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Abstract

The use of surrogate models is a standard method to deal with complex, real-

world optimization problems. The first surrogate models were applied to con-

tinuous optimization problems. In recent years, surrogate models gained impor-

tance for discrete optimization problems. This article, which consists of three

parts, takes care of this development. The first part presents a survey of model-

based methods, focusing on continuous optimization. It introduces a taxonomy,

which is useful as a guideline for selecting adequate model-based optimization

tools. The second part provides details for the case of discrete optimization

problems. Here, six strategies for dealing with discrete data structures are in-

troduced. A new approach for combining surrogate information via stacking

is proposed in the third part. The implementation of this approach will be

available in the open source R package SPOT2. The article concludes with a

discussion of recent developments and challenges in both application domains.
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1. Introduction

Model-based optimization (MBO) plays a prominent role in today’s modeling,

simulation, and optimization processes. It can be considered as the most e�cient

technique for expensive and time-demanding real-world optimization problems.

Evaluating a cheaper surrogate model instead of the expensive objective func-5

tion may significantly reduce time, space, and computing costs. Especially in

the engineering domain, MBO is an important practice. Recent advances in

computer science, statistics, and engineering in combination with progress in

high-performance computing provide tools for handling problems, which were

considered unsolvable only a few decades ago.10

The first part of this article presents a survey of MBO for continuous and

discrete global optimization problems. Our goal is to show connections and

conceptual di↵erences between these two domains and to discuss properties of

state-of-the art MBO algorithms. Despite its growing relevance, contributions

to the discrete domain have been largely disregarded and were listed as open15

challenges. For example, Simpson et al. [2] present an interesting history of

development in the field. Another survey of metamodeling techniques, which

focuses on the practitioners perspective, is given by Wang and Shan [3]. Both

of these surveys mention problems from the discrete domain, but do not discuss

them in depth.20

The term global optimization (GO) will be used for algorithms and problems

where the goal is to find and explore global optimal solutions with complex,

multimodal objective functions [4]. Furthermore, we will focus on GO prob-

lems which belong to the class of di�cult (expensive) black-box functions, i.e.,

functions for which the analytic form is unknown. Thus, nearly no structural25

information (e.g., number of local extrema, derivate information) is available.

This setting arises in many real-world systems when the explicit form of the

objective function f is not readily available, e.g., if the user has no access to the

source code of a simulator. Surrogates are a popular choice, because the time

required for building the surrogate is negligible compared to the evaluation of30
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the real-world function f .

The remainder of this article is structured as follows. Section 2 introduces

a taxonomy of search algorithms and presents basic definitions. After introduc-

ing instance-based stochastic search algorithms, Section 3 describes modeling

approaches for stochastic algorithms. We di↵erentiate between models that use35

a distribution and models that use an explicit surrogate model. Section 4 intro-

duces model-based optimization, which is the first choice for many optimization

problems in industry. Problems and algorithms from the discrete, combinatorial

domain are then introduced in Section 5. Using two MBO algorithms, namely

EvoLS and SPO, recent trends and new developments in MBO are described in40

Section 6. Finally, a summary and an outlook are given in Section 7, including

important challenges in continuous and discrete MBO.

2. Taxonomy and Definitions

We consider the continuous optimization problem given by

Minimize: f(~x) subject to ~a  ~x  ~

b,

where f : Rn ! R is referred to as the objective function and ~a and ~

b denote

the lower and upper bounds of the search space, respectively. The objective45

function f is assumed to be an expensive-to-evaluate black-box.

In the discrete case, ~x 2 Rn is not true anymore. Rather, a candidate solu-

tion is some discrete data structure, or object. Typical discrete data structures

include, e.g., ordinal integers, categorical variables, binary variables, permuta-

tions, strings, trees or graphs in general. In most of these discrete cases, bounds50

~a and ~

b are also not required anymore.

From the algorithmic perspective, this survey focuses on search heuristics,

which are mostly implemented using stochastic or random procedures. Deter-

ministic, exact GO algorithms, i.e., algorithms providing theoretical guarantees

that the attained solution is the global one within some pre-specified tolerance,55

are not further discussed [5]. The terms “random” and “stochastic” will be used

synonymously in the remainder of this article.
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Global optimization

[I]
 Deterministic

[II]
 Stochastic

[II.1]
  Instance

[II.2]
 Model 

[II.2.1]
 Distribution

[II.2.2]
 Surrogate model 

[II.2.2.2]
Multi-fidelity 

[II.2.2.3]
Ensemble surrogate 

[II.2.2.1]
 Single surrogate 

Figure 1: An essential taxonomy of model-based approaches in GO. This taxonomy is appli-

cable for continuous and discrete GO problems.

Stochastic search algorithms can further be categorized as instance-based

or model-based algorithms [6]. Furthermore, there are basically two model-

based approaches: (a) distribution-based models and (b) surrogate models. We60

consider three important representatives of surrogate model based optimization:

(i) Single surrogate based optimization uses one model for accelerating the search

process, (ii) multi-fidelity metamodeling uses several models of the same real

system and plays an important role in computational fluid dynamics (CFD)

and finite element modeling (FEM) based simulation and optimization, and (iii)65

ensemble surrogate based optimization combines two or more di↵erent surrogate

models. This categorization (or taxonomy) of GO algorithms is summarized in

Figure 1.

