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QUOC CUONG PHAM, TH Köln
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Cyclone separators are popular devices used to filter dust from the emitted flue gases. They are applied
as pre-filters in many industrial processes including energy production and grain processing facilities. In-
creasing computational power and the availability of 3D printers provide new tools for the combination of
modeling and experimentation, which necessary for constructing efficient cyclones. Several simulation tools
can be run in parallel, e.g., long running CFD simulations can be accompanied by experiments with 3D
printers. Furthermore, results from analytical and data-driven models can be incorporated. There are fun-
damental differences between these modeling approaches: some models, e.g., analytical models, use domain
knowledge, whereas data-driven models do not require any information about the underlying processes.
At the same time, data-driven models require input and output data, whereas analytical models do not.
Combining results from models with different input-output structure is of great interest. This combination
inspired the development of a new methodology. An optimization via multimodel simulation approach, which
combines results from different models, is introduced. Using cyclonic dust separators (cyclones) as a real-
world simulation problem, the feasibility of this approach is demonstrated. Pros and cons of this approach
are discussed and experiences from the experiments are presented. Furthermore, technical problems, which
are related to 3D-printing approaches, are discussed.

CCS Concepts: rComputing methodologies→Modeling methodologies;

Additional Key Words and Phrases: Combined simulation, multimodeling, simulation-based optimization,
metamodel, surrogate model, stacking, response surface methodology, 3D printing, computational fluid dy-
namics

ACM Reference Format:
Thomas Bartz-Beielstein, Horst Stenzel, Martin Zaefferer, Beate Breiderhoff, Quoc Cuong Pham, Dimitri
Gusew, Aylin Mengi, Baris Kabacali, Jerome Tünte, Lukas Büscher, Sascha Wüstlich, and Thomas Friesen,
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1. INTRODUCTION
Simulation is a widely used method for studying complex real-world systems, because
many systems cannot be completely described by analytical (mathematical) models
and experimentation with the real system is infeasible or expensive. Furthermore,
simulation allows the estimation of system performance under new conditions as well
as the comparison of different operating conditions and parameterizations, e.g., new
geometries.

However, there are also some problems related to simulation-based approaches. Sim-
ulation models are usually more expensive than analytical models. Each simulation
describes only one single setting. Several repeats with varying input data are neces-
sary, whereas an analytical model allows the calculation of the exact characteristics of
the system for several settings. An inappropriate level of model detail, failure to col-
lect adequate system data, and using wrong performance indicators for comparisons
are only three common pitfalls in simulation studies. The reader is referred to Law
and Kelton [2000] for a detailed discussion of these issues.

Increasing computational power and the availability of 3D printers provide tools
for new modeling approaches. Several simulations can be run in parallel, e.g., long
running computational fluid dynamics (CFD) simulations can be accompanied by ex-
periments with 3D printers, whereas the analytical model is evaluated as a baseline.
Combinations of the following approaches are possible: (i) field experiments, (ii) lab ex-
periments, (iii) complex simulations, (iv) model based simulations, and (v) analytical
models. Two questions arise in this context:

Q-1 Are there any benefits in combining different simulation approaches?
Q-2 Can the weakness of one approach be compensated by other approaches?

To answer these questions, a methodology for combining these results is necessary.
This article presents a new approach for handling several simulation models in paral-
lel. It combines benefits from different worlds. The proposed methodology can be used
as the central part of a new simulation-optimization approach [Fu 1994]. To exemplify
our approach, a well established real-world simulation problem is used: cyclone dust
collectors.

Cyclone dust collectors are used to filter dust from the emitted flue gases. Reverse-
flow type devices with a tangential inlet (slot or wrap-around) and a cylinder-on-cone
body shape will be referred to as cyclones in the remainder of this article. Since they are
relatively simple to fabricate and maintain, cyclones are popular in many industries.
Hoffmann and Stein [2007a] list the following industries, which make use of cyclones:

— oil and gas
— power generation
— incineration plants
— iron and steel industry/blast furnaces

and non-ferrous industries
— ore sintering plants
— wood chip, wood mill and building ma-

terial plants
— sand plants
— cement plants
— coking plants

— coal fired boilers
— lead, ferrosilicon, calcium carbide, ex-

panded perlite, carbon black plants,
etc.

— grain processing facilities such as flour
mills (wheat, rice, etc.)

— ‘chemical’ plants (plastics, elastomers,
polymers, etc.)

— catalyst manufacturing plants
— food industry.

The main goal of a cyclone is to filter a maximal amount of dust from the flue gas
(high degree of separation), while minimizing the pressure loss. They can be applied
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in extremely harsh and demanding environments, but show a relatively low separa-
tion compared to electrostatic dust collectors. If particles are larger than 5 µm, cy-
clones are efficient. Therefore, cyclones are used as pre-cleaners for other filter tech-
niques [Swamee et al. 2009]. Many parameters determine the performance of cyclones.
For practitioners, it is of importance to know which parameters are important and
which are not, in any given situation. Even with today’s modern tools, the complexity
of cyclone behavior is such that experimental studies are necessary for a solid under-
standing of the phenomena governing their behavior.

Cyclones use a conical geometry to introduce a centrifugal force that separates dust
from gas. The pressure drop (Euler number) and the collection efficiency are well estab-
lished performance indicators for cyclones. The latter is related to the cut-off diameter
(Stokes number). Both indicators are determined by several parameters, including the
geometry of the cyclone. Hence, an efficient cyclone requires the optimization of the
geometry parameters.

For the purpose of optimization, the performance could be estimated by full-scale,
real-world experiments. Due to the extensive costs, this is not feasible. Rather, various
physics-driven and data-driven models are typically used. These include (i) analyt-
ical models, (ii) CFD simulations, and (iii) metamodeling or surrogate model based
approaches.

The analytical approaches developed by Barth [1956], which were further extended
by Muschelknautz [1972] and co-workers, can be considered as standard in litera-
ture [Hoffmann and Stein 2007b]. This approach enables an understanding of cyclone
performance as a function of its geometry, feed properties, and flow rates.

CFD simulations have proven to be useful for studying the fluid and particle flows
in cyclones [Hoekstra et al. 1999; Griffiths and Boysan 1996; Gimbun et al. 2005b;
Elsayed and Lacor 2010; Elsayed 2011; Gimbun et al. 2005a; Overcamp and Mantha
1998; Elsayed and Lacor 2014; Dirgo and Leith 2007; Solero and Coghe 2002; Hoff-
mann and Stein 2007a; Swamee et al. 2009]. They have clear advantages for under-
standing the details of the flow in cyclones, but also limitations in terms of modeling
cyclone separation performance accurately [Hoffmann and Stein 2007a]. Numerical
simulations are performed by solving the unsteady-state, three-dimensional Reynolds
averaged Navier-Stokes (RANS) equations combined with a closure model for the tur-
bulent stresses and the large eddy simulation approach. The physical laws governing
the behavior of cyclones were established in the works of Newton and Stokes, which
lay the foundations for describing the forces acting on a particle traveling in a fluid
medium.

