
	
	

	
	

CIplus 
Band 5/2016 
 
 

Stacked Generalization of Surrogate Models - 
A Practical Approach 
 
Thomas Bartz-Beielstein 

	

	

	

	

	

	

	

	 	



Stacked Generalization of Surrogate Models
A Practical Approach

Thomas Bartz-Beielstein
TH Köln

Computer Science and Engineering Science
thomas.bartz-beielstein@th-koeln.de

http://www.spotseven.de

May 29, 2016

Abstract

This report presents a practical approach to stacked generalization in surrogate model
based optimization. It exemplifies the integration of stacking methods into the surrogate model
building process. First, a brief overview of the current state in surrogate model based opti-
mization is presented. Stacked generalization is introduced as a promising ensemble surrogate
modeling approach. Then two examples (the first is based on a real world application and
the second on a set of artificial test functions) are presented. These examples clearly illustrate
two properties of stacked generalization: (i) combining information from two poor performing
models can result in a good performing model and (ii) even if the ensemble contains a good
performing model, combining its information with information from poor performing models
results in a relatively small performance decrease only.

1 Introduction

The selection of an adequate meta model is crucial in model based optimization (MBO). Model
based optimization plays a prominent role in todays modeling, simulation, and optimization
processes. It is one of the most efficient technique for expensive and time demanding real-
world optimization problems. Especially in the engineering domain, MBO is an important
technique. This popularity is caused by recent advances in computer science, statistics, and
engineering, in combination with progress in high-performance computing. A combination
of theses advanced tools enable the treatment of problems considered unsolvable only a few
decades ago. We will consider MBO in the context of global optimization.

Global optimization (GO) can be categorized on different criteria, e.g., the properties of
the problems (continuous versus combinatorial, linear versus non-linear, convex versus non-
convex, etc.). In many real world situations, GO problems are difficult, because nearly no
structural information (e.g., number of local extrema) is available. These kind of GO problems
belong to the class of black-box functions, i.e., the analytic form is unknown. Note, the class
of black-box function contains also functions that are easy to solve, e.g., convex functions. The
optimization problem is given by

minimize: f(~x) subject to ~x

l

 ~x  ~x

u

,

where f : Rn ! R is referred to as the objective function and ~x

l

and ~x

u

denote the lower
and upper bounds of the search space (region of interest), respectively. This setting arises in

1

http://www.spotseven.de


many real-world systems, i.e., when the explicit form of the objective function f is not readily
available or e.g., user has no access to the source code of a simulator.

The term GO will be used for algorithms that are trying to find and explore global optimal
solutions with complex, multimodal objective functions [36]. We will use an algorithmic view,
i.e., we will consider the properties of algorithms.

First, we will describe stochastic (random) search algorithms and show how surrogate
model based optimization can be classified in the context of GO. Therefore we introduce the
following taxonomy.

1. Deterministic
2. Random Search

(a) Instance based.
(b) Model based optimization (MBO).

i. Distribution based.
ii. Surrogate Model Based Optimization (SBO).

A. Single surrogate based.
B. Multi-fidelity based.
C. Evolutionary surrogate based.
D. Ensemble surrogate based.

Then, we will try to answer the question of selecting an adequate surrogate model in the con-
text of SBO.

Tis report is structured as follows: First, SBO is presented in the context of stochastic search
algorithms (Section 2). Section 3 presents some general considerations about using multiple
surrogate models. The sequential parameter optimization (SPO), which uses SBO, is introduced in
Section 4. Stacked generalization is one important modeling technique in SPO. An industrial
application is used in Section 5 for introducing the key features of the stacked generalization
approach. To gain further insight, a second study, which uses artificial test functions, is pre-
sented in Section 6. This report concludes with a short summary and an outlook in Section 7.