Typical situations, which may occur in MBO, are illustrated in Figure 2.
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Figure 2: Surrogate model based optimization. Dotted lines denote the data flow, which is used

for the model building. Solid lines represent the optimization loop. Situation A illustrates an

optimization loop without any model. In situation B, a CFD model is used to accelerate the

evaluation of the complex real-world function. Kriging is used as a surrogate to accelerate this

evaluation in situation C. In addition to a fine grained CFD model, a coarse grained model is

used in the multi-fidelity approach (situation D). Models can be stacked as shown in situation

E, where a Kriging model (surrogate) is used to accelerate the CFD simulations.

Kriging is a frequently employed type of surrogate model [7]. Figure 2 shows70

(in situation C) that the Kriging model can be constructed as a surrogate model

of a complex real-world process. Furthermore, a Kriging model can be used as a

surrogate model of the relatively complex CFD simulation model (as illustrated

in situation E). Some authors define a model as a direct abstraction of real-

world processes and a surrogate as a second abstraction, which highlights the75

properties of the model itself. Following these definitions, the Kriging model in

situation C is a model, whereas the Kriging model in situation E is a surrogate.

As this has the potential of confusion, we will not use this categorization.

Instead, we will use the term “model” for a simplified abstraction of a com-

plex object, whereas the term “surrogate” will be used for the subset of models,80

which can be represented by an explicit functional relationship [8, 9]. Usu-

ally, a data-driven process, which comprehends the following two steps, is used

for constructing a surrogate: (i) generation of data through sampling and (ii)

mathematical function fitting. The terms “surrogate”, “surrogate model”, and
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“metamodel” will be used synonymously in the following.85

3. Stochastic Search Algorithms

An iterative search algorithm that uses a stochastic procedure to generate

the next iterate is referred to as a stochastic search algorithm. The next iterate

can be a candidate solution to the GO or a probabilistic model, where solutions

can be drawn from. Stochastic search algorithms are considered robust and easy90

to implement, because they do not depend on any structural information of the

objective function, such as gradient information or convexity. This feature is

one of the main reasons for the popularity of stochastic search in the domain of

GO.

Instance-based algorithms ([II.1]) maintain a single solution, ~x, or popula-95

tion, P (t), of candidate solutions. The iteration or time step is denoted as t.

The construction of new candidate solutions depends explicitly on the previ-

ously generated solutions. Simulated annealing [10], evolutionary algorithms

(EAs) [11, 12], and tabu search [13] are prominent representatives of this cate-

gory. The key elements of instance-based algorithms are shown in Algorithm 1.100

This pseudo code focuses on the fundamental structure of the algorithm and

skips some implementation details, e.g., P (t) represents the population at time

step t and the corresponding function values.

Algorithm 1 Instance-based algorithm

1: t = 0. P (t) = SetInitialPopulation().

2: Evaluate(P (t)) on f .

3: while not TerminationCriterion() do

4: Generate new solutions P 0(t) according to random mechanism.

5: Evaluate(P 0(t)) on f .

6: Select the next population P (t+ 1) from P (t) [ P

0(t).

7: t = t+ 1.

8: end while
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4. MBO: Model-based Algorithms

Model-based optimization algorithms ([II.2]) generate a population of new105

candidate solutions P 0(t) by exploiting a model (surrogate or distribution). The

model reflects structural properties of the underlying true function f . Model-

based optimization algorithms are based on the idea that by adapting the model,

the search is directed into regions with improved solutions.

One of the key ideas in MBO is the replacement of expensive, high fidelity,110

fine grained function evaluations, f(~x), with evaluations, f̂(~x), of an adequate

cheap, low fidelity, coarse grained model, M . An additional benefit can seen in

the smoothening property of the cheap model, because it uses an approximation

of the possibly noisy data [2].

This section describes two di↵erent MBO approaches: (i) distribution based115

([II.2.1]) and (ii) surrogate-model based optimization ([II.2.2.]).

4.1. Distribution-based Approaches

If the metamodel is a distribution, the most basic form of an MBO can be

implemented as shown in Algorithm 2:

Algorithm 2 Distribution-based algorithm

1: t = 0. Let p(t) be a probability distribution.

2: while not TerminationCriterion() do

3: Randomly generate a population of candidate solutions P (t) from p(t).

4: Evaluate(P (t)) on f .

5: Generate updated distribution p(t+ 1) with population (samples) P (t).

6: t = t+ 1.

7: end while

Distribution-based algorithms generate a sequence of iterates (probability

distributions) {p(t)} with the hope that

p(t) ! p

⇤ as t ! 1,
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where p⇤ is a limiting distribution, which assigns most of its probability mass to120

the set of optimal solutions. So it is the probability distribution (as opposed to

the candidate solutions in instance-based algorithms) that is propagated from

one iteration to the next.

