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Abstract

This paper proposes an experimental methodology for on-line machine learning algorithms, i.e.,
for algorithms that work on data that are available in a sequential order. It is demonstrated how
established tools from experimental algorithmics (EA) can be applied in the on-line or streaming
data setting. The massive on-line analysis (MOA) framework is used to perform the experiments.
Benefits of a well-defined report structure are discussed. The application of methods from the EA
community to on-line or streaming data is referred to as experimental algorithmics for streaming
data (EADS).

1 Introduction: Experimental Algorithmics

This article is devoted to the question “Why is an experimental methodology necessary for the
analysis of on-line algorithms?” We will mention two reasons to motivate the approach presented in
this paper.

1. First, without a sound methodology, there is the danger of generating arbitrary results, i.e.,
results that happened by chance; results that are not reproducible; results that depend on the
seed of a random number generator; results that are statistically questionable; results that are
statistically significant, but scientifically meaningless; results that are not generalizable; etc.

2. Second, experiments are the cornerstone of the scientific method. Even the discovery of scientific
highly relevant results is of no use, if they remain unpublished or if they are published in an
incomprehensible manner. Discussion is the key ingredient of modern science.

Experimental algorithmics (EA) uses empirical methods to analyze and understand the behavior
of algorithms. Methods from experimental algorithmics complement theoretical methods for the
analysis of algorithms. Statistics play a prominent role in EA and provide tools to gain a deep
understanding of algorithm behavior and efficiency. McGeoch (2012) describes two branches of
experimental algorithmics:

(EA-1) Empirical analysis
deals with the analysis and characterization of the behavior of algorithms, and uses mostly
techniques and tools from statistics.

(EA-2) Algorithm design or algorithm engineering
is focused on empirical methods for improving the performance of algorithms, is based on
approaches from statistics, machine learning and optimization. The statistical analysis of al-
gorithm parameters can result in significant performance improvements. This procedure is
referred to as algorithm tuning.

Experimental algorithmics evolved over the last three decades and provides tools for sound exper-
imental analysis of algorithms. Main contributions, which influenced the field of EA are McGeoch’s
thesis “Experimental Analysis of Algorithms” (McGeoch, 1986), the experimental evaluation of sim-
ulated annealing by (Johnson et al., 1989, 1991), and the article about designing and reporting
computational experiments with heuristic methods from (Barr et al., 1995). Cohen details typical
errors in experimental research, e.g., floor- and ceiling effects (Cohen, 1995). And, Hooker’s papers
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with the striking titles “Needed: An empirical science of algorithms” and “Testing Heuristics: We
Have It All Wrong” (Hooker, 1994, 1996), which really struck a nerve.

At the turn of the millennium, these ideas reached more and more disciplines. Theoreticians
recognized that their methods can benefit from experimental analysis and the discipline of algorithm
engineering was established (Cattaneo and Italiano, 1999). New statistical methods, which had their
origin in geostatistics, become popular tools for the experimental analysis of algorithms. Santner
et al. (2003) made the term design and analysis of computer experiments (DACE) popular.

Parameter tuning methods gained more and more attention in the machine learning (ML) and
computational intelligence (CI) communities. Eiben and Jelasity’s “Critical Note on Experimen-
tal Research Methodology in EC” (Eiben and Jelasity, 2002) enforced the discussion. The authors
described their discontent with the common practice. They requested concrete research questions
(and answers), adequate benchmarks, clearly defined performance measures, and reproducibility of
the experimental findings. Bartz-Beielstein (2003) combined classical design of experiment methods,
tree-based methods, and methods from DACE for the analysis and the tuning of algorithms. This
increased awareness resulted in several tutorials, workshops, and special sessions devoted to exper-
imental research in evolutionary computation. Results from these efforts are summarized in the
collection “Experimental Methods for the Analysis of Optimization Algorithms” (Bartz-Beielstein
et al., 2010a). New software tools for the experimental analysis and algorithm tuning were devel-
oped. The sequential parameter optimization (SPO) was proposed as (i) a methodological frame-
work to facilitate experimentation with adequate statistical methods and (ii) a model-based tuning
technique to determine improved algorithm instances and to investigate parameter effects and inter-
actions (Bartz-Beielstein et al., 2005). So SPO covers both branches, i.e., (EA-1) and (EA-2), of
experimental algorithmics as defined by McGeoch.

The idea of a sound experimental methodology spread out over many sub-disciplines. Exper-
imental methods were refined and specialized for many new fields, e.g., parallel algorithms (Barr
and Hickman, 1993), big data applications, e.g., map reduce by Benfatti (2012), multimodal op-
timization (Preuss, 2015), or multiobjective optimization (Zaefferer et al., 2013). Multiobjective
optimization allows the combination of several goals, e.g., speed and accuracy.