2 Stochastic Search Algorithms

To motivate the importance of model selection in MBO, we will describe the related GO algo-
rithms first. Stochastic search algorithms perform an iterative search. They use a stochastic
procedure to generate the next iterate. The next iterate can be a candidate solution to the GO or
a probabilistic model, where solutions can be drawn from. Stochastic search algorithms do not
depend on any structural information of the objective function such as gradient information
or convexity. Hence, they are robust and easy to implement. Stochastic search algorithms can
further be categorized as instance-based or model-based algorithms [51]

Instance-based algorithms use a single solution, ~x, or population, P (t), of candidate solu-
tions. The construction of new candidates depends explicitly on previously generated solu-
tions. Prominent examples are simulated annealing or evolutionary algorithms.

Model-based optimization algorithms generate a population of new candidate solutions
P

0(t) by sampling from a model. In statistics, the terms model and distribution are used synony-
mously. Therefore, we will use the term surrogate model, when we are referring to an explicit
model. The model (or distribution) reflects structural properties of the underlying true func-
tion, say f . Adapting the model (or the distribution), the search is directed into regions with
improved solutions. One of the key ideas in MBO can be formulated as follows: replace ex-
pensive, high fidelity, fine grained function evaluations, f(~x), with evaluations, f̂(~x), of an
adequate surrogate model, say M . Surrogate models also known as the cheap model, the re-
sponse surface, the meta model, the approximation, or the coarse grained model.
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2.1 Distribution-based Approaches

Distribution-based optimization algorithms maintain a distribution as a metamodel. A se-
quence of iterates, i.e., probability distributions, {p(t)} is generated. The iterates should have
the property, that

p(t) ! p

⇤ as t ! 1,

where p

⇤ is the limiting distribution, which assigns most of its probability mass to the set of
optimal solutions. Note, distribution-based optimization algorithms propagate a probability
distribution from one iteration to the next, whereas instance-based algorithms propagate can-
didate solutions ~x.

Estimation of distribution algorithms (EDA) are very popular in the field of evolutionary algo-
rithms (EA). Variation operators such as mutation and recombination are replaced by a distri-
bution based procedure. A probability distribution, which is estimated from promising can-
didate solutions from the current population, is used to generate new population. [27] review
different ways for using probabilistic models. [18] discuss advantages and outline many of the
different types of EDAs. [19] present recent approaches and a unified view.

Although distribution-based approaches play an important role in GO, they will not be
discussed further in this report. We will concentrate on surrogate model based approaches,
which have their origin in statistical design and analysis of experiments, especially in response
surface methodology [12] [31].

2.2 Surrogate Model-based Approaches

In general, the term surrogate is used, when the outcome of a process cannot be directly mea-
sured. A surrogate tries to imitate the behavior of the real model as closely as possible while
being computationally cheaper to evaluate. Simple surrogate models can be constructed us-
ing a data-driven approach. They can be refined by integrating additional points or domain
knowledge, e.g., constraints.

A wide range of surrogates were developed in the last decades. This results in complex
design decisions. Following the discussion in [47], surrogate design decisions are necessary for
the selection of (i) metamodels, (ii) designs, and (iii) model fitting methods.

Metamodels Typical metamodels are (a) classical regression models such as polynomial re-
gression or response surface methodology [12] [31] (b) support vector machines} (SVM)
[46] (c) neural networks [52] (d) radial basis functions [35], or (e) Gaussian process (GP)
models, also known as design and analysis of computer experiments or Kriging [42] [7],
[1], [26], [41]. [10] presents a comprehensive introduction to SBO.

Designs A broad variety of designs are available, e.g., classical experimental designs such as
factorial, fractional factorial, central composite, or A-, D-optimal (alphabetically) designs.
Alternatively, space filling designs, such as simple grids, Latin hypercube designs, or-
thogonal or uniform designs can be used. In addition, hybrid designs, random or human
selection, and sequential design methods are available.

Model Fit Model fitting can be based on several criteria, e.g., weighted least squares regres-
sion or maximum likelihood estimation. Special fitting techniques exist for specific mod-
eling approacches, e.g., backpropagation for neural networks.