Estimation of distribution algorithms (EDA) are well known distribution-

based algorithms, which became popular in the field of EAs. Classic EAs vary125

candidate solutions (also called individuals) with variation operators, such as

mutation and recombination. In EDAs, variation operators were replaced by

a distribution based procedure: the new population of candidate solutions is

generated according to the probability distribution induced or estimated from

the promising candidate solution from the current population. Larraaga and130

Lozano [14] review di↵erent ways of using probabilistic models as EDA instan-

tiations.

Although distribution-based approaches play an important role in GO, they

will not be discussed in detail in this article. The reader is referred to Hauschild

and Pelikan [15], who discuss advantages and outline many of the di↵erent types135

of EDAs. In addition, Hu et al. [16] present recent approaches and a unified

view on distribution-based approaches. We will concentrate on surrogate model-

based approaches, which have their origin in statistical design and analysis of

experiments, especially in response surface methodology [2].

4.2. Surrogate Model-based Approaches140

In general, surrogates are used, when the determination of a process out-

come is very expensive or time consuming. Surrogates imitate the behavior of

the real model as closely as possible, while being computationally cheaper to

evaluate. The surrogate model is also known as a response surface, metamodel,

approximation, coarse grained, or simply the cheap model. First approaches145

were developed for stochastic physical experiments and used traditional design

of experiment methods. In the late 1990s, deterministic computer experiments

gained popularity. This development shifted the focus of surrogate modeling to

the design and analysis of computer experiments (DACE) approach [17].

8



Three variants of surrogate model-based optimization (SBO) became popular150

in the last years: (i) single surrogate (category [II.2.2.1]), (ii) multi-fidelity

approximation ([II.2.2.2]), and (iii) ensemble surrogate ([II.2.2.3]) approaches.

The first approach uses one model, the second one uses several instances with

di↵erent parameterizations of the same model, and the third approach uses

several di↵erent models.155

4.2.1. Single Models

Simple surrogate models are constructed with a data-driven approach. They

can be refined by integrating additional points or domain knowledge, e.g., con-

straints, into the surrogate.

A wide range of surrogates was developed in the last decades. Classical160

regression models such as polynomial regression or response surface methodol-

ogy [18], support vector machines (SVM) [19], artificial neural networks [20],

radial basis functions [21], or Gaussian process (GP) models, which are some-

times also referred to as DACE or Kriging [22, 23, 24, 25, 26] are the most

prominent modeling approaches.165

Due to this overwhelming number of approaches, it is desirable to find a

good starting point for exploring this important field. Fortunately, Forrester

et al. [7] present a comprehensible introduction to SBO with several examples.

Furthermore, Wang et al. [3] list popular metamodeling techniques and the re-

lated components, such as experimental design, sampling methods, metamodels,170

and model fitting techniques.

Surrogate-assisted evolutionary algorithms are a popular variant of SBO.

These are evolutionary algorithms that decouple the evolutionary search and

the direct evaluation of the objective function. A good introduction and a

comprehensive survey is presented by Jin [27, 28].175

Model-based optimization can be improved by integrating a sequential strat-

egy, which enables a model refinement during the optimization process. Addi-

tional points, which are evaluated on the expensive function, f , can be used for

building the surrogate M . As a consequence of this refinement, the surrogate
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M depends on the time step, i.e., M(t). A minimalistic surrogate model-based180

optimization (SBO) algorithm is shown in Algorithm 3.

Algorithm 3 Surrogate model based optimization (SBO) algorithm

1: t = 0. P (t) = SetInitialPopulation().

2: Evaluate(P (t)) on f .

3: while not TerminationCriterion() do

4: Use P (t) to build a cheap model M(t).

5: P

0(t+ 1) = GlobalSearch(M(t)).

6: Evaluate(P 0(t+ 1)) on f .

7: P (t+ 1) = P (t) [ P

0(t+ 1).

8: t = t+ 1.

9: end while

Adaptive sampling, a well-known refinement strategy, proceeds as follows:

An initial model, which uses a limited amount of sample points from the ex-

pensive objective function, is refined by identifying new points, so-called infill

points. In the selection of adequate infill points, two conflicting goals have to185

be satisfied. The infill points can be selected with respect to

• exploration, i.e., improving the model quality (related to the model M)

or

• exploitation, i.e., improving the optimization and determining the opti-

mum (related to the objective function f).190

Adaptive sampling tries to find a balance between exploration and exploitation.

A popular adaptive sampling method is expected improvement (EI) [29, 30],

which is discussed in Jones’ seminal paper [31].

MBO methods have been found to be useful in many applications. For exam-

ple, simulation-based design of complex engineering problems, e.g., structural195

design of vehicles, ships, or airplanes use CFD/FEM methods. The solvers re-

quire a large number of computer simulations to guarantee an exact solution.