Existing benchmarks and standard test-function sets were reconsidered (Whitley et al., 1996).
Two competitions were established in the context of CI: the CEC special session on parameter
optimization (Suganthan et al., 2005) and the black box optimization benchmark (BBOB) competi-
tion (Hansen et al., 2009).

This overview is by far not complete, and several important publications are missing. However,
it illustrates the development of an emerging field and its importance. The standard approach
described so far focuses on relatively small, static data sets that can be analyzed off-line. We
propose an extension of EA to the field of stream data, which will be referred to as experimental
algorithmics for streaming data (EASD).

This extension is motivated by the enormous growth of data in the last decades. The availability
of data raises the question: how to extract information from data? Machine learning, i.e., automat-
ically extract information from data, was considered the solution to the immense increase of data.
Historically, ML started with small data sets with limited training set size: the entire data set can
be stored in memory.

The field of data mining evolved to handle data that does not fit into working memory: Data
mining became popular, because it provides tools for very large, but static data sets. Models cannot
be updated when new data arrives.

Nowadays, data are collected in nearly every device. Sensors are everywhere—massive, data
streams are ubiquitous. Especially, industrial production processes generate huge and dynamic
data. This leads to the development of the data stream paradigm. Bifet et al. (2010) describe
core assumptions of data stream processing as follows:

(S-1) Volatility
The training examples can be briefly inspected a single time only.

(S-2) Speed
The data arrive in a high speed stream.

(S-3) Memory
Because the memory is limited, data must be discarded to process the next examples.

(S-4) Bulk data
The order of data arrival is unknown.

(S-5) On-line
The model is updated incrementally, i.e., directly when a new data arrives.

(S-6) Anytime property
The model can be applied at any point between training examples.
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Figure 1: Left: The batch classification cycle. Right: The stream classification cycle. Dotted lines
represent nonpermanent data. Both classification cycles partition the data into test and training set. To
keep the illustration simple, this split is not shown. The figure is based on the data stream classification
cycle in Bifet et al. (2011).

(S-7) Evidence
Last but not least: theory is nice, but empirical evidence of algorithm performance is necessary.

Similar design criteria were proposed by Domingos and Hulten (2012). They add the requirement
that a model, which is nearly identical to the one that would be generated by a corresponding
ordinary data base mining algorithm, should be produced. Altogether, these core assumptions result
in a very demanding evaluation and performance assessment.

We will develop an experimental methodology for on-line machine learning, i.e., for situations in
which data becomes available in a sequential order. The data is used to update the predictor for
future data at each step. On-line learning differs from traditional batch learning techniques, which
generate the predictor by learning on the entire training data set at once. The terms “on-line” and
“data stream” will be used synonymously in the following.

This paper is structured as follows. Section 2 compares the traditional batch setting with the
stream data setting. The generation of data stream algorithms is described in Sec. 3. Change
and drift are briefly introduced in Sec. 4. How to assess model performance is described in Sec. 5.
Environments for performing the experimental analysis are presented in Sec. 6. A simple experiment,
which exemplifies the EASD approach, is presented in Sec. 7. This article concludes with a summary
in Sec. 8.

2 Batch Versus Stream Classification

By comparing the traditional batch and the stream classification, the following observations can be
made: Both classification procedures partition the data into test and training set. In contrast to
batch classification, stream classification is a cyclic process, which uses nonpermanent data. The
elementary steps used in both settings are illustrated in Fig. 1.

2.1 Batch Classification

The batch classification cycle processes data as follows:

1. Input
The algorithm receives the data.
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2. Learn
The algorithm processes the data and generates its own data structures (builds a model).

3. Predict
The algorithm predicts the class of unseen data using the test set.

2.2 Stream Classification

Data availability differs in the stream classification cycle. Additional restrictions have to be consid-
ered (Bifet et al., 2011). Freely adapted from Bifet et al. (2011), the data stream processing can be
described as follows:

1. Input
The algorithm receives the next data from the stream. At his stage of the process, the following
requirement has to be considered:

(R-1) Process only once
Data stream data is accepted as they arrive. After inspection, the data is not available any
more. However, the algorithm itself is allowed to set up an archive (memory). For example,
the algorithm can store a batch of data that is used by traditional, static algorithms. Due
to the limited amount of memory, the algorithm has to discard the data after a certain
time period.

2. Learn
The algorithm processes the data and updates its own data structures (updates the model). At
his stage of the process, the following requirements have to be considered:

(R-2) Limited Memory Budget
Data stream algorithms allow processing data that are several times bigger than the work-
ing memory. Memory can be classified as memory that is used to store running statistics
and memory that is used to store the current model.