Computational fluid dynamics simulations are computationally expensive. Data-
driven models of cyclone separators, which are substantially cheaper to evaluate, can
be used instead. The metamodeling or surrogate-based modeling approach is well-
known for accelerating optimization tasks. If a surrogate model is integrated into
the optimization process, the method is referred to as surrogate based optimization
(SBO) [Bartz-Beielstein 2016a].

As a new approach towards cyclone geometry optimization, we propose small-scale
experiments, based on 3D-printed cyclones. That is, 3D-printed small-scale cyclones
will be used to perform actual real-world experiments. While 3D printing reduces the
cost of experiments significantly (compared to full-scale as well as complex CFD), the
experiments themselves are still time-consuming and require material resources. With
the cost of experiments, noise of evaluation (due to manufacturing as well as measure-
ment inaccuracies), and the inherent complexity of the search-space due to its combi-
natorics, the modeling based on 3D-printed cyclones poses a major challenge. Despite
of this problems, we expect combining results from the 3D-printing experiments with
results from other modeling approaches might improve the overall model quality. This
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improvement might (i) accelerate the optimization process and (ii) lead to new insights
into the behavior of cyclones.

This article presents results from an experimental study, which combines results
from various modeling approaches. The study can be regarded as a proof-of-concept
for a new, integrated multimodel approach, integrating 3D-printing based modeling in
the cyclone simulation and optimization loop. It combines four different modeling ap-
proaches, namely (M-A) analytical, (M-S) surrogate, (M-C) CFD, and (M-P) 3D-printing
modeling.

This paper is structured as follows: Section 2 describes related work. Section 3 de-
scribes the simulation-optimization loop. Section 4 introduces cyclone design and ge-
ometry considerations. Section 5 compares results from different modeling approaches.
The analytical (M-A), the surrogate modeling (M-S), the CFD modeling (M-C), and the
3D-printing (M-P) approaches are described. Experimental results are presented in
Section 6. How to combine results from various models via ensemble building is shown
in Section 7. Section 8 describes the metamodel-based optimization. Section 9 gives
a conclusion and presents recommendations based on our experiences made in this
study.

2. RELATED WORK
The idea of using different models with different resolution has been discussed in the
literature for many years. Zeigler and Oren [1986] describe multiple levels of model ag-
gregation (resolution, abstraction). These levels depend on the objectives, knowledge,
and the available budget (resources, e.g., time). They claim that there is “an underly-
ing unity that binds different models together—namely their common origin.” An en-
vironment “can support the integration of models so that a coherent whole emerges.”
Fishwick and Zeigler [1992] present a formalism and a methodology for developing
multiple, cooperative models of physical systems from qualitative physics.

Staymates et al. [2013] present the design and characterization of a streamlined,
high-volume particle impactor intended for use with trace chemical analysis. Compu-
tational fluid dynamics was used as a tool to optimize the aerodynamic performance
of the impactor by iteratively redesigning the geometry and curvature of the internal
walls. By eliminating recirculation zones within the flowfield of the impactor and using
flowfield streamlines as new walls, successive designs revealed a significant reduction
in the pressure drop across the impactor. Particle trajectories were simulated in the
impactor and the 50% cutpoint was determined. They fabricated a prototype impactor
with a 3D rapid prototyping printer and characterized in terms of particle cut-off di-
ameter using test aerosols generated by an Ink Jet Aerosol Generator and fluorescence
intensity measurements.

Cyclone geometry and design optimization using CFD can be considered as a stan-
dard technique [Cernecky and Plandorova 2013]. The cyclone modeling, simulation,
and optimization approach presented in our study is related to the work from Preen
and Bull [2014], who optimized vertical-axis wind turbines using miniaturized 3D-
printed wind turbines. A very general approach of integrating 3D printing into the
optimization loop is presented by Eiben and Smith [2015]. These authors describe the
emerging area of artificial evolution in physical systems. Chaudhuri et al. [2015] de-
scribe a flapping wing optimization task. They used multiple surrogates, multiple in-
fill criteria, and multiple points for the same experimental data set to add multiple
points in a cycle for optimization. In the context of real world applications, Kazemi
et al. [2016] use different machine learning approaches to create simple and reliable
models for predicting granule size distributions. Their models were developed based
on a data set from laboratory. An iterative procedure assisted by cross validation was
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implemented to find out the best model among thousands. Genetic programming and
neural networks performed best.

In general, there are two options to deal with multiple models: (i) selection of the
best model and (ii) combination of results from several models. Simpson et al. [2012]
present a thoughtful review of several multimodel approaches. They state that “the
use of multiple surrogates (i.e., a set of surrogates and possibly a weighted average
surrogate) is very appealing in design optimization due to the fact that the best sur-
rogate may not lead to the best result; and complementary because fitting many sur-
rogates and repeating optimizations is cheap compared to cost of simulation.” Yang
[2003] states that selection can be better when the errors in prediction are small and
combination works better when the errors are large. Furthermore, co-kriging, which is
a popular method that combines results from fine and coarse grained models, can be
mentioned in this context [Forrester et al. 2007].

The approaches described so far try to select one model, whereas our approach com-
bines results from several models using stacked regression. In addition, our approach
is able to combine results from models with different run times (steady state prop-
erty) [Nowostawski and Poli 1999]. The approaches mentioned above use information
from surrogate models to select new design points for the manufacturing process or
CFD simulation. Our study presents an integrated simulation and experimentation
methodology on various scales (or layers), namely
(M-A) analytical models,
(M-S) surrogate models,
(M-C) CFD simulation, and
(M-P) 3D printing.
Simulation and optimization of cyclones were performed separately on each of these
layers. To best of our knowledge, an integrated approach that combines experimenta-
tion and simulation at different levels and that uses a stacked generalization approach
to generate one meta-model was not applied for this (or similar) simulation and opti-
mization tasks. Since 3D printer become more and more affordable, evaluating the pros
and cons of their integration into the simulation-optimization framework is desirable.

3. OPTIMIZATION VIA MULTIMODEL SIMULATION IN THE LOOP
Simulation is of great interest for practitioners planning to optimize a system, which
requires the specification of a number of decision or input variables. In many situ-
ations, the input variables are also subject to constraints. Furthermore, there is an
objective function to be minimized (or maximized), which is a function of one or sev-
eral simulation output variables and of certain input variables. In this setting, the
goal of optimization is to perform runs of the simulation model in an efficient manner
and to determine those input variables, which result in an optimal (or near optimal)
solution [Law and Kelton 2000; Fu 1994]. This setting is known as optimization via
simulation. Our approach extends the standard optimization via simulation setting by
integrating results from several model types. It will be referred to as optimization via
multimodel simulation in the following.

The general concept of optimization via multimodel simulation is illustrated in Fig-
ure 1. Here, we consider the optimization of the cyclone’s geometry parameters, which
should be distinguished from the process parameters. It consists of the following steps:
(S-1) Select an initial design. Set t = 1, where t denotes the number of parameter sets.