Hence, simulation-based design is one of the most popular and successful appli-

cation areas for MBO.
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There are several publications that describe simulation-based design MBO200

applications in aerospace design [32]. A combination of a genetic algorithm

and neural networks for aerodynamic design optimization is suggested by Ha-

jela et al. [33]. The development of e↵ective numerical methods for managing

the use of approximation concepts in optimization for a 31-variable helicopter

rotor design, which was part of a collaboration between Boeing, IBM, and Rice205

University, is described by Booker et al. [34, 35]. Giannakoglou [36] discusses

an aerodynamic shape design problem. A surrogate-assisted evolutionary opti-

mization framework, which is applied to an airfoil shape optimization problem

using computational fluid dynamic is presented by Zhou et al. [37].

Obviously, the huge variety of models results in many innovative approaches210

for combining successful methods and improving existing optimization algo-

rithms. Ratle [38] creates an approximate model of the fitness landscape using

Kriging interpolation to accelerate the convergence of EAs. Jin and et al. [39]

investigate the convergence property of an evolution strategy (ES) with neural

network based fitness evaluations. Emmerich et al. [40] introduce a surrogate-215

assisted ES. They present results from classical test functions (artificial land-

scapes) and from an airfoil-shape optimization problem. A significant reduction

in the number of function evaluations was observed in both domains. Jin and

Sendho↵ [41] use clustering techniques and neural networks ensembles to reduce

the number of function evaluations. Branke and Schmidt [42] propose not to220

evaluate every candidate solution (individual), but to just estimate the objec-

tive function value of some of the individuals. The reduction in the number of

function evaluations is obtained by estimating an individual’s function value on

the basis of previously observed objective function values of neighboring indi-

viduals. Zhou et al. [37] present a surrogate-assisted EA framework, which uses225

computationally cheap hierarchical surrogate models constructed through on-

line learning to replace the exact computationally expensive objective functions

during evolutionary search.

Although the application of surrogate modeling techniques has progressed

remarkably in the past last decades, the question remains “How far have we230
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really come?” This issue is addressed by Simpson et al. [2]. They conclude

that while methods in the field have improved, the issues and challenges mainly

remain the same: dimensionality, computational complexity, noisy data, han-

dling of mixed continuous / discrete data and model validation (cf. Section 7).

They attribute this to the fact that the complexity and di�culty of problems235

increased simultaneously. Better tools (algorithms as well as hardware) allow

to handle more di�cult problems.

4.2.2. Multi-fidelity Models

In addition to single surrogates, multi-fidelity modeling methods were de-

veloped. Multi-fidelity modeling (or synonymously multi-fidelity metamodel-240

ing) uses several models of the same real system, where each model has its

own degree of detail representing the real process. Sun et al. [43] describe a

multi-fidelity optimization approach for sheet metal forming process. Further

examples of multi-fidelity modeling are presented by Ulaganathan et al. [44].

The authors analyze the performance of Kriging [31] when multi-fidelity gradi-245

ent data is introduced along with multi-fidelity function data to approximate

black-box simulations.

Koziel et al. [45] present a methodology for fast multi-objective antenna

optimization with co-Kriging. Co-Kriging is an extension of Kriging, which

uses the correlations between the models of various fidelities, so that cheap- and250

expensive simulation data can be combined into one surrogate model [46, 47].

Co-Kriging-based sequential design strategies are presented by Le Gratiet and

Cannamela [48]. The authors simulate a spherical tank under internal pressure.

Further applications from the water industry are published by Razavi et al [49].

Tuo et al. [50] proposed a finite-element analysis with its mesh density as the255

tuning parameter. A problem in casting simulation is used to illustrate this

approach. Kleijnen [51] presents an overview of the most recent approaches in

simulation practice, including multi-fidelity modeling.
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4.2.3. Ensembles

The model building and selection process is crucial for the e↵ectivity and260

e�ciency of SBO. The EI approach, which was introduced in Section 4.2.1, han-

dles the initialization and refinement of a surrogate model, but not the selection

of the model type. The popular e�cient global optimization (EGO) algorithm

uses a Kriging model, because Kriging inherently determines the prediction vari-

ance, which is necessary for the EI criterion [30]. But there is no proof that265

Kriging is the best choice. Alternative surrogate models, e.g., regression trees,

support vector machines, or lasso and ridge regression may be better suited,

depending on the problem. For example, Müller and Shoemaker [52] reported

that Kriging models and combinations including Kriging performed in general

worse than when RBF models are used.270

An a priory selection of the best suited surrogate model is often impossible in

the framework treated in this article, because of the black-box setting described

in Section 1.

Regarding the model choice, the user can decide whether to use (i) a single,

global model during the optimization, i.e. category [II.2.2.1] in Figure 1, (ii)275

multi-fidelity models, i.e., category [II.2.2.2], or (iii) multiple models, Mi, i =

1, 2, . . . , p, which is category [II.2.2.3]. Ensembles comprehend an aggregate of

several models. In contrast to multi-fidelity models, ensembles do not necessarily

combine models of di↵erent fidelity. Classical ensemble methods rather combine

data driven models of similar or identical fidelity. One example are random280

forests, which represent an ensemble of simple tree-based models.