(R-3) Limited Time Budget
Runtime complexity of the algorithms should be linear in the amount of data, i.e., the
number of examples. Real-time processing requires that the algorithm process the data
quickly (or even faster) than they arrive.

3. Predict
The algorithm is able to receive the next data. If requested, it is also able to predict the class
of unseen data. At his stage of the process, the following requirement has to be considered:

(R-4) Predict at any Point
The best model should be generated as efficiently as possible. The model is generated
directly in memory by the algorithm as it processes incoming data.

3 Generating Data Stream Algorithms

The process of enabling ML algorithms to process large amount of data is called scaling (Dietterich,
1997). In data mining, the wrapper and the adaptation approach are known for this task.

3.1 Wrapper

The maximum reuse of existing schemes is referred to as the wrapper approach. The wrapper
approach collects and pre-processes data so that traditional batch learners can be used for model
building.

Bifet et al. (2011) list typical implementations of the wrapper approach: Chu and Zaniolo (2004)
propose a boosting ensemble method, which is based on a dynamic sample-weight assignment scheme.
They claim that this method is fast, makes light demands on memory resources, and is able to adapt
to concept drift. Wang et al. (2010) introduce a framework for mining concept-drifting data streams.
An ensemble of classification models, such as C4.5 (Quinlan, 1993) or naive Bayes, is trained from
sequential chunks of the data stream. The classifiers in the ensemble are weighted based on their
estimated classification accuracy on the test data under the time-evolving environment. Thus, the
ensemble approach improves both the efficiency in learning the model and the accuracy in performing
classification.

Wrapper approaches suffer from the following difficulties: (i) The selection of an appropriate
training set sizes is problematic. (ii) The training time cannot be controlled. Only the batch sizes
can be modified, which provides a mean for an indirect control of the training time.
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3.2 Adaptation

The adaptation approach develops new methods, which are specially designed for the stream data
analysis task. Adaptation comprehends the careful design of algorithms especially designed to fulfill
data mining and ML tasks on dynamic data. Adaptation algorithms can implement direct strategies
for memory management and are usually more flexible than wrapper approaches. Bifet et al. (2011)
list examples for adaptation algorithms from the following algorithm classes: decision trees, associa-
tion rules, nearest neighbor methods, support vector machines, neural networks, and ensemble-based
methods.

4 Change and Drift Detection

Changes in the data distribution play an important role in data stream analysis. This motivated
the development of specialized techniques, e.g., change detection strategies (Lughofer and Sayed-
Mouchaweh, 2015). The target value, which will be predicted by the model, is referred to as concept.
Several changes over time may occur: A gradual concept change is referred to as a concept drift. A
rapid concept change over time is referred to as a concept shift, and a change in the data distribution
is referred to as a distribution or sample change.

Established methods from statistical process control, e.g., the cumulative sum (CUSUM) algo-
rithm, can be used for change detection (Montgomery, 2008). Further methods comprehend the
geometric-moving-average (GMA) test or statistical hypothesis tests. Hypotheses tests are popular,
because they are well-studied and can be implemented easily. They compare data from two streams.
The null hypothesis H0 reads: both streams come from the same distribution. Then a hypothesis
test, which is based on the difference of means µ1 and µ2 is performed, e.g., the Kolmogorov-Smirnov
(KS) test.

Gama et al. (2004) developed a drift-detection method, which is based on the on-line error-rate.
The training examples are presented in sequence. New training example are classified using the actual
model. As long as the distribution is stationary, the classification error will decrease. If a change
in the distribution occurs, the error will increase. The trace of the on-line error of the algorithm is
observed.

Further approaches, e.g., based on the exponential-weighted-moving-average (EWMA) were de-
veloped (Ross et al., 2012). The reader is referred to Gustafsson (2001), who presents an overview
of change detection methods.

5 Assessing Model Performance

This section describes an experimental setting for the assessment of model performance. In Sec. 5.1
performance criteria are introduced. The experimental evaluation of the model performance requires
data. Strategies for obtaining test data are described in Sec. 5.2.

5.1 Performance Criteria

Elementary performance criteria for data stream algorithms are based on

P-1 time (speed)
We consider the amount of time needed (i) to learn and (ii) to predict. If the time limit is
reached, continuing the data processing will take longer or results will loose precision. This
consequence is not so hard as the space limit, because overriding the space limit will force the
algorithm to stop.

P-2 space (memory)
A simple strategy for the handling space budget is to stop once the limit is reached. To continue
processing if the the space limit is reached is to force the algorithm to discard parts of its data.

P-3 error rates (statistical measures)
The prediction error is considered. Several error measures are available (Hyndman and Koehler,
2006; Willmott and Matsuura, 2005).