2.3 SBO Applications

Simulation-based design of complex engineering problems, e.g., computational fluid dynamics
(CFD) and finite element modeling (FEM) methods are the most popular application areas for
SBO. To generate exact solutions, the corresponding solvers require a large number of expen-
sive computer simulations. Generally, there are two SBO variants: (i) metamodel based meth-
ods, which use one or several different metamodels and (ii) multi-fidelity approximation meth-
ods, which uses several instances with different parameterizations of the same metamodel.
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Helicopter rotor design optimization [4], aerodynamic shape design [13], multi-objective
optimal design of a liquid rocket injector [38], and aerospace design [11] are only a few exam-
ples of SBO in industry.

Multi-fidelity approximation is used in [20], who use several simulation models with dif-
ferent grid sizes in FEM and in [44], who optimize a sheet metal forming process.

2.4 Surrogate-assisted Evolutionary Algorithms

Surrogate-assisted EA use a cheap surrogate model to replace evaluations of expensive ob-
jective function. Several variants of surrogate-assisted EAs were developed in the last years,
e.g., a combination of a genetic algorithm and neural networks for aerodynamic design opti-
mization [16], an approximate model of the fitness landscape using Kriging interpolation to
accelerate the convergence of EAs [39], an Evolution strategy (ES) with neural network based
fitness evaluations [24], or a surrogate-assisted EA framework with online learning [50]. A
survey of surrogate-assisted EA approaches is presented in [23]. SBO approaches for evolution
strategies are described in [9].

3 Multiple Models and Model Selection

Instead of using one surrogate model only, several models M

i

, i = 1, 2, . . . , p, generated and
evaluated in parallel can be used. Each model M

i

: X ! y uses the same candidate solutions,
X , from the population P and the same results, y, from expensive function evaluations.

Multiple models can also be used to partition the search space. Here we can mention tree-
based Gaussian processes, which use regression trees to partition the search space and fit local
GP surrogates in each region [15]. A tree-based partitioning of an aerodynamic design space,
which uses independent Kriging surfaces in each partition, is described in [33]. The combi-
nation of an evolutionary model selection algorithm with expected improvement (EI) criterion,
which selects the best performing surrogate model type at each iteration of the EI algorithm
was proposed by [8].

Ensembles of surrogate models gained popularity. An adaptive weighted average model
of the individual surrogates was presented in [49]. An approach which uses the best surro-
gate model or a weighted average surrogate model instead was introduced in [14]. In these
approaches, the models for the ensemble are chosen based on their performance. Usually, the
weights are adaptive and inversely proportional to the local modeling errors.

The simplest model selection process is a refinement method: the same (initial) model will
be refined during the optimization. This method requires a selection criteria for sampling
new points, so-called infill points. The balance between exploration, i.e., improving the model
quality (related to the model, global), and exploitation, i.e., improving the optimization and
determining the optimum (related to the objective function, local) plays a central role in this
strategy. Expected improvement (EI) is a popular adaptive sampling method [30] [25].

The EI approach handles the initialization and refinement of a surrogate model, but not
the selection of the model itself. For example, the popular efficient global optimization (EGO)
algorithm uses a Kriging model, because Kriging inherently determines the prediction variance
(necessary for the EI criterion). But there is no proof that Kriging is the best choice. Alternative
surrogate models, e.g., neural networks, regression trees, support vector machines, or lasso
and ridge regression may be better suited. However: An a priory selection of the best suited
surrogate model is conceptually impossible in the framework treated in this report, because of
the black-box setting.

Regarding the model choice, the user can decide whether to use (i) one single model, i.e.,
one unique global model or (ii) multiple models, i.e., an ensemble of different, possibly local,
models.

Now, we do not consider the selection of a new sample point (as done in EI). Instead, we
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consider criteria for the selection of one (or several) surrogate models. Usually, surrogate mod-
els chosen according to their estimated true error [22], [43].

Commonly used performance metrics are the mean absolute error (MAE) or the root mean
square error (RMSE). Generally, attaining a surrogate model that has minimal error is the de-
sired feature. Methods from statistics, statistical learning [17] and machine learning [32] are
popular, e.g., simple holdout methods, cross-validation, or the bootstrap.