To reduce the computing time, an ensemble of di↵erent, possibly local, mod-

els can be generated and evaluated in parallel. Each model may employ the

same candidate solutions (from the population P ) and the corresponding obser-

vations from expensive function evaluations. Haftka et al. [53] present a review285

of surrogate methods that provide parallelization.

Since each of the p surrogates proposes one or even more di↵erent candidate

solutions, a selection and/or a combination mechanism is required. Convention-
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ally, surrogate models are assessed and chosen according to their estimated true

error [54, 55, 2]. Generally, attaining a surrogate model that has minimal error is290

the desired feature. The mean absolute error (L1 norm), the mean square error

(MSE) (or its pendant the root mean square error (RMSE)) are commonly used

as performance metrics. Methods from statistics, statistical learning [56], and

machine learning [57], such as the simple holdout approach, cross-validation,

and the bootstrap are also important in this context.295

Several selection and combination mechanisms for surrogates were developed

in the last years. A simple approach determines the best model, i.e., the model

with the smallest prediction error, and determines the next candidate solution

based on that model. Alternatively, candidate solutions from several models

can be combined. Zerpa et al. [58] use multiple surrogate models and build an300

adaptive weighted average model of the individual surrogates. Goel at al. [59]

explore the possibility of using the best surrogate model or a weighted average

surrogate model instead of one single model. Model quality, i.e., the errors in

surrogates, is used to determine the weights assigned to each model. Sanchez et

al. [60] present a weighted-sum approach for the selection of model ensembles.305

The models for the ensemble are chosen based on their performance and the

weights are adaptive and inversely proportional to the local modeling errors.

Tenne and Armfield [61] propose a surrogate-assisted memetic algorithm which

generates accurate surrogates using multiple cross-validation tests.

Huang et al. [62] use several simulation models for a semiconductor manu-310

facturing system. They propose an ordinal transformation to utilize the results

from several cheap models. The function values of all solution candidates is

evaluated on every cheap model and the individuals are ranked. The authors

observe that despite the big bias in the results from the cheap models, the rel-

ative order among solutions is actually quite accurate. This order can be used315

to accelerate the selection process in EAs significantly. To reduce variability

and bias in the results from the cheap models, the authors apply an optimal

computing budget allocation scheme.

Multiple models can also be used to partition the search space. The treed
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Gaussian process approach uses regression trees to partition the search space320

into separate regions and to fit local GP surrogates in each region [63]. Nelson

et al. [64] propose an algorithm, which creates a tree-based partitioning of an

aerodynamic design space and employs independent Kriging surfaces in each

partition. Couckuyt et al. [65] propose to combine an evolutionary model selec-

tion (EMS) algorithm with the EI criterion in order to dynamically select the325

best performing surrogate model type at each iteration of the EI algorithm.

5. Surrogate Models in Discrete Optimization

Compared to their frequent use for real-valued problem domains, surrogate

model driven approaches are relatively scarce in combinatorial or mixed opti-

mization [28]. Discrete problems deal, e.g., with ordinal integers, categorical330

(qualitative) variables, permutations, strings, trees, or other graph based data

structures. They may be mixed among themselves, or mixed with continuous

variables. Ordinal integer variables can often be handled quite similarly to real

valued variables. Others, like trees, are too complex to be easily represented by

numeric vectors.335

Few expensive, real-world combinatorial optimization problems have been

published, e.g., in the engineering domain [66, 67, 68, 69], bioinformatics [70], or

data science [71]. Not all of them make use of surrogate models. This scarcity is

unlikely due to a lack of problems in this field. Rather, the availability of suitable

methods (i.e., surrogate models, category [II.2.2]) is not well known or these340

methods are not easily accessible to experts in potential application domains.

Thus, we provide a survey of surrogate modeling methods for combinatorial,

discrete problems. The general taxonomy for these methods is the same as for

the continuous case, which was illustrated in Figure 1.

5.1. Strategies for Dealing with Discrete Structures345

Table 1 presents a tabulated overview of the literature on discrete, surrogate

model-based optimization. This overview presents important stepping stones
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Table 1: Overview of surrogate models in combinatorial optimization. Column data lists data

type: Mixed (mix), ordinal (ord), categorical (cat), binary (bin), permutation (per), signed

permutation (-per), trees (tre), other (oth). Column s lists the strategy, see Section 5.1. Col-

umn dim lists the dimensionality of the problem, where applicable. Abbreviations introduced

in the table: genetic algorithm (GA), non-dominated sorting genetic algorithm II (NSGA2),

simulated annealing (SA), artificial neural networks (ANN), ant colony optimization (ACO),

multi-start local search (MLS). This table is continued on page 17.

data STR model optimizer cost budget dim topics ref.