Regarding classification, the following error measures are established. We will consider a binary
classification test, e.g., a test that screens items for a certain feature. In this setting, the term
“positive” corresponds with “identified” (the item has the feature) and “negative” corresponds
with “rejected” (the item does not have the feature), i.e.,

• TP: true positive = correctly identified

• FP: false positive = incorrectly identified = α error of the first type

• TN: true negative = correctly rejected
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Table 1: Confusion matrix. The error of the first kind, the so-called α error (false positive) as well as
the error of the second kind, the so-called β-error (false negative), are denoted as α and β, respectively.

True value
Positive Negative

Test result (prediction)
Positive TP FP (α) PPV (precision)
Negative FN (β) TN NPV

TPR TNR

• FN: false negative = incorrectly rejected = β error of the second type

These four values can be arranged in a contingency table or confusion matrix as shown in
Table 1.

Based on the values from the confusion matrix, the following statistical measures can be deter-
mined:

• Accuracy is measured as the percentage of correct classifications, i.e., it is defined as the
sum of the number of true positives and the number of true negatives divided by the total
number of examples (total population). Since accuracy can be misleading (consider the
so-called accuracy paradox), further measures are commonly used (Zhu, 2007).

• The precision is defined as the number of true positives divided by the number of true
positives and false positives. Precision is also referred to as the positive predictive value
(PPV).

• The negative predictive value (NPV) is defined as the number of true negatives divided by
the number of true negatives and false negatives.

• The specifity (or true negative rate, TNR) is defined as the number of true negatives
divided by the number of true negatives and false positives.

• The sensitivity (or true positive rate (TPR) or recall) is defined as the number of true
positives divided by the number of true positives and the number of false negatives.

• The traditional F1 score combines the sensitivity (TPR) and the precision (PPV) measures.
It is defined as the harmonic mean of sensitivity and precison:

F1 = 2× ((PPV× TPR)/(PPV + TPR)).

Training data can be used to determine these statistical measures. This can lead to overfitting and
result in poorly generalizable models. Therefore, testing data, i.e., using unseen data, should be
used (Hastie, 2009).

5.2 How to Generate Test Data

Generating test data appears to be trivial at the first sight. However, simply splitting the data into
two sets might cause unwanted effects, e.g., introduce bias, or result in an inefficient usage of the
available information. The test data generation process needs careful considerations in order to avoid
these fallacies.

First, we will consider traditional methods, e.g., static (stationary) data sets with a relatively
small amount of data. A setting will be referred to as a batch setting, if all the data is available
ahead of time. Otherwise, the setting will be referred to as an on-line setting. If the data distribution
changes over time, the setting is referred to as a non-stationary setting.

5.2.1 Test Data in Previous Evaluation Methods

Previous ML methods focused on static data with a limited amount of samples in the batch setting.
Bifet et al. (2011) list the following strategies, which are considered standard in ML.

Holdout:
Divide the data in two subsets, the so-called training set and the holdout or testing set. The
conceptual problem with the holdout method is that it does not use the data efficiently, because
many data are not used for training.

Random subsampling:
To overcome the conceptual problem of the holdout approach and to improve its efficiency,
random subsampling and averaging of the errors from each subset can be used. Random
subsampling also allows measuring the accuracy estimate’s variance.
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Random subsampling suffers from the following disadvantage: If the training set contains many
data from one class, than the test set naturally contains only a few data from this class. This
bias results in random subsampling violating the assumption that training and test sets are
independent.

Cross validation (CV):
Cross validation (Arlot and Celisse, 2009) optimizes the use of data for training and testing.
Every available data is used for training and testing. To avoid bias, stratified cross-validation
can be used.

Leave-one-out CV:
is a special case of cross-validation, which is relatively expensive to perform if the model fit is
complex. Leave-one-out CV is, in contrast to CV, completely deterministic. However, leave-
one-out CV can fail, e.g., consider a classification situation with two classes, when data is
completely random and 50 percent of the data belong to each class. The leave-one-out CV
fails, because the majority vote is always wrong on the hold-out data and leave-one-out CV
will predict an accuracy of zero, although the expected accuracy is 50 percent.

The bootstrap:
The bootstrap method (Efron and Tibshirani, 1993) generates a bootstrap sample by sampling
with replacement a training data set, which has the same size as the original data. The data
that are not in the training data set are used used for testing. The bootstrap can generate
wrong results (in this case, they are too optimistic) in settings described for the leave-one-out
CV.

Recommendations for choosing a suitable evaluation method are given in Kohavi (1995). Kleijnen
(2008) discusses these methods in the context of simulation experiments.