The first set of parameters, ~x(t)g , which describe the geometry, is generated.
(S-2) Specify the process parameters ~xp. For example, the inlet velocity and the par-

ticle size distributions have to be specified for the simulation model. The process
parameters are not changed during the optimization.
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Fig. 1. Optimization via multimodel simulation in the loop. Several simulation models are used in parallel.
Elements of the first set of models, i.e., during steps (S-3), (S-4), and (S-5), can be one or several CFD
simulators, analytical models, or experiments based on 3D-printed objects. Results from these different
models are collected and optionally combined with additional results, which were stored in a database. The
second set of models is build during step (S-8). Models from the second set are classical surrogate models, e.g.,
neural networks, linear regression models, or Kriging models. Results from these models can combined in
several ways. We describe an approach that is based on stacked generalization [Wolpert 1992]. Optimization
is performed on the stacked model (S-9).

ACM Journal Name, Vol. V, No. N, Article A, Publication date: November 2016.



Optimization via Multimodel Simulation A:7

(S-3) Select unsupervised models (e.g., CFD, analytical). The whole parameter set,
~x(t) = (~x

(t)
g , ~xp) will be used to build the models. Note, these models are similar to

unsupervised models in the machine learning community, because no information
about the dependent (output) variables y is needed.

(S-4) Build models. In this step, one or several models (f1, . . . , fp) from the set of unsu-
pervised models, which comprehends 3D-printed objects, mathematical model for-
mulas, or CFD simulation models, are generated. The construction process results
in several models, which use the same set of parameters ~x(t).

(S-5) Evaluate models. The models are evaluated, i.e., each model generates an out-
put: fj : ~x(t) → y

(t)
j . Note, some models generate a deterministic output, e.g., CFD

models, whereas other, e.g., 3D-printed models, generate stochastic (noisy) outputs.
Therefore, repeats should be considered for the stochastic models, to improve the
quality of the measured values.

(S-6) Collect results. Besides the set of pairs {(~x(k), y(k)j )}, for k = 1, . . . , t and j =

1, . . . , p, additional results {(~x(m), y
(m)
l )}, for m = 1, . . . , s and l = 1, . . . , q, e.g., from

historical data or data from the literature, can be used in the construction of the
metamodels.

(S-7) Select supervised models. The whole input parameter set, ~x(t) = (~x
(t)
g , ~xp) as well

as the corresponding output values are needed for these models. In general, sev-
eral design points and their corresponding output values from one or more models
(i = 1, . . . , n), i.e., {~x(k), y(k)i }sk=1 are mandatory for building models. For example,
a simple linear regression model for seven independent variables ~xg = {x1, . . . , x7}
requires eight design points (s = 8).

(S-8) Build metamodel. The metamodel combines information from several models,
say Fi, which require the specification of independent variables, ~x, and dependent
variables, yi. The metamodel will be referred to as F ∗. Using methods described
by Bartz-Beielstein [2016b], the models could be stacked. Instead of stacking, a
weighted combination of models Fi can be used. Alternatively, co-kriging, which is
also a popular method that combines results from fine and coarse grained models,
can be used.

(S-9) Optimize on the metamodel. The model F ∗ is used as a surrogate for performing
the optimization step. The optimization results in a new set of promising geometry
parameters, which will be evaluated in the following step. Therefore, the counter for
the number of parameter sets t is incremented and the new design can be referred
to as ~x(t)g . Instead of increasing t by one, several new design points can be added to
the parameter set. For a large number of experimental optimization problems, the
cost of objective function evaluations plays an important role. Experiments may re-
quire time, working-hours of an operator or material resources. Hence, optimization
algorithms should require as few evaluations as possible.

(S-10) Check the termination criterion. If the budget, i.e., simulation time, is ex-
hausted or the desired solution quality is reached, the process is stopped and the
result is presented. The various models may have distinct termination criteria. For
example, the availability time of a 3D printer, or the availability of material re-
sources may be distinct from the computer simulations.

(S-11) Store the optimized design. Optionally, it can be added to a database.
To illustrate this methodology, we will consider the cyclone optimization problem.

Obviously, the optimization via simulation methodology is not restricted to the cyclone
optimization problem. Results from our study can be transferred to many other appli-
cations.
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Fig. 2. Standard geometry of the cyclone considered in this study. The corresponding parameters are de-
scribed in Table I.

4. CYCLONE GEOMETRY AND FUNCTIONALITY
In the following, the decision variables or input parameters, ~xg, are described. The ge-
ometry of the cyclone affects the flow pattern and performance. The standard geometry
of a gas cyclone is shown in Section 4. To improve reproducibility and to describe ex-
perimental setup and results as precisely as possible, important values are presented
in the following tables:
— The cyclone geometry is described by the parameters shown in Table I.
— Table II shows geometries, which were found in the literature [Cortes and Gil 2007].

Values from this table were used for the analytical, surrogate, CFD modeling, and
3D-printing simulations.

— Table III presents the absolute values of the geometries, which were used in the 3D
printing and CFD experiments. Each setting was repeated five times.

— Table IV shows the particle size distribution of the dust.
— Table V compares results from all modeling approaches used in this study.
— Table VI shows results from the 3D printing experiments.

We will consider cyclones with a tangential inlet, which serves to carry the dust
loaded flue gas into the main separation body. Polluted air is pumped into the cyclone
and two air vortices develop. Due to the tangential stimulation as well as the cylin-
drical / conical shape of the main body, the flue gas starts to rotate around the central
axis. The outer vortex gets hold of the heavy particles. These particles sink to the bot-
tom via gravity and fall into the receptacle. The cleansed air has to exit the cyclone
because the rest of the airways are closed off. The inner vortex goes to the top and
exits through the outlet pipe.

The cyclone geometry can be specified by the following parameters: inlet width be,
body diameter Da (alternatively: cyclone radius ra), diameter of the vortex finder Dt
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Table I. Nomenclature from [Löffler 1988]. Values (L, M, S) refers to the values of the geometry parameters ~xg for
the Löffler, Muschelknautz E., and Stairmand high efficiency cyclones, respectively. The vortex finder immersion,
ht, is modified for every cyclone geometry. The type “~xp” denotes operating parameters. Parameter values, which
depend on other values, are labeled as “*” in the Type column.

Parameter Units Values (L, M, S) Type Description
be mm 12.8; 9.92; 7.97 ~xg inlet width
Da mm 80.64; 116.48; 39.97 ~xg body diameter
Dt mm 26.88; 29.12; 19.98 ~xg diameter of the vortex finder
Du mm 26.88; 39.04; 15.04 ~xg diameter of the dust exit
h mm 160; 160; 160 ~xg total height of the cyclone
he mm 38.4; 29.6; 19.98 ~xg inlet height
ht mm 0; 35; 44 ~xg vortex finder (outlet pipe) immersion
hz mm 44.8; 29.64; 59.95 ~xg cylinder height
ra mm Da/2 * cyclone radius
ri mm Dt/2 * radius of the vortex finder
hi mm h− ht * height of the imaginary cylinder CS
re mm ra − be/2 * mean inlet pipe radius
F - Fe/Fi * ratio between inlet and outlet area
Fe mm2 he × be * inlet area
Fi mm2 π × r2i * outlet area
ve ms−1 20 ~xp inlet velocity
λg - 0.005 ~xp load-free friction coefficient
µ Pa s 1.8× 10−5 ~xp viscosity
%f kg/m3 1.2000 ~xp gas density
%p kg/m3 2700 ~xp particle density
croh kg/m3 0.061 ~xp raw gas concentration
B - B = croh/ρf * mass load
vi ms−1 V̇ /(πr2i ) * velocity vortex finder (outlet pipe)
vr(ri) ms−1 Eq. (1) * radial gas velocity on the outlet pipe
vϕi ms−1 Eq. (2) * tangential velocity at CS
V̇ m3/h Fe × ve * volumetric flowrate through the cyclone
λ - λg(1 + 2

√
B) * wall friction factor; friction coefficient

(alternatively: radius of the vortex finder ri), diameter of the dust exit Du, total height
h, inlet height he, vortex finder immersion ht, and cylinder height hz, see Table I.