mix,

cat, ord
1,3

Kriging,

Tree

visual,

statistical

analysis

high  100 2, 9
parameter

tuning
[72]

mix,

ord, cat
6 RBFN ES

low /

⇠high

560 /

280

15 /

23

benchmark,

medical image

analysis

[73]

mix,

ord, cat
3,6

Random

Forest,

Kriging

MLS ⇠high - 4-76 algorithm tuning [74]

mix

bin, cat
6

RBFN +

cluster
GA low 2,000 12

benchmark,

chemical industry
[75]

mix,

ord, cat
4 SVM NSGA2 ? 2,000 10

FEM,

multi criteria
[76]

and interesting applications in the field, thus showcasing the development. For

a more extensive table we refer to the tabular overview in the supplemental ma-

terial of this article1. In Table 1, the employed modeling strategies, model types,350

optimizers, and problem-related details are specified. The table lists works on

(mixed) integer problems, binary representations, permutation problems, tree

structures, and other representations.

To deal with modeling in combinatorial search spaces, a set of six strategies

(STR) can be identified in the literature, which are referenced in column “STR”355

of Table 1:

1The tabular overview will be kept up-to-date on the second author’s home page https:

//martinzaefferer.de/?page_id=134
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Table 1: continued

data STR model optimizer cost budget dim. topics ref.

bin 1/3 ANN SA high ? 16
real world,

pump positioning
[77]

bin 6 RBFN GA low dim2 10–25 NK-Landscape [78]

-per 2 custom
brute

force
high 28 6

real world:

weld sequence
[66]

per 6 RBFN GA low 100 30–32 benchmark [79]

per 6 Kriging GA low 100 12–32 benchmark [80]

per 6 Kriging ACO low
100 -

1,000
50–100

benchmark,

tuning
[81]

tre 6 RBFN GA low 100 symbolic regression [82]

tre 5,6 k-NN GA high 30,000
phenotypic similarity,

genetic programming
[83]

tre 5
Random

Forest
GA low 15,000

benchmark,

genetic programming
[84]

STR-1 The naive approach: As long as the data can still be represented as a

vector (binary variables, integers, categorical data, permutations) the

modeling technique may simply ignore the discrete structure, and work

as usual. A potential drawback of this approach is, that the model’s360

input space may have large areas of redundancy. Or else, this approach

may create large areas of infeasible solutions. Depending on the opti-

mizer, this may deteriorate performance compared to more sophisticated

approaches.

STR-2 Custom modeling: A specific modeling solution is tailored to fit the365

needs of a certain application. On the one hand, this procedure can be

very e�cient, because it integrates significant prior knowledge into the

model. On the other hand, it may introduce bias and may be hard to

transfer to other applications or data structures. This approach is not

applicable for true black-box problems.370

17



STR-3 Inherently discrete models: Some models already are discrete in their

own design. One example are tree-based models, like regression trees

or random forests. On the one hand, these models are easy to use, be-

cause no or only minor adaptations are necessary. On the other hand,

this strategy may fail if the discrete structures become more complex375

(e.g., trees or other graph structures). Also, such models may not al-

ways provide desired features, e.g., the nice properties derived from the

uncertainty estimates of a Kriging model.

STR-4 Mapping: Often, discrete variables or structures may be mapped to

a more easily handleable representation. Examples for this approach380

are the random key mapping for permutations or dummy variables for

categorical variables. Similarly to strategy STR-1, this approach may

introduce redundancy or infeasibility into the data structure. Estab-

lishing reasonable mappings becomes harder for data structures with

increasing complexities.385

STR-5 Feature extraction: Instead of directly modeling the relation between an

object (or its representation) and its quality, it is possible to calculate

real-valued features of the objects. For example, some features of a

tree or graph can be extracted (path lengths, tree depths, etc.). These

numeric features can then be modeled with standard techniques.390

STR-6 Similarity-based modeling: Where available, measures of (dis)similarity

may be used to replace continuous measures that are, e.g., employed

in similarity-based models like k-nearest neighbor (k-NN), support vec-

tor machines (SVM), radial basis function networks (RBFN), or Krig-

ing. While this approach is potentially very powerful, a drawback is395

the requirement of proper measures. This may be problematic if these

measures have to fulfill further requirements, like definiteness.

The presented six strategies are not necessarily mutually exclusive. Depending

on the point of view, a mapping approach can be interpreted as similarity-
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based approach, or vice versa. Or else, features may be extracted and used for400

modeling, while at the same time applying some inherently discrete approach

to the data. Thus, some methods may either combine several strategies, or else,

can be classified as belonging to several strategies.

None of the six strategies can be broadly preferred to the others. Even the

naive approach may be adequate, if the problem is su�ciently simple. Problem405

type and application restrictions will govern the selection of a suitable approach.

The subsequent sections present key characteristics of strategies considered by

the authors to be most relevant.

5.2. Custom Models

One way of using surrogate-models for combinatorial problems is to employ410

customized, application specific solutions (STR-2). An example is the work by

Voutchkov et al. [66]. They optimize a weld sequence, which is represented as

a signed permutation, and find a near-optimal welding sequence by evaluating

only 28 out of 46, 080 possible sequences. The surrogate model replaces an

expensive FEM by estimating the influence of each individual element in the415

weld sequence, based on the observations made in previously tested sequences.