5.2.2 Evaluation Procedures for Dynamic Data Stream Methods

In the dynamic data stream setting, plenty of data is available. The simple holdout strategy can be
used without causing the problems mentioned in the batch setting. In contrast to the batch settings,
large data sets for exact accuracy estimations can be used for testing without problems.

Holdout:
The simplest approach is just holding out one (large) single reference data set during the whole
learning (training) phase. Using this holdout data set, the model can be evaluated periodically.
This holdout data set can be generated using (i) old or (ii) new data, i.e., look-ahead data sets.
The look-ahead method (Aggarwal, 2013) can give the model additional information (additional
training data) after the first testing phase is completed. This method is useful in situation when
concept drift occurs.

In situations without any concept drift, a static holdout data set is adequate and better suited,
because it does not introduce an additional source of randomness in the learning process.

Interleaved Test-Then-Train
In addition to the holdout method, the interleaved test-then-train method was proposed for
evaluating data stream algorithms (Bifet et al., 2010). Each new data can be used to test the
model before it is used for training. Advantages of this method are: (i) The model is tested on
unknown data, (ii) each datum is used for testing and training, and (iii) the accuracy over time
is smooth, because each individual new data will become less significant to the overall average
(the sample size is increasing).

Interleaved test-then-train methods obscure the differences between training and testing peri-
ods. The true accuracy might be biased, because algorithms will be punished for early mistakes.
This effect cancels out over time.

5.3 Analysis

A graphical plot (accuracy versus number of training samples) is the most common way presenting
results. Very often, the comparison of two algorithms is based on graphical comparisons by visualizing
trends (e.g., accuracy) over time. Bifet et al. (2011) describe the situation as follows:

”Most often this is determined from a single holdout run, and with an independent test set
containing 300 thousand examples or less. It is rare to see a serious attempt at quantifying
the significance of results with confidence intervals or similar checks.”

This situation appears to be similar to the situation for experimental algorithmics a decade ago,
which was described in Sec. 1. To obtain reliable results, statistical measures such as the standard
error of results, are recommended. Useful approaches were described by Demšar (2006). For example,
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McNemar’s test can be used to measure the agreement between competing algorithms on each test
data (Dietterich, 1998). The statistical analysis should be accompanied by a comprehensive reporting
scheme, which includes the relevant details for understanding and possible replication of the findings.
The experimental analysis of data stream classification is subject of current research. Only a few
publications that perform an extensive statistical analyis are available. Bifet et al. (2011) claim that
paper Domingos and Hulten (2000) is the best analysis so far.

Fortunately, the open source framework for data stream mining MOA, which includes a collection
of machine learning algorithms (classification, regression, clustering, outlier detection, concept drift
detection and recommender systems) and tools for evaluation, is available and provides tools for an
extensive experimental analysis (Holmes et al., 2010).

6 Environments and Data Sources

6.1 Real-world Data Stream Computing Environments

Computing environments can be classified as follows: (i) Sensor networks. In this setting, only a few
hundred kilobytes of memory are available. (ii) Handheld computer, which provide several megabytes
of memory, (iii) Single-board computers, i.e., computers that are built on a single circuit board. The
components such as microprocessor(s), memory, or input/output are located on this board. Single-
board computers can be used as embedded computer controllers, and (iv) servers, which provide
several gigabytes of RAM, e.g., 64 GB.

6.2 Simulators for Data Stream Analysis

Random data stream simulators are a valuable tool for the experimental analysis of data stream
algorithms. For our experiments in Sec. 7 a static data set, which contained pre-assigned class
labels, was used to simulate a real-world data stream environment. Consider a data set of size n,
which is partitioned in training and test data sets with ntrain: number of examples used for training
before an evaluation is performed on the test set. 2. ntest: size of the test set. Using naive Bayes or
Hoeffding trees, a model is built using the first ntrain instances for training. Prediction is performed
on each of the remaining ntest instances. The test data is used to incrementally update the model
built. This on-line stream setting allows the estimation of the model accuracy on an ongoing basis,
because the results (class labels) are known in advance.

The open source framework for data stream mining MOA (Holmes et al., 2010) is able to generate
a few thousand examples up to several hundred thousand examples per second. Additional noise can
slow down the speed, because it requires the generation of random numbers.

7 A Simple Experiment in the EASD Framework

7.1 The Scientific Question

Before experimental runs are performed, the scientific question, which motivates the experiments,
should be clearly stated. To exemplify the EASD approach, the following task is considered:

Machine learning methods, which combine multiple models to improve prediction accuracy, are
called ensemble data mining algorithms. Diversity of the different models is necessary to reach this
performance gain compared to individual models. If ensemble members always agree, the ensemble
does not provide an extra benefit. Errors of one ensemble member can be corrected by other members
of the ensemble.