An alternate approach is presented in [28]. Here, the model error is not the only criterion
for selecting surrogate models. The authors present an evolvability learning of surrogates ap-
proach, which uses fitness improvement for determining the quality of surrogate models.

4 Sequential Parameter Optimization

The sequential parameter optimization (SPO) uses a centralized, global information based ap-
proach for handling surrogate model information. It implements a stacked generalization ap-
proach developed by [48]. Early versions of the SPO [3], [2] combined methods from design
of experiments (DOE) [37], response surface methodology (RSM) [5] [31], design and analysis of com-
puter experiments (DACE) [29] [41], and regression trees [6]. The statistical analysis and an
understanding of optimization algorithms was the main goal of the SPO. In addition, it was
recognized that SPO can be used as an optimizer.

The SPO provides a sequential, model based approach to optimization and is nowadays an
established parameter tuner and an optimization algorithm. It was extended in several ways,
e.g., [21] benchmark an SPO derivative, the so-called sequential model-based algorithm configura-
tion (SMAC) procedure, on the BBOB set of blackbox functions. Given a small budget of 10 ⇥ d

evaluations of d-dimensional functions, SMAC in most cases outperforms the state-of- the-art
blackbox optimizer CMA-ES.

The most recent version, SPO2, is currently under development. It integrates state-of-the-
art ensemble learners. The SPO2 ensemble engine, which is described in this report, uses a
portfolio of surrogate models, such as regression trees and random forest, least angle regres-
sion (lars), and Kriging as level-0 models. It uses cross validation to generate a weighted com-
bination of several surrogate models to build a generalized level-1 model.

Stacked generalization is implemented to combine several level-0 models of different types
with one level-1 model into an ensemble [48]. The level-1 training algorithm is a simple linear
model.

The SPO2 ensemble engine can lead to significant performance improvements. [40] present
a comparison of different data driven modeling methods, e.g., a Bayesian model, several linear
regression models, a Kriging model, and genetic programming. These methods were used
to model the behavior of a robust gas sensor. The underlying data has a limited amount of
samples and a high variance.

5 Stacked Generalization in Practice. Part I: Industrial Appli-
cation

This section illustrates in detail how the stacked generalization works. It uses the program-
ming language Python, see https://www.python.org. Section 5.1 describes the technical
requirements, e.g., the Python libraries, which are needed to perform the experiments. Sec-
tion 5.2 describes he data. The k-fold cross validation is prepared in Section 5.3. How models
are added to the SPOT2 ensemble engine is explained in Section 5.4. Cross-validation for the
stacking procedure is described in Section 5.5. The level-1 model construction and how it can
be used for predictions is shown in Section 5.6. A schematic illustration of the stacked general-
ization is shown in Fig. 1.
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ŷ

A

T r
1

ŷ
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Figure 1: Illustration of the data flow in stacked generalization. The data is split into a test and
training set. The training data is used for CV, i.e., in each fold, a new training and validation data
set is generated. Here, we consider two algorithms, say A1 and A2, which are used to generate
two level-0 models, A

V
1 and A

V
2 . These models are used for predictions on the validation data set,

which result in predictions ŷAV
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and ŷAV
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. A level-1 algorithm, A3 is fitted to the data sets ŷAV
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ŷAV
2

, and the yi’s from the validation data set. The resulting model, A

(ŷ,y)
3 , is used for the final

predictions.
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5.1 Technical Requirements

This section illustrates and demonstrates the key ingredients of the SPO2 ensemble engine. It
implements ideas from [48] and is based on Python code from [34]. First, we have to

1. import libraries and
2. set the SPO2 parameters, i.e., the number of folds for the cross-validations.

import sys

import matplotlib

import matplotlib.pyplot as plt

import numpy as np

import pandas as pd

import statsmodels.formula.api as sm

import math

from IPython.display import set_matplotlib_formats
from __future__ import division
from sklearn.model_selection import KFold
from sklearn.ensemble import RandomForestRegressor
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error
from sklearn.metrics import r2_score
from pandas import read_csv

np.random.seed(0) # seed to shuffle the train set

n_folds = 10

5.2 The Data

The complete data set is described in [40]. It consists of two separate data sets for two different
gas sensors: one training data set and one test data set. Here, we consider data from the
second sensor. There are seven input values and one output value (y). The goal of this study is
to predict the outcome y using the seven input measurements.