Based on these input parameters, the following variables can be calculated: The inlet
area Fe = he × be and the outlet area Fi = πr2i . The ratio between inlet and outlet area
is F = Fe/Fi and the ratio Be = be/ra. The mean inlet radius is re = ra − be/2.

In addition to these geometry parameters, ~xg, the specification of the operating pa-
rameters, ~xp, is necessary. The inlet gas velocity is ve = V̇ /Fe, where V̇ denotes the
gas flow rate or the volumetric flowrate through the cyclone. The gas density (at 20◦

Celsius) is ρf , ρp denotes the particle density, and µ is the gas viscosity. The raw gas
concentration is croh.

Last, but not least, a performance measure has to be specified. Two performance
measures are widely used in low mass loading cyclones (i) the pressure drop, i.e., the
pressure difference between the cyclone inlet and the gas exit, and (ii) the cut-off diam-
eter x50 [Löffler 1988; Hoffmann and Stein 2007a; Elsayed 2011]. We will concentrate
in this study on the collection efficiency as specified in Löffler [1988], which will be
explained in Sec. 5.1.

5. MODELING APPROACHES
5.1. The Analytical Model (M-A)
A broad variety of analytical models intended to predict cyclone velocity distributions
exists in the literature [Löffler 1988; Overcamp and Mantha 1998; Cortes and Gil 2007;
Hoffmann and Stein 2007a]. Based on these distributions, the prediction of separation
performance can be determined. For the cyclone separation models, the velocity distri-
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Table II. Results from the analytical model (M-A) for cyclone geometries from Cortes and Gil [2007]. Geometries
shown in the first three rows (Löffler, Muschelknautz. and Stairmand) were used for the 3D printing experiments.
The height of the real cyclone, h0, is measured in mm. All values were scaled by the height h0 of the real cy-
clone. Values in the last column show the efficiency. The Barth model, i.e., Eq. (5), was used to determine the
collection efficiencyE. It uses the process parameters from our study and the scaled geometry parameters of the
original cyclones. For example, the same particle size distribution (silica sand) was used for the calculations to
obtain comparable results. The last row shows the optimized geometry parameters and the estimated collection
efficiency, which were obtained during the optimization on the metamodel step (S-9). This optimization is described
in Section 8.

Type h0 [mm] he/h0 be/h0 Dt/h0 ht/h0 hz/h0 Da/h0 Du/h0 E

Löffler 25,000 0.2400 0.0800 0.1680 0.2600 0.2800 0.5040 0.1680 89.3334
Muschelknautz E. 934 0.1852 0.0621 0.1820 0.3330 0.1852 0.7281 0.2441 89.9122
Stairmand high eff. 1,265 0.1249 0.0498 0.1249 0.1249 0.3747 0.2498 0.0941 89.0490
Muschelknautz D. 8,630 0.2167 0.0626 0.1379 0.3685 0.3036 0.4137 0.2260 89.5968
Storch 4 16,160 0.1609 0.0235 0.0724 0.1089 0.5625 0.1609 0.0563 91.4006
Storch 3 8,210 0.2034 0.0731 0.1303 0.2436 0.5627 0.2339 0.1121 86.9871
Storch 2 10,970 0.1714 0.0483 0.0985 0.2179 0.4230 0.2051 0.0766 89.6379
Storch 1 19,430 0.0515 0.0515 0.0633 0.0726 0.2820 0.1879 0.0329 92.4774
Tengbergen C 9,300 0.1075 0.1075 0.1204 0.1559 0.2011 0.3624 0.1204 90.4930
Tengbergen B 6,040 0.2964 0.0927 0.1854 0.3709 0.5364 0.3477 0.1854 83.8606
Tengbergen A 6,470 0.2087 0.1144 0.1731 0.2427 0.2782 0.4281 0.3122 87.7651
TSN -11 9,590 0.1919 0.0563 0.1418 0.2523 0.2284 0.3629 0.1606 89.3807
TSN -15 1,1240 0.1477 0.0534 0.1406 0.3114 0.5240 0.2367 0.1059 86.6353
Stairmand high flow 7,550 0.1868 0.0940 0.1868 0.2185 0.3748 0.2517 0.0940 81.2173
Van Tongeren AC 12,310 0.1210 0.0544 0.0812 0.2640 0.3542 0.2640 0.1056 92.1290
Vibco 7,200 0.1542 0.1250 0.1542 0.1722 0.3167 0.3972 0.0917 88.6851
Lapple GP 11,310 0.1247 0.0628 0.1247 0.1565 0.5004 0.2502 0.0628 88.8657
Metamodel 160 0.1266 0.0623 0.0640 0.2929 0.1853 0.7267 0.0330 95.3494

Table III. Geometries, i.e., ~xg values, used in the 3 D printing experiments. A total height, h of 160 mm was chosen.
This table shows absolute values, which were determined using the relative values from Table II multiplied by 160.
The resulting cyclones are shown in Figure 6.

Type be Da Dt Du h he ht hz

Löffler 12.8 80.64 26.88 26.88 160 38.4 0 44.8
Löffler 12.8 80.64 26.88 26.88 160 38.4 35 44.8
Löffler 12.8 80.64 26.88 26.88 160 38.4 44 44.8
Muschelknautz E. 9.92 116.48 29.12 39.04 160 29.6 0 29.64
Muschelknautz E. 9.92 116.48 29.12 39.04 160 29.6 35 29.64
Muschelknautz E. 9.92 116.48 29.12 39.04 160 29.6 44 29.64
Stairmand high eff. 7.97 39.97 19.98 15.04 160 19.98 0 59.95
Stairmand high eff. 7.97 39.97 19.98 15.04 160 19.98 35 59.95
Stairmand high eff. 7.97 39.97 19.98 15.04 160 19.98 44 59.95

bution in (i) the near-wall region, and (ii) the control-surface (CS), which is assumed to
separate the outer region of downward flow from the inner region of upward flow, are
relevant. Barth [1956] proposed a simple model to obtain the collection efficiency based
on a balance of forces. The model represents a reverse flow cyclone with a tangential
rectangular inlet. This is a simple and still useful model, by which friction was first
introduced in cyclone modeling. It is based on the assumption that a particle carried
by the vortex is influenced by two forces: a centrifugal force and a flow resistance. They
are expressed at the outlet pipe radius ri where the highest tangential velocity occurs.
Some assumptions can be considered reasonable enough to obtain a good compromise
between accurate prediction and simplification of the equations, e.g., the particles are
spherical, the particle motion is not influenced by the presence of neighboring parti-
cles, and the radial force on the particle is given by Stokes’s law.