Each individual ML algorithm requires the specification of some parameters, e.g., the splitting
criterion for regression trees or the order of linear models. Building ensembles requires the speci-
fication of additional algorithm parameters, e.g., the number of ensemble members. The scientific
question can be formulated as follows:

Scientific question:
How does the number of models to boost affect the performance of on-line learning algorithms?

To set up experiments, a specific algorithm (or a set of algorithms) has to be selected. Oza et
al. presented a simple on-line bagging and boosting algorithm, OzaBoost (Oza and Russell, 2001b,a;
Oza). OzaBoost combines multiple learned base models with the aim of improving generalization
performance. OzaBoost implements an on-line version of these ensemble learners, which have been
used primarily in batch mode. The effect of the number of models to boost on the algorithm
performance is an important research question, which will be analyzed in the following experiments.
Therefore, the experimental setup as well as the implementation details have to be specified further.
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data(iris)

iris ← factorise(iris)

traintest ← list()

traintest$trainidx ← sample(nrow(iris), size = nrow(iris) / 5)

traintest$trainingset ← iris[traintest$trainidx ,]

traintest$testset ← iris[-traintest$trainidx ,]

irisdatastream ← datastream_dataframe(data = traintest$trainingset)

Figure 2: Implementation of the iris data stream. The data stream is partitioned in test and training
data sets.

7.2 Implementation Details

7.2.1 MOA: Massive On-line Analysis

Our observations are based on the Massive On-line Analysis (MOA) framework for data stream
mining. The MOA framework provides programs for evaluation of ML algorithms (Holmes et al.,
2010; Bifet et al., 2011). We will consider a typical classification setting, which can transferred into
a regression setting without any fundamental changes.

Loosely speaking, classification can be understood as the process of generating a model that
can predict the class of unlabeled data. The model is trained on data with known classes. In the
MOA classification setting, the following assumptions are made by Bifet et al. (2011): (i) Small and
fixed number of variables, (ii) large number of examples, (iii) limited number of possible class labels,
typically less than ten, (iv) the size of the training data will not fit into working memory, (v) the
available time for training is restricted, (vi) the available time for classification is restricted, and (vii)
drift can occur.

We used OzaBoost, the incremental on-line boosting of Oza and Russell (2001a), which was
implemented in Version 12.03 of the MOA software environment (Holmes et al., 2010). OzaBoost
uses the following parameters:

-l The classifier to train

-s The number of models to boost

-p Boost with weights only; no poisson.

Experiments were performed in the statistical programming environment R (R Core Team, 2015).
The sequential parameter optimization toolbox (SPOT) was used for the experimental setup (Bartz-
Beielstein et al., 2010b). SPOT is implemented as an R package (Bartz-Beielstein and Zaef-
ferer, 2011). An additional R package, RMOA, was written to make the classification algo-
rithms of MOA easily available to R users. The RMOA package is available on github (https:
//github.com/jwijffels/RMOA).

7.3 Empirical Analysis

The number of models to boost will be referred to as s in the following. In addition to s, the classifier
to train will be modified as well. It will be referred to as l. Therefore, two algorithm parameters will
be analyzed. The accuracy as defined in Sec. 5.1 was used as a performance indicator. Using this
setting, the scientific question can be concretized as the following research question:

Research question:
How does the number of models to boost, s, affect the performance of the OzaBoost algorithm?

7.3.1 Optimization Problem

After the algorithm was specified, a test function, e.g., an optimization problem, or a classification
task, has to be defined. MOA provides tools to generate data streams. To keep the setup simple, we
used the iris data set (Fisher, 1936), which is a available as an R dataset. It is described by R Core
Team (2015) as follows:

”This famous (Fisher’s or Anderson’s) iris data set gives the measurements in centimeters
of the variables sepal length and width and petal length and width, respectively, for 50
flowers from each of 3 species of iris. The species are Iris setosa, versicolor, and virginica.
iris is a data frame with 150 cases (rows) and 5 variables (columns) named Sepal.Length,
Sepal.Width, Petal.Length, Petal.Width, and Species.”

The procedure from Fig. 2 was used to setup the data stream in the (R)MOA environment.
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set.seed (123)

ctrl ← MOAoptions(model = "NaiveBayes")

nbModel ← NaiveBayes(control=ctrl)

nbModelTrain ← trainMOA(model = nbModel

,Species ~ Sepal.Length +

Sepal.Width + Petal.Length + Petal.Width

,data = irisdatastream)

nbScores ← predict(nbModelTrain ,

newdata=traintest$testset[

, c("Sepal.Length","Sepal.Width"

,"Petal.Length","Petal.Width")]

,type="response")

Figure 3: Implementation of the naive Bayes classifier. To guarantee reproducibility, the seed is set.
Then the naive Bayes model is initialized and trained. Finally, the model is scored on the test data set.

