
Despite of these problems, we expect that combining re-

sults from improved 3D-printing experiments with re-
sults from other modeling approaches might improve
the overall model quality. This improvement could ac-

celerate the optimization process and lead to new in-
sights into the behavior of cyclones.

This paper can be seen as a proof-of-concept for the

OMMS approach, which combines results from several
different modeling approaches. It allows the combina-
tion of models with different run times. If data is scarce

and simulation is expensive, the proposed OMMS ap-
proach is a promising way. However, the research ques-
tion stated in Section 1 cannot be conclusively answered

for the experimental setup analyzed in this study. First
results, i.e. the interpretation of the improved values
from the OMMS as shown in Figure 5, indicate that
the weakness of one approach can be compensated by

other approaches, but this issue requires further inves-
tigation.

How several cheap analytical models can be used

for accelerating expensive CFD-based optimization is
a highly relevant research question. The Bart-Muschel-
knautz method of modeling is only one possibility. Cur-

rently, more analytical models are added to the SPOT
ensemble engine.2 The current SPOT package already
implements an additional analytical model that is based
on Mothes (1984). Due to the technical difficulties of the

(M-P) models, alternative model combinations, which
include several analytical models, can be recommended.
Instead of using the four models from our study, we will

combine one CFD model with several analytical und
surrogate models.

Last but not least, it should be noted that OMMS

cannot be applied without any modifications to every
optimization problem. It has to be adapted to the par-
ticular application, e.g., cyclone geometry optimization.
We do not claim that OMMS outperforms all other

algorithms on every problem classes. This is a con-
sequence of the no free lunch theorem (Wolpert and
Macready 1997; Haftka 2016).
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