Based on the geometry and operating parameters from Table I, the following cal-
culations can be performed. The equilibrium-orbit model of Barth [1956], which was
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extended by Muschelknautz [1972], assumes a cylindrical control surface, CS, which
is constructed by extending the vortex finder wall to the bottom of the cyclone. Let hi
denote the height of CS. If Du > Dt then hi = h− ht. Otherwise hi < h− ht. The radial
velocity at ri equals to:

vr(ri) =
V̇

2πri(h− ht)
. (1)

For a given mass load B = croh/ρf , the wall friction factor or friction coefficient λ can
be calculated as λ = λg(1 + 2

√
B), where λg = 0.005 is the load-free friction coefficient.

The correction factor α for contraction, expressed as a function of the inlet geometry in
case of a rectangular tangential inlet, is equal to:

α = 1.0−
(

0.54− 0.153

F

)
B

1
3
e .

Using the outlet pipe velocity vi = V̇
πr2i

, Barth [1956] derived the following equation

vϕi
vi

= U =
1

Fα · rire + λ · hri
=

rireπ

αFe + hireπλ
. (2)

These velocities are used to determine the collection efficiency. The equilibrium-orbit
model is based on a force balance on a particle that is rotating at radius ri. Small par-
ticles leave the cyclone through the vortex finder, whereas large particles are moving
to the cyclone wall. The cut size, x50, plays a central role in these calculations. It is
analogous to the openings in a sieve. While sieving, particles larger than x50 will be
captured, whereas smaller particles will not be captured. For cyclones, particles of
size x50 have a 50-50 chance of being captured, smaller particles are less likely to be
captured, larger particles are more likely to be captured. The forces acting on a par-
ticle rotating in CS are (i) the centrifugal force acting outward with a magnitude of
πx3ρpv

2
ϕi/(6ri) and (ii) the Stokesian drag acting inward 3πxµvr(ri). By equating these

forces, Barth [1956] developed an analytical model for the cut size as follows:

x50 =

√
18µvr(ri)ri
(%p − %f )v2ϕi

, (3)

where µ is the gas viscosity, ri is the outlet pipe radius, %p and %f are the particle
and gas densities, respectively, vr(ri) is the radial gas velocity on the outlet pipe as
introduced in (1), and vϕi is radial velocity of the fluid on the outlet pipe radius from (2).
The reader is referred to Löffler [1988] and Hoffmann and Stein [2007a] for details of
these calculations.

The fractional efficiency curve assigns an efficiency to the particle diameter as shown
in Figure 3. Larger particles are collected more efficiently than smaller particles. The
fractional efficiency curve is described by

T (x) =


1 +

2
(

x
x50

)3.564




−1.235

, (4)

where x is the particle size and x50 equals to Eq. (3). The overall collection efficiency
E is obtained by first dividing the feed into N size fractions, each fraction comprising
a known fraction of the total mass of feed solids. Next, each of these mass fractions
is multiplied by the efficiency of capture for the average particle size of each fraction.
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Fig. 3. Fractional efficiency, T (x), (in %) versus particle size x in [m]. Equation (4) was used for these
calculations. An immersion depth value of ht = 0.044 m was chosen. The Muschelknautz cyclone shows the
best collection efficiency. This result is consistent with the results from Table V, where the Muschelknautz
cyclone reaches the highest overall collection efficiency (E = 90.59 %).

Table IV. Particle size distribution table. Values used in the 3D printing experiments

Particle Size x[µm] ∆x Mean x̃ [µm] ∆Qe(x) Cumulative
0-1 1 0.5 0.1 0.1
1-2.7 1.7 1.85 0.1 0.2
2.7-5.5 2.8 4.1 0.1 0.3
5.5-8.7 3.2 7.1 0.1 0.4
8.7-12.7 4 10.7 0.1 0.5
12.7-16.9 4.2 14.8 0.1 0.6
16.9-21.2 4.2 19 0.1 0.7
21.2-25.4 4.2 23.25 0.1 0.8
25.4-30.8 5.4 28.1 0.1 0.9
30.8-63 31.2 46.9 0.1 1.0

This efficiency of capture is computed with the fractional efficiency curve. The sum of
all N fractions thus computed is the overall collection efficiency. The overall collection
efficiency is predicted according to:

E =

∫ xmax

xmin

T (x)qe(x)dx ≈
xmax∑

xmin

T (x̃i)∆Qe(xi), (5)

where xmin is the lower bound of the particle size, xmax is the upper bound of the
particle size, x̃i is the mean particle size in each fraction, ∆Qe(xi) = Qe(xi)−Qe(xi−1)
is the change in distribution of particle sizes and qe(x) = ∆Qe(xi)/∆xi. The particle
size distribution table, which was used in our studies, is shown in Table IV.

Results from the calculations of the overall collection efficiency, which were based on
the analytical model, are shown in column (M-A) in Table V.
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5.2. Surrogate Modeling (M-S)
A well-known approach to handle costly objective functions is to employ surrogate
models [Jin 2003]. That is, data-driven surrogate models may be constructed based
on experimental results. Then, an optimization algorithm may work on the surrogate
model instead of the actual objective function.

Data from Table II can be used to fit a surrogate model, which is able to predict the
collection efficiency. For example, if a standard linear regression with variable selection
is performed, the following model is obtained:

E = 95.54 + 26.10he − 27.77be − 596.19Dt − 24.40ht + 110.80Da. (6)

The diameter of the vortex finder and the cyclone body diameter have the greatest
effect on the collection efficiency. Although this model already shows good accuracy,
e.g., adjusted R-squared 0.93, more sophisticated linear models or Kriging models can
be fitted [Turner et al. 2013], [Kleijnen 2014]. Optimization can be performed on this
model, e.g., to improve the collection efficiency for a given pressure drop. Even multi-
objective optimization techniques can be applied [Elsayed and Lacor 2012; Zaefferer
et al. 2014].

5.3. CFD Simulations (M-C)
The CFD simulations were carried out with the open source software Open-
FOAM, which has been developed for solving numerical problems [Konan and
Huckaby 2015]. The mesh for these CFD simulations consists of approximately
30,000 to 50,000 hexahedral cells. The transient MPPICFoam solver was chosen
to calculate the two-phase flow (Euler-Lagrange). The OpenFOAM cyclone tuto-
rial [OpenFOAM Foundation 2016] was used as a basis. The settings for fvSchemes,
fvSolution, transportProperties, and turbulenceProperties were adapted to ob-
tain the same setup as for the 3D printing experiments. The settings in the
kinematicCloudProperties file were adjusted to the characteristics of the used par-
ticles. The density of the particles was changed to 2, 700 kg/m3 (as in Table I above).