In addition to the function values, the surrogate also exploits intermediate re-

sults that reflect the impact of individual sequence-elements, depending on their

position in the weld sequence. Exploiting these intermediate results is a clear

advantage over more simple, function-value driven approaches. On the other420

hand, the applicability of this model is restricted to this specific setup and

cannot be easily transferred to completely di↵erent application areas. The sur-

rogate modeling approach in [66] has since been adapted and applied to a girth

weld path optimization problem by Asadi and Goldak [67]. Due to the nature

of their problem (number of weld sub-passes, rotational symmetry) only 48 se-425

quences are possible. They evaluated 15 of these 48 sequences to find an optimal

solution. Nguyen et al. [85] propose to use simplifications of the target function

(a simulation model for job shop scheduling) as a surrogate model in genetic

programming. These applications show that custom models are beneficial, if
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domain knowledge is available.430

5.3. Mapping

As stated in Section 5.1, a frequently chosen approach is mapping from the

more complex, discrete space to another more easy to handle space (STR-4).

Classical regression provides an establishes mapping approach for dealing with

discrete, categorical parameters, which is based on dummy variables and con-435

trasts. A categorical variable can be mapped to a set of dummy variables, where

each dummy represents a single level of the original variable. This is the same as

the one-hot encoding, i.e., only one of several bits can be 1. The n levels of the

categorical variable are mapped to n binary variables. The binary variables are

still discrete, but can be handled by standard regression approaches. Else, one440

can map to (n� 1) binaries: The one missing level is represented by all dummy

variables being zero. This is essentially a contrast. Contrast variables repre-

sent a comparison between di↵erent levels. Clearly, both approaches increase

the number of model parameters. Dummy variables or contrasts are probably

among the most frequently applied methods to deal with categorical variables,445

e.g., in the context of the response surface methodology [86].

Another example of a mapping approach is the random key mapping de-

veloped by Bean [87]. Random keys are vectors of real numbers from a fixed

interval, e.g., the interval [0, 1]. To map from this real parameter space to per-

mutation representations, the random key values are simply sorted. Random450

keys were originally developed to enable the application of continuous, model-

free genetic algorithms to permutation problems. They have since been used

in probabilistic models which are part of EDAs, see also Section 4.1 and 5.6.

Notable drawbacks are redundancy in the real valued parameter space as well

as the non-bijection character of the mapping.455

5.4. Feature Extraction

Of the few approaches that deal with modeling for tree-representations (sym-

bolic regression, genetic programming), many use feature extraction for model-

ing. Hildebrandt and Branke [83] extract features of the phenotypic behavior
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of evolved dispatching rules for job shop scheduling. Here, these features are460

based on the rule decisions for a small set of reference situations. The Euclidean

distance is computed on these features and is then employed in a k-NN surro-

gate model. From a di↵erent point of view, this process can as well be seen

as a part of the (dis-)similarity calculation, and hence part of strategy STR-6,

rather than STR-5. Hildebrandt and Branke compare the phenotypic approach465

to a genotypic distance measure: the structural Hamming distance. The phe-

notypic feature extraction approach has since also been investigated by Nguyen

et al. [88], who improved handling of replications and the selection scheme.

Pilat and Neruda [84] take a slightly di↵erent approach. They extract fea-

tures from the genotype of candidate solutions, e.g., the depth of the tree,470

summarizing statistics of numeric constants in the tree, or the cardinality of

certain arguments in the tree.

Some of these recent approaches use a rather simple surrogate model, i.e.,

k-NN [83, 88]. This is tightly linked to the comparatively high evaluation bud-

gets (tens of thousands). More complex models might become too expensive475

when data-sizes grow to these dimensions. On the other hand, using such large

budgets may be necessary due to the extremely large search spaces that genetic

programming is typically dealing with. Compared to the more common, model-

free genetic programming approaches, few tens of thousands of evaluations are

in fact a small budget.480

5.5. (Dis)similarity based models

A promising approach that recently gained more traction is similarity-based

modeling (STR-6). Fonseca et al. [89] defined similarity-based models as models

that keep a memory of solutions and estimate the performance of new samples

by comparing them to that memory. Fonseca et al. list fitness inheritance [90],485

fitness imitation [91, 27] and k-NN [92] as examples. They test a genetic al-

gorithm supported by a k-NN model on a set of numerical, continuous test

functions. Bernardino et al. [93] perform similar tests with artificial immune

systems. In both cases Hamming and Euclidean distances are used as mea-
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sures of dissimilarity, showing that this approach does not depend on a specific490

measure.