In [10]: dfTrain = read_csv('training.csv')
dfTest = read_csv('testing.csv')
XTrain = dfTrain.ix[:,0:7]
yTrain = dfTrain.ix[:,7:9]
yTrain1 = yTrain.ix[:,1]
X = XTrain.as_matrix()
y = yTrain1.as_matrix()
XTest1 = dfTest.ix[:,0:7]
yTest1 = dfTest.ix[:,7:9]
yTest = yTest1.ix[:,1]
XTest = XTest1.as_matrix()

5.3 CV Splits

The training data are split into folds. KFold() divides all the samples in k = n

folds

groups of
samples (called folds) of equal sizes (if possible). The prediction function is learned using k �1
folds, and the fold left out is used for test.

In [11]: skf = KFold(n_folds);
skf.get_n_splits(X, y);
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5.4 Level-0 Models in the Ensemble

A linear regression model and a random forest regression model are included in this study.
Additional models such as Lasso or Gaussian process models can be included very easily.

In [12]: models = [LinearRegression()
, RandomForestRegressor()
]

5.5 Cross-Validation

Let n denote the size of the training set (number of samples in the training set) and p the
number of models. Summarizing, we will consider the following dimensions:

• n: size of the training set (samples)
• k: number of folds for CV
• p: number of models
• m: size of the test data (samples)

We will use two matrices to store the CV results:

1. Y

CV

is a (n ⇥ p)-matrix. It stores the results from the cross validation for each model. The
training set is partitioned into k folds (n_folds=k).

2. Y

BT

is a (m ⇥ p)-matrix. It stores the aggregated results from the cross validation models
on the test data. For each fold, p separate models are build, which are used for prediction
on the test data. The predicted values from the k folds are averaged for each model, which
results in (m ⇥ p) different values.

In [13]: YCV = np.zeros((X.shape[0], len(models)))
YBT = np.zeros((XTest.shape[0], len(models)))

for j, AV in enumerate(models):
YBT_j = np.zeros((XTest.shape[0], skf.n_folds))
for i, (train, val) in enumerate(list(skf.split(X,y))):

XValTraining = X[train,]
yValTraining = y[train]
XValTest = X[val]
AV.fit(XValTraining, yValTraining)
YCV[val, j] = AV.predict(XValTest)
YBT_j[:, i] = AV.predict(XTest)

YBT[:,j] = YBT_j.mean(1)

5.6 The Level-1 Model

5.6.1 Model Building

The level-1 model is a function of the CV-values of each model to the known, training y-values.
It provides an estimate of the influence of the single models. For example, if a linear level-1
model is used, the coefficient �

i

represents the effect of the i-th model.

5.6.2 Model Prediction

The level-1 model is used for predictions on the Y

BT

data, i.e., on the averaged predictions of
the CV-models. It is constructed using the effects of the predicted values of the single models
(determined by linear regression) on the true values of the training data. If a model predicts a
similar value as the true value during the CV, then it has a strong effect.
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Figure 2: Visualization of the results from the first part of this study, which is based on the sensor
data. Predicted values plotted against measured values. Violet dots represent results from the
SPO2 ensemble approach, which combines information from the linear and the regression models.
Results from the single model based approaches are also shown: green dots represent results from
the linear model, whereas red dots represent results from the random forest.

The final predictions are made using the coefficients (weights) of the single models on the
Y

BT

data. Note that the Y

BT

data are the predicted values from the corresponding models on
the final test data.