Using the generalDistribution model, the particle distribution (described in Ta-
ble IV) can be precisely mapped. In the simulations 20, 000 parcels represent the en-
tirety of the particles, where each parcel has the same mass. The amount of 20, 000
parcels was chosen to minimize the represented mass per parcel and not to blow up
the calculation time for each timestep. The minimization causes a lower error when
a parcel escapes at an outlet. There is a total of 0.6 g particles, which are uniformly
distributed over the inlet area.

The heatTransfer, surfaceFilm, damping, stochasticCollision, and radiation sub-
models were left unchanged at the “off” state. In the experiments, a total of 6 g was
spread over 10 thrusts and the waiting time between each thrust was approximately
3 seconds. The simulation takes only one thrust of 0.6 g instead of performing the 10
repetitions. The purpose of this was to avoid an extrem long simulation time. The par-
ticle velocity in the simulation was set to the same value as the determined velocity of
the air at the inlet.

Using the setting “duration”, the amount of injected parcels per iteration was indi-
rectly adjusted to ensure that only one parcel per iteration was injected.

Overall, a time frame of 3 seconds is simulated. For this, a total calculation time
of approximately 96 hours using 16 processor cores is required. The simulation was
controlled by the time step and relaxation factors and behaved relatively stable. The
evaluation of the simulation results is shown in column (M-C) in Table V.
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Table V. Summary of the results from different modeling approaches. Overall collection efficiency E (in %) as
defined in Eq. 5 for three different cyclone types, three different outlet pipe immersions (ht), and four different
modeling approaches (M-A), (M-C), (M-P), and (M-S). 3D-print column (M-P) shows mean (and standard deviation)
from five repeats. The column (M-P∗) contains the same values as (M-P), where three obvious outliers were
removed. Values in column (M-S) are based on Eq. (6).

Type ht (M-A) (M-C) (M-P) (M-P∗) (M-S)
Löffler 0 90.19 97.98 86.8(±4.39) 86.8(±4.39) 89.80
Löffler 35 89.49 97.89 94.5(±6.92) 92.13(±5.12) 88.95
Löffler 44 89.27 98.03 90.83(±3.84) 90.83(±3.84) 88.73
Muschelknautz 0 91.14 97.37 72.53(±17.79) 78.92(±12.27) 92.13
Muschelknautz 35 90.37 97.92 86.83(±9.55) 86.83(±9.55) 91.28
Muschelknautz 44 90.15 98.15 92.87(±2.94) 92.87(±2.94) 91.06
Stairmand 0 89.33 96.17 90.53(±5.68) 90.53(±5.68) 88.79
Stairmand 35 88.70 97.8 95.43(±2.81) 94.29(±1.34) 87.93
Stairmand 44 88.45 97.8 95.5(±2.5) 95.5(±2.5) 87.71
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Fig. 4. Box plots of the 3D-print data. The data are grouped according to ht ∈ {0, 33, , 45} and cyclone type
(L = Löffler, M= Muschelknatz, S= Stairmand). The y-axis shows efficiency (%).

5.4. 3D-printing Model (M-P)
Experiments used standard laboratory equipment: Erlenmeyer flask, stand, pressure
gauge, precision scale, and a vacuum cleaner. The experimental setup is illustrated in
Figure 5.

The init step (S-1) comprehends the selection of an initial design, ~xg. This design
is also used for other model types, e.g., (M-C) and (M-A). If no experimental data is
available, standard geometries from the literature as shown in Table II can be used
as starting points. Design of experiment methodology can be used if planned exper-
iments are possible. Table III shows the parameters of the printed cyclones. Process
parameters, ~xp, as described in Table I are used in addition.

The model building step (S-3) consists of the (i) 3D computer model generation and
the (ii) printing step. The 3D models, described in the STereoLithography, Standard
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Fig. 5. Experiments using the 3D-printing model as described in Section 5.4. Schematic illustration of the
experimental setup.

Tessellation Language (STL) are created using a Python script.1 The Python script
uses the FreeCad Python library.2 The script creates a cyclone based on the geometry
parameters. Construction of composite objects is straightforward. For example, first a
function to generate a solid body with a given height, diameter, and position is used. To
generate a hollow object, a second slightly bigger cylinder is created and the difference
of both is computed. The resulting object is a hollow pipe with the specified wall thick-
ness and height. The cylinder has to be fused to all other parts, so the model is one
printable object and not a collection of separate parts. Finally, the model is exported to
an .STL file. The .STL format is a 3D model which can be printed on a broad number
of 3D printers. The three derived cyclone models are shown in Figure 6.

Today, a broad variety of 3D printers as well as different materials are available to
print the cyclone. The printing technique as well as the material have to meet certain
requirements. The cyclone has to be robust, because it is fixed into position for the
experiments and it has to withstand the flow of air and dust. Due to the hollow shape
of the cyclone a ProJet CJP 660pro printer was chosen, which uses gypsum powder
(Visijet PXL) as printing substrate. This way the entire cyclone can be printed in one
step, no support structures have to be removed, and it is not necessary to assemble the
printer from parts which would leave seams that could hinder the air flow. The gypsum
powder has to be hardened after surplus gypsum powder has been removed from the
interior. A problem that could arise is buildup of static charge in the cyclone. If the ma-
terial is statically charged and the dust adheres to it, the results are unusable, because
it leads to fluctuations and reduced efficiency. That is why we used cyan acrylate (“Col-
orBon”), which yielded a sufficiently smooth, though still somewhat rough surface, at
the same time giving the cyclone sufficient stability. While many real-world cyclones
have to deal with hot flue gases, the experiments were performed at room temperature.
Significantly higher temperatures may require a different choice of material.

1https://www.python.org/
2http://www.freecadweb.org
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Fig. 6. From left to right: Löffler, Muschelknautz, Stairmand cyclones. The corresponding geometries, ~xg ,
are specified in Table III.

Printing a single cyclone model this way takes about three hours for the printing
process, one hour for refinishing, dust removal and infiltration, and another hour for
curing.

Besides the selection of a printer and material, the characteristics of the dust have to
be selected. The distribution of particle sizes should not vary to prevent fluctuations in
the results. If the particles are too large, they may be too easy to separate from the gas.
If there are too many, they may even block the flow inside the cyclone. If the particles
are too small, the task of separation may become near to impossible. The chosen dust is
silica sand with a maximal particle size of 63µm. Its particle size distribution is shown
in Table IV.

Furthermore, the measurements have to be clearly specified. The same amount of
dust, here: 6 g, has to be used in every experiment. The amount of dust filtered out of
the air determines the efficiency of a cyclone. It can either be measured by the amount
in the air after it passes through or by the amount in the receptacle. It is easier to
measure the second option. The air pressure has to be the same in each test. Otherwise
the results are not comparable. It can be measured in front or behind the cyclone.

To measure the efficiency of different cyclones, the cyclones have to be interchange-
able. The depth of the outlet pipe can be variable. The dust receptacle has to be re-
movable to measure its contents after a test. The rest of the setup is fixed to minimize
fluctuations.

The experiments were performed following a standardized five-step procedure,
which can be summarized as follows:
(1) The cyclone is put into position at the desired outlet pipe depth.
(2) The weight of the receptacle is measured and used as a starting point for the fol-

lowing tests. The receptacle is then put into position and sealed. Meanwhile 6g of
dust, with a tolerance of 0.05g, are prepared.