Table 2: Confusion matrix for the naive Bayes classifier on the iris data stream data.
setosa versicolor virginica

setosa 43 0 0
versicolor 0 29 2
virginica 0 9 37

7.3.2 Pre-experimental Planning

Before experimental runs are started, it is important to calibrate the problem difficulty to avoid floor-
and ceiling effects. In the batch setting, Bartz-Beielstein (2006) proposed the following procedures
(tmax denotes the available time).

• Run length distributions: How many runs were completed successfully after tmax iterations?

• Varying the starting points: How many runs were completed successfully after tmax iterations
from different starting points?

• Varying the problem dimension: How many runs were completed successfully after tmax itera-
tions for different problem dimensions?

For the stream setting, we will perform a comparison with a base line algorithm. If the base line algo-
rithm is able to find the optimal solution with a limited computational budget, then the experimental
setup is not adequate (too easy). If the base line algorithm is not able to find any improvement, this
may indicate that the problem is too hard.

In this case, the naive Bayes classifier, which is based on the assumption that all inputs are
independent, is used. The naive Bayes classifier is well-known for its simplicity and relatively low
computational costs. The only parameter, which can be used is the random seed. The implementation
in R for the iris data stream classification task is shown in Fig. 3. Results from the naive Bayes
classifier are shown in Table 2. Based on the data from Table 2, we can determine an accuracy of
91 percent. Because no floor- or ceiling effects were observed, we continue our experimentation with
the OzaBoost algorithm.

7.3.3 Task and Experimental Setup

Two parameters of the OzaBoost algorithm were analyzed: (i) the base learner, l, and (ii) the
ensemble size, s. Hoeffding trees were used as base learners in our experiments.

A Hoeffding tree is an incremental, anytime decision tree induction algorithm. It requires a
stationary distribution generating the data. Hoeffding trees are build on the idea that an optimal
splitting can be determined in many situations with a small sample size. This observation is the-
oretically supported by the Hoeffding bound. It quantifies the number of observations, which are
required to estimate a statistic within a prescribed precision (Pfahringer et al., 2007). In addition
to the standard Hoeffding tree (Domingos and Hulten, 2000), a random Hoeffding tree was used in
out experiments as a base learner. To be more specific, the categorical variable l was selected from
the set {HoeffdingTree, RandomHoeffdingTree}, see Bifet et al. (2012) for details.

Values between one and one hundred were used for the ensemble size s. The implementation of
the OzaBoost algorithm in R is shown in Fig. 4.
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ozaModel← OzaBoost(baseLearner = l , ensembleSize = s)

ozaModelTrain ← trainMOA(model = ozaModel

,formula = Species ~ Sepal.Length +

Sepal.Width + Petal.Length

,data = irisdatastream)

ozaScores ← predict(ozaModelTrain

,newdata = traintest$testset[, c("Sepal.Length"

,"Sepal.Width"

,"Petal.Length"

,"Petal.Width")]

,type = "response")

Figure 4: Implementation of the OzaBoost model.

0.0

2.5

5.0

7.5

10.0

0.4 0.6 0.8
y

de
ns

ity

learner

0

1

●

●
●

●

●

●

0.4

0.6

0.8

0 1
learner

y

Figure 5: Comparison of the two learners. 0 = RandomHoeffdingTree, 1 = HoeffdingTree. Left:
Density plots (accuracy, y ). The dotted lines represent the mean values of the corresponding learners.
Right: Boxplots (accuracy). Same data as in the panel on the left were used in the boxplots. The
comparison of these two plots nicely illustrates strength and weakness of the plotting methods.

7.3.4 Results and Visualizations

A comparison of the mean values from the two learners shows a significant difference: the first
learner, i.e., RandomHoeffdingTree, obtained a mean accuracy of 0.66 (standard deviation (s.d.)
= 0.06), whereas the mean accuracy of the second learner, i.e., HoeffdingTree, is 0.81 (s.d. =
0.18). The distributions of the accuracies are plotted in Fig. 5 and provide a detailed presentation
of the results. Although the mean values of the two learners are different, the standard deviation
of the HoeffdingTree learner approximately three times higher than the standard deviation of the
RandomHoeffdingTree. This is reflected in the plots: the HoeffdingTree algorithm is not able to
find an acceptable classification in some experimental runs. This is in contrast to the results from
the RandomHoeffdingTree learner: they are nearly normally distributed. Therefore, an additional
analysis of the relationship between ensemble size and accuracy for the HoeffdingTree learner is of
interest.