In [14]: A3 = LinearRegression()
A3.fit(YCV, y)
yHat = A3.predict(YBT)

5.7 Results

A comparison of the mean squared error from the SPO2 ensemble and the single models reveals
that the SPO2 ensemble outperforms the single models. This result can also be illustrated using
a plot of the predicted versus the measured values: data from the SPO2 ensemble are closer to
the bisecting line.

Numerical values read as follows:

SPO2 (MSE): 0.284948273406
L (MSE): 0.673695001324
R (MSE): 0.367652881967

Since smaller results are better, it can be seen that the ensemble-based approach, which com-
bines information from the two level-0 base models, performs best.

The SPO2 approach also outperforms the remaining modeling approaches in [40], where
two data sets from sensors were fitted. The MSE was chosen as a quality criterion for the
models. Results from the first sensor read as follows: Linear model (0.76), OLS (0.79), Lasso
(0.56), Kriging (0.57), Bayes (0.79), genetic programming (0.58), and SPO2 (0.38). Results from
the second sensor are: Linear model (0.67, the same value as in this report), OLS (0.80), Lasso
(0.49), Kriging (0.49), Bayes (0.79), genetic programming (0.27), and SPO2 (0.28).
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Table 1: Results from the experiments with the artificial test functions. Mean and standard devia-
tion (in brackets) from r = 100 repeats. R

2 values are shown.

Function SPO2 Linear Random Forest Kriging (GP)
f1 0.7821 (0.0331) 0.4025 (0.0713) 0.7856 (0.0319) 0.7655 (0.0356)
f2 0.7951 (0.0360) 0.2145 (0.0766) 0.7949 (0.0360) 0.7951 (0.0360)
f3 0.7940 (0.0278) 0.1168 (0.0569) 0.7924 (0.0274) 0.7939 (0.0278)
f4 0.7414 (0.0578) 0.0065 (0.01490) 0.7530 (0.0513) 0.3172 (0.0794)
f5 0.8363 (0.0238) 0.836 (0.0238) 0.8363 (0.0237) 0.8363 (0.0238)
f6 -0.0203 (0.1031) -0.0003 (0.0151) 0.3586 (0.0623) 0.1004 (0.0536)

6 Stacked Generalization in Practice. Part II: Artificial Test
Functions

6.1 Why are Ensembles Better?

Results demonstrate that the combination of two models (linear regression and random for-
rest), which separately perform poorly, can result in an ensemble model, that performs excel-
lent.

To investigate this behavior, we performed additional experiments using an artificial test
suite.

6.2 Artificial Test Functions

Motivated by [45], we consider the following six test functions. All simulations involve a uni-
variate random variable X drawn from a uniform distribution in [�4, +4].

Let I(·) denote the usual indicator function and ✏ is drawn from an independent standard
normal distribution in all simulations. The outcome follows the function described below:

f1(x) := �2 ⇥ I(x < �3) + 2.55 ⇥ I(x > �2) � 2 ⇥ I(x > 0) + 4 ⇥ I(x > 2) � 1 ⇥ I(x > 3) + ✏

f2(x) := 6 + 0.4x � 0.36x

2 + 0.005x

3 + ✏

f3(x) := 2.83 sin(⇡/2x) + ✏

f4(x) := 4.0 sin(3 ⇥ ⇡x) ⇥ I(x � 0) + ✏

f5(x) := x + ✏

f6(x) := x + ✏, with x realization of X ⇠ N(0, 1)

Plots of the six test functions are shown in Fig. 3.

6.3 Results

A sample of size r = 100 will be drawn for each scenario. The coefficients can be interpreted
as weights in the linear combination of the models. We will consider R

2 (larger values are
better) and standard deviation. Results from the six experiments are summarized in Table 1.
To analyze the behavior in detail, two kind of boxplots are shown for each test function.