(3) The vacuum cleaner is started. The pressure gauge takes some time to measure. If
the pressure is off, the sealing between the connection is checked. The setup is then
adjusted until the pressure reaches an acceptable level.

(4) A constant rate of the dust is then put into the cyclone through the inlet pipe. After
all dust is inserted, the cyclone takes a few seconds to process the air. The vacuum
cleaner is then turned of.
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Table VI. Results from the 3 D printing experiments (M-P). Determination of the collection efficiency of the Löffler
cyclone with ~xg taken from Table III. Simular results were obtained for the Muschelknautz and the Stairmand
cyclones.

Receptacle be-
fore (g)

Receptacle af-
ter (g)

Difference (g) Depth outlet
pipe (mm)

Efficiency (%) Average (%)

415.35 420.44 5.09 0 84.83
420.44 425.36 4.92 0 82
425.36 430.64 5.28 0 88
430.64 436.26 5.62 0 93.67
436.26 441.38 5.13 0 85.5 86.8(±4.39)
387 392.13 5.13 35 85.5
392.13 397.6 5.57 35 91.17
397.6 403.45 5.85 35 97.5
403.45 409.69 6.24 35 104
409.69 415.35 5.66 35 94.33 94.5(±6.92)
359.66 364.89 5.23 44 87.17
364.89 370.23 5.25 44 87.5
370.23 375.64 5.41 44 90.17
375.64 381.23 5.59 44 93.17
381.23 387 5.77 44 96.17 90.83(±3.84)

All 90.71

(5) The receptacle is removed and weighed again. The difference between the start-
ing weight and the second weight is calculated. The result shows how efficient the
cyclone worked. The second weight is used as the base weight for the next test.

Results from the 3D-printing experiments are shown in column (M-P) in Table V. Box-
plots, which visualize these results are shown in Figure 4.

6. EXPERIMENTAL RESULTS
We discuss results from the 3D printing (M-P) experiments first. As can be seen in Ta-
ble VI, the efficiency of the Löffler cyclone is approximately 90%. Two measurements
with high efficiency values (104% and 97.5%) are listed in this table. This can be a
results of insufficient cleaning of the cyclone between tests. The pressure might also
lead to slightly higher or lower efficiency, because it has to be modified during experi-
mentation. The highest average efficiency (94.5%) was reached with a depth of 35mm.
Zero immersion depth lead to the lowest result (86,8%).

Summarized results from the experiments with the Muschelknautz cyclone are
shown in Table V. The efficiency of the Muschelknautz cyclone is around 84%. Ex-
treme outliers can be found at a depth of 0mm. The results at 35mm depth fluctuate
heavily as well. The best average efficiency is reached with a depth of 44 mm. The
efficiency lowers relative to the depth, as can be seen in Figure 4.

According to the (M-P) column in Table V, the Stairmand cyclone has the highest av-
erage efficiency. The efficiency at every depth is higher than the previous two cyclones
with the same depth. There are fewer fluctuations in the results. The only outliers can
be found at the beginning of every series of tests. These outliers may be caused by dust
particles from previous experiments. The cyclone has no large difference between a
depth of 35 and 44 mm, as can be seen in Figure 4.

After removing obvious outliers, e.g., efficiencies larger than 100%, the values from
column (M-P∗) were obtained. Results from the 3-D printing experiments (M-P) can
be summarized as follows: (i) there are high variances in the measured values, and
(ii) the experimental results indicate that the collection efficiency, E, increases with
increasing vortex finder immersion (ht) values.

In addition to the discussion of the results from the 3D printing experiments, we
consider results from the CFD simulations and from the analytical model. Efficiency
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values, which are based on the CFD simulations are generally higher than values from
other simulations. Again, there are high variances in the measured values, and the
experimental results indicate that the collection efficiency increases with increasing
vortex finder immersion values. Interestingly, data from the analytical model (M-A)
show a negative effect of the immersion length, ht, on the efficiency: smaller ht values
result in an increased collection efficiency E.

Overall, there are several inconsistencies in the data that have to be clarified. The
required steps to fix these problems are obvious: the variance in the (M-P) model can
be reduced by improving the experimental procedure, e.g., by keeping the operating pa-
rameters constant during experimentation. Additional recommendations will be pre-
sented in Section 9. However, even if the data itself do not enable to draw reliable
conclusions for designing an optimal cyclone geometry, they are suitable for demon-
strating the optimization via multimodel simulation approach.

7. ENSEMBLE BUILDING
Step (S-8) of the proposed methodology uses an ensemble engine to combine results
from several models. It uses the collected results from step (S-6). In contrast to the
model types used in steps (S-3) to (S-5), the models in step (S-8) require data with input
and output values. This corresponds to supervised learning in machine learning. It can
be briefly outlined as follows: The rich variety of surrogate models includes approaches
such as regression trees and random forest, least angle regression (LARS), and Krig-
ing. The ensemble engine uses cross validation to select an improved model from the
portfolio of candidate models [van der Laan and Dudoit 2003]. It implements methods
for creating a weighted combination of several surrogate models to build the improved
model and methods, which use stacked generalization to combine several level-0 mod-
els of different types with one level-1 model into an ensemble [Wolpert 1992]. The
level-1 training algorithm is typically a relatively simple linear model. The stacked
generalization approach is detailed in Bartz-Beielstein [2016b]. As level-0 models, a
simple regression model (lm), a regression tree (tr) , a random forest (rf), and a Krig-
ing (kr) model were used in this study. The level-1 model, which combines results from
the level-0 models, uses the following coefficients:

Ensemble (level-1) : −213.41 + 0.31 lm + 0.77 rf− 1.95 tr − 0.45kr

i.e., the stacked model uses mainly the information from the regression tree (tr) sur-
rogate (level-0) model, but includes information from the other surrogate models as
well.

8. METAMODEL-BASED OPTIMIZATION
The metamodel F ∗ from Section 7 can be used for optimizing the geometry parameters
~xg. This is step (S-9) in the optimization via multimodel simulation approach. To illus-
trate the optimization step, the R package SPOT2 can be used. The package SPOT2 is
the most recent version of the sequential parameter optimization (SPO), which imple-
ments several tools for the analysis and optimization of complex problems. It combines
methods from design of experiments, response surface methodology, design and analy-
sis of computer experiments, and regression trees for the analysis of algorithms [Bartz-
Beielstein et al. 2005]. The R script bart16eOptimizationViaMultimodelSimulation.R,
which explains the optimization step can be downloaded from the author’s webpage.
On the same page, the SPOT2 package can be found.

After collecting results (step S-6) from the different models, e.g., (M-P), (M-C), or (M-
A), the results are collected and can be loaded as an R data.frame. A set of surrogate
models have to be chosen (step S-7). To exemplify this step, a linear regression model, a
random forest, a regression tree and a Kriging model, were chosen. The SPO2 function
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Fig. 7. Optimization on the metamodel (S-9). Barplot of the optimized geometry parameters. Comparing
lower and upper bound of decision space with optimum.

buildEnsembleStack implements the metamodel building step (S-8). After generating
an objective function from the fit, an optimizer can be applied. In our example, differ-
ential evolution was use, but any other optimizer is fine.