We plot the results from the HoeffdingTree learner and add a smooth curve computed by loess

(LOcal regrESSion) to a scatter plot (Chambers and Hastie, 1992). loess fitting is done locally, i.e.,
the fit at a point x is based on points from a neighborhood of x, weighted by their distance from x.
The result is shown in Fig. 6. This plot indicates that outliers occur if the sample size is small, i.e.,
s < 60.
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Figure 6: Left: Results, i.e., accuracy (y), obtained with the HoeffdingTree learner (l = 1) plotted
against ensemble size (s). Right: A typical result from the parameter tuning procedure. Accuracy (y)
is plotted against the number of algorithm runs (Index). The negative accuracy is shown, because the
tuner requires minimization problems.

7.3.5 Observations

The results reveal that the HoeffdingTree learner performs better (on average) as the
RandomHoeffdingTree learner, but appears to be more sensitive to the settings of the ensemble
size.

7.3.6 Discussion

The selection of a suitable base learner is important. Results indicate that too small ensemble sizes
worsen the algorithm’s performance. This statement has to be investigated further, e.g., by find-
ing improved parameter settings for the OzaBoost learner. The sequential parameter optimization
framework can be used for tuning the learner. A typical result from this tuning procedure is shown
in the right panel of Fig. 6. In this plot, the accuracy, which was obtained by OzaBoost, is plotted
against the number of iterations of the SPO tuner.

8 Summary and Outlook

An experimental methodology for the analysis of on-line data was presented. Differences between
the traditional batch setting and the on-line setting were emphasized.

Although useful, the actual practice of comparing run-time plots of on-line algorithms, e.g.,
accuracy versus time, should be complemented by more advanced tools from exploratory data analysis
(Tukey, 1977) and statistical tools, which were developed for the analysis of traditional algorithms.
It was demonstrated, that statistical methods from experimental algorithmics can be successfully
applied in the on-line setting.

A combination of MOA, RMOA and the SPO toolbox was used to demonstrate the applicability
and usefulness of standard tools from experimental algorithmics. The design and analysis of the
algorithm were performed in the EASD framework.

The development of algorithms for streaming data is a very active field. In the last years, several
new concepts were proposed. For example, the instance-based learning (IBL) paradigm, which
has only received very little attention so far. Instance based learning algorithms store the data
itself. They can be considered as lazy learning methods, the data processing is performed when
the prediction is actually requested. Given the core assumptions of data stream processing (S-1 to
S-7) introduced in Sec. 1, an interesting research question can be formulated as follows: Is lazy,
instance-based learning preferable to model-based learning? Shaker and Hüllermeier (2012) present
a framework for instance-based classification and regression on data streams, which might be well
suited to generate answers to this question.

Last but not least, a well-defined report structure could be beneficial: It provides standard
guidelines for readers, what to expect, and where. Experimenters are regularly reminded to describe
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the important details needed to understand and possibly replicate their experiments. They are
also urged to separate the outcome of fairly objective observing from subjective reasoning. Bartz-
Beielstein and Preuss (2010) proposed organizing the presentation of experiments into seven parts,
as follows:

ER-1: Research Question
Briefly names the matter dealt with, the (possibly very general) objective, preferably in one
sentence. This is used as the report’s “headline” and related to the primary model.

ER-2: Pre-experimental planning
Summarizes the first—possibly explorative—program runs, leading to task and setup (ER-3
and ER-4). Decisions on employed benchmark problems or performance measures should be
taken according to the data collected in preliminary runs. The report on pre-experimental
planning should also include negative results, e.g., modifications to an algorithm that did not
work or a test problem that turned out to be too hard, if they provide new insight.

ER-3: Task
Concretizes the question in focus and states scientific claims and derived statistical hypotheses
to test. Note that one scientific claim may require several, sometimes hundreds, of statistical
hypotheses. In case of a purely explorative study, as with the first test of a new algorithm,
statistical tests may not be applicable. Still, the task should be formulated as precisely as
possible. This step is related to the experimental model.

ER-4: Setup
Specifies problem design and algorithm design, including the investigated algorithm, the con-
trollable and the fixed parameters, and the chosen performance measuring. The information
provided in this part should be sufficient to replicate an experiment.

ER-5: Results/Visualization
Gives raw or produced (filtered) data on the experimental outcome and additionally provides
basic visualizations where meaningful. This is related to the data model.

ER-6: Observations
Describes exceptions from the expected, or unusual patterns noticed, with- out subjective
assessment or explanation. As an example, it may be worth- while to look at parameter
interactions. Additional visualizations may help to clarify what happens.

ER-7: Discussion
Decides about the hypotheses specified in ER-3, and provides necessarily subjective interpre-
tations of the recorded observations. Also places the results in a wider context. The leading
question here is: What did we learn?

This report methodology, which is also described and exemplified in Preuss (2015), is an integral
part of the EASD framework.
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