1. The first boxplots (on left in each figure) show the coefficients of the level-1 linear model,
i.e., the first entry represents the value of the intercept or �0. Three additional boxplots
are shown to visualize the effect of the single models, i.e., values of the coefficients �1

(linear model), �2 (random forest), and �3 (Gaussian process model, Kriging) are shown.
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Figure 3: Plots of the six test functions. First row, from left to right: Step function f1, polynomial
function f2, sine function f3. Second row, from left to right: Combined function f4, linear function
f5, random function f6. Blue lines illustrate the true function, red dots represent (noisy) samples
presented to the approximation models.

2. The second set of boxplots (on the right in each figure) show the performance of the four
different modeling approaches, i.e., SPO2 (0), linear model (1), random forest (2), and
Gaussian process model (3).

This arrangement of boxplots should reveal correlations between the � values from the level-1
model and the R

2 performance.
While analyzing the results from the step function, f1, the boxplots indicate that random

forest outperforms the other modeling approaches (Fig. 4). Slightly worse results were ob-
tained by the Gaussian process models, whereas the linear model performs worse. The SPO2
ensemble engine was able to identify the good performers. The random forest coefficient, i.e.,
�2 is the largest coefficient in the level-1 model.

While analyzing the results on the polynomial function, f2, the outcome is unambiguous
(Fig. 5). The Gaussian process model exhibits the best performance, and the random forest
performs equally well. The linear model is not able to find a good fit. This situation is reflected
in the values of coefficients of the level-1 model: the �3 values, which are associated with
the Gaussian process model, are high, whereas the values of the remaining � coefficients are
negligible. A similar situation occurs during the results on the sine function, f3 (Fig. 6).

Results from the combined function are more interesting (Fig. 7). Here, the random forest
model results in the best fit (with respect to the R

2 error). The second best model, i.e., the
Gaussian process model, performs better than the linear model. This ranking is mirrored in
the values of the � coefficients.

Since the linear model was always the worst model, it might be of interest to see if this
observation still holds for the approximation of data which have a simple linear relationship.
a linear model. Therefore, test function f5 was added to the test function portfolio from [45].
Every model was able to generate a good approximation as can be seen in Fig. 8. Interestingly,
the SPO2 engine prefers the linear function as can be seen from the values of the �1 coefficient.
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Finally, to present a situation where every approximation must fail, a purely random func-
tion with additional noise was added to our portfolio (Fig. 9). The boxplots shown that no
model was able get a good R

2 value. The ensemble approach fails completely in this setting.

7 Summary and Outlook

This study nicely illustrates some important benefits of the stacked generalization approach:
• Combining model information, even from models with poor approximation capabilities,

might result in an improved approximation.
• Combining model information results only in a small performance decrease, if the port-

folio contains a good performing model
The question, why ensembles perform better, is the subject of on-going research. Results

from this study indicate, that the stacked generalization approach might work. However, this
is not a proof, only an indication that it might be worth going into this direction. An extended
study, which compares more surrogate models and includes more test functions, will be pub-
lished soon.

The good performance of the ensemble approach does not come for free. The additional
evaluations slow down the modeling process. In situations, where no information about the
structure of the fitness landscape is available, the stacked generalization approach might be an
adequate first choice. Models can be added or deleted from the portfolio dynamically during
the search.
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Figure 4: Results from the step function, f1. Left: Boxplots showing the � coefficients of the level-1
model. Right: Boxplots showing the R

2 values.

Figure 5: Results from the polynomial function, f2. Left: Boxplots showing the � coefficients of
the level-1 model. Right: Boxplots showing the R

2 values.
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Figure 6: Results from the sine function, f3. Left: Boxplots showing the � coefficients of the level-1
model. Right: Boxplots showing the R

2 values.

Figure 7: Results from the combined function, f4. Left: Boxplots showing the � coefficients of the
level-1 model. Right: Boxplots showing the R

2 values.
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Figure 8: Results from the linear function, f5. Left: Boxplots showing the � coefficients of the
level-1 model. Right: Boxplots showing the R

2 values.

Figure 9: Results from the noise function, f6. Left: Boxplots showing the � coefficients of the
level-1 model. Right: Boxplots showing the R

2 values.
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