Results from the optimization are as follows: he = 0.13, be = 0.06, Dt = 0.06, ht =
0.29, hz = 0.19, Da = 0.73, Du = 0.03. All values are relative to the cyclone height
h0 = 160mm. This geometry results in an estimated efficiency of 95.35 %. The values
are also shown in the last row of Table II. Results from this optimization are shown
in Figure 7. This figure illustrates the recommendations from the optimization on the
metamodel. For example, the immersion length, ht, should be increased, whereas the
diameter of the vortex finder, Dt should be decreased.

If the termination criteria are not fulfilled, these recommendations can be used to
print a new cyclone (M-P) or to perform a CFD simulation and start the next iteration
of the optimization via multimodel simulation loop as introduced in Figure 1.

9. CONCLUSIONS
This article explores a new approach for combining different simulation approaches.
Based on a stacking, a flexible methodology for combining results from different models
is presented. It is demonstrated, how results from two different modeling approaches,
namely,
(1) models that require only input values, i.e. (M-A), (M-P), and (M-C), and
(2) models, that require input and output values, i.e., (M-S),
can be combined. If data is scarce and simulation is expensive, the proposed optimiza-
tion via multimodel simulation is a promising way. However, research question (Q-1)
“Are there any benefits in combining different simulation approaches?” cannot be con-
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clusively answered. The experimenters, who carried out the 3D printing experiments,
faced unpredictable technical difficulties. Experience from practice plays a crucial role
for these experiments. First results indicate that the weakness of one approach can be
compensated by other approaches, but needs further investigations. This question was
formulated as research question (Q-2) in the introduction.

This remainder of this article summarizes important experiences from our study.
First, we discuss problems related to the 3D-printing approach. Then, we will discuss
the optimization via multimodel simulation approach.

9.1. Technical Recommendations (3D-printing)
One important goal of this study was the exploration of difficulties integrating a 3D-
printing approach into the optimization loop, using utilities from a standard labora-
tory.
(1) It was possible to 3D print working cyclones with varying parameters. Once the

procedure is clarified, it is easy (but time consuming) to create new cyclones.
(2) One possible problem is the used material in the 3D-printing process. The chosen

material has a rather rough texture, which collects dust and produces fluctuating
results. A better alternative would be a smoother surface. This can be achieved
through a different material, sealing the rough surface or modifying the printing
process.

(3) There were high fluctuations in the results because the cyclones were not cleansed
of dust after each tests. Doing so would have resulted in a high workload and spread-
ing the dust in the lab.

(4) Guaranteeing a constant air pressure was a difficult task. Fluctuations in the pres-
sure caused high variance in the experimental results. The used pressure might be
to low for usable results. A higher pressure would require a pressure gauge that can
measure in a higher range to ensure that the pressure stays constant.

(5) The chosen dust has a specific size distribution. Other material, e.g., sawdust,
might need higher pressure to flow through the cyclone. This is because different
dust particles can have varying size, shape, or density.

(6) The sealing could be improved and the suction power should be kept constant.
(7) While testing the first cyclone (Löffler), it was hard to insert the dust into the

cyclone. To simplify the infill procedure new cyclones were printed with rounded
opening that points to the top. This design was chosen, because it does not affect
the flow inside and makes it easier to insert dust. The different cyclones were then
measured for their efficiency in a series of tests. It would also be beneficial to find
an automated, more uniform dust insertion procedure.

(8) The cyclones that were printed are of small size. Larger cyclones (h > 200 mm)
might result in a robust behavior of the cyclone.
Besides these technical difficulties from the 3D-printing approach, there are addi-

tional problems, which refer to the other models as well. Recommendations based on
our experiences can be listed as follows.

9.2. Statistical Recommendations
(1) Collection efficiency values, which are based on the analytical model (M-A) and the

3D-printing models are in the same range (approximately 90%). Surprisingly, values
from the CFD-based models (M-C) are significantly higher. These results indicate,
that a model validation is necessary. Validation analyzes the authenticity of the
model, i.e., how closely the model represents a real system. Model assumptions are
reviewed by experts, various data settings are tested, and independent test data are
used for comparison [Law and Kelton 2000].

ACM Journal Name, Vol. V, No. N, Article A, Publication date: November 2016.



Optimization via Multimodel Simulation A:21

(2) Experiments should be repeated if unusual values occur. Or, these data should not
be considered if a plausible explanation for this behavior can be given. Only a very
moderate data preprocessing was performed in this study. For example, experimen-
tal results which are very implausible were removed. This results in the values
reported in column (M-P∗) in Table V. Each experiment was repeated five times. As
a rule of thumb, we recommend that each experiment should be repeated at least
ten times.

(3) It was not possible to determine a rule of thumb for an efficient cyclone. The results
show that there was no perfect cyclone, but some cyclones were better at different
outlet pipe depths. Based on columns (M-C) and (M-P) from Table V, the Stairmand
cyclone with 35 and 44 mm immersion depth has a higher efficiency than the other
cyclones. A depth of 0 mm usually produces higher fluctuations than a depth of 35
or 44 mm. Although results are approximately in a similar range (90-95%), no valid
conclusions could be drawn based on these data.
The results of the proof of concept show the validity of the optimization via mul-

timodel simulation approach. Due to insufficient experience with the experimental
setup, the results in this area are not yet conclusive, but they demonstrate how to
collect data and how to combine results from different modeling approaches.

This study was considered as a proof-of-concept for the optimization via multimodel
simulation approach. All steps of the simulation-optimization framework were tested
and evaluated. As a consequence of the positive evaluation of this framework, future
work should deal with an extensive optimization via multimodel simulation study,
which focuses on the improved cyclone geometries.

APPENDIX
In this appendix, we describe the supplementary R source files and the set of experi-
mental data, which was used in our study.

(1) Bart16eAllData.csv: This CSV file contains all data used in this study.
(2) SPOT2 0.1.tar.gz: R software package required for running the analysis. To install

the package from source, you can either use the R-command-line call:
install.packages(pkgs="SPOT2 0.1.tar.gz",repos=NULL,type="source")
Or you can use the RStudio IDE to install via ”Tools - Install Packages ...”. Note,
that you may require RTools if you install source packages under Windows: https:
//cran.r-project.org/bin/windows/Rtools/.

(3) bart16eEda.R: This R script was used to generate the boxplots and to calculate
means and standard deviations of the 3D-printing data, i.e., columns (M-P) and
(M-P∗), in Table V.

(4) bart16eOptimizationViaMultimodelSimulation.R: This R script was used to build
the metamodel and to run the optimization step (S-9) on the metamodel F ∗. The R
functions, which are necessary for building the metamodel, are implemented in the
R package SPOT2.

The source files and the open source R software package SPOT2 can be downloaded
from the author’s webpage: http://www.gm.fh-koeln.de/∼bartz/Bart16e.d. The software
package SPOT2 will also be made available on CRAN (https://www.r-project.cran.org).
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