However, the k-NN model is not able to predict whether or not a candidate

solution will provide improvement over existing solutions. For that purpose,

another set of similarity or distance based models is of interest: RBFN, SVM,

and Kriging (Gaussian process regression). Hemker [94] describes in his Ph.D.495

thesis an approach to deal with continuous and ordinal integer variables, ap-

plied to electrical engineering and water resource management problems. Their

approach is based on Kriging, essentially treating all parameters with the same

distance function, hence not directly applicable to categorical parameters or

more complex representations. Li et al. [73] proposed an adaptation of RBFNs.500

These adaptations are based on a weighted distance measure, replacing the

usual distance measure employed in RBFN. Their distance-based RBFN model

was tested with mixed integer optimization problems. It has since been ap-

plied to a multi objective building design optimization problem by Brownlee

and Wright [95]. Mixed optimization problems also arise in algorithm tuning.505

In this context, Hutter [74] also used a Kriging model with a Hamming distance

based correlation function to handle categorical variables. A combination of

Kriging and tree-based models called treed Gaussian processes has been used

by Swiler et al. [96]. They applied a treed Gaussian process model, a Kriging

model, and a smoothing spline technique to build surrogate models for mixed510

integer problems. Coelho et al. [97] and Herrera et al. [76] applied a kernel-

based regression method to mixed-variable optimization problems. A di↵erent

approach with RBFs for the case of a mixed (discrete and continuous) optimiza-

tion problem is taken by Bajer and Holena [75]. Instead of creating one RBFN

based on a weighted distance between candidate solutions they use Hamming515

distance to cluster the discrete variables, then fit a standard RBFN with the

continuous variables for each cluster.

Moraglio and Kattan [78] adapted an RBFN to arbitrary distance measures

to model arbitrary combinatorial optimization problems. Their approach has

also been applied to quadratic assignment problems [79]. A similar conceptual520
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extension for Kriging was investigated by Zae↵erer et al. [80]. Here, Kriging-

based EGO [30] showed positive results when applied to combinatorial problems.

Zae↵erer et al .[98] also showed that maximum likelihood estimation (MLE) can

be used to e�ciently choose one measure from a set of distance measures.

An investigation by Cáceres et al. [81] reports negative results for the ap-525

plication of EGO to permutation problems. There, an ant colony optimization

algorithm was not outperformed by the Kriging-based variant of the same al-

gorithm. Smith et al [71] describe a study on extremely high-dimensional test

instances, employing RBFN models. While the employed models showed some

promise, a proposed ensemble of models performed poorly.530

The above modeling approaches use distances and kernels in a standard,

straight-forward way. However, it is often important to consider if either the

employed distances are conditionally negative semi-definite (CNSD) or positive

semi-definite (PSD). Definiteness is a frequent requirement for modeling meth-

ods based on distances or kernels. Dealing with the possible indefiniteness of a535

function is hence of utmost concern. In fact, lack of definiteness is one possible

source of some previously observed numerical problems, e.g., in [80, 98]. A recent

study by Zae↵erer and Bartz-Beielstein [99] dealt with the issue of definiteness

in the context of Kriging based optimization. They transfer and extend methods

from the field of SVMs, which were previously used for machine learning with540

structured data, c.f., the survey by Schleif and Tino [100]. While, to the best

of our knowledge, SVMs have rarely been used as surrogates in combinatorial

optimization, they have been applied to learning problems with combinatorial

data (see e.g., [101, 102, 103]). Hence, they are a promising choice.

Most of the above references make use of distance measures in genotype545

space. For the case of genetic programming, Hildebrandt and Branke [83] show,

that a distance in phenotype space may be an excellent choice, see also the

preceding section.
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5.6. Other models

One important set of models that is mostly ignored the above considerations550

are classic probabilistic models (category [II.2.1]). For a description, see Sec-

tion 4.1. Examples of combinatorial optimization algorithms employing such

models are variants of EDA or ACO [6, 15]. Compared to the earlier presented

works, these algorithms usually operate under di↵erent assumptions and are

often applied to less expensive (although not necessarily cheap) problems. Still,555

they can be considered to use surrogate models. If necessary, a mapping between

search and objective function can be established (cf. [104, 105]). Applications of

ACO for (expensive) combinatorial problems, e.g., include the works by Cáceres

et al. [81] and Teixeira et al. [69]. EDAs have been applied to problems in build-

ing design [106] and reactor fuel management [107].560

From the strategy point of view, these distribution models can again be

classified into the earlier described six categories. For instance, there are EDAs

which employ a mapping approach (STR-4), e.g., EDAs for permutation prob-

lems using the random key mapping [108]. Other EDAs use problem-specific

solutions (STR-2). One example are EDAs based on the (generalized) Mallows565

model for permutations [109, 110, 111]. These may also be categorized as being

dissimilarity or distance-based (STR-6), but are not easily extended to arbitrary

other distances.

Another set of models not explicitly mentioned yet are graph-based models

like Bayesian networks or Markov random fields (MRFs). These are of in-570

terest, as they may directly encode the graph structure of the candidate so-

lution representations [112]: Directed graphs in Bayesian networks and undi-

rected graphs in MRFs. In this graph, discrete variables may be represented

by nodes, and dependencies between variables by edges. Graph based models

are closely linked to and have been employed in distribution based approaches,575

e.g., [113, 114, 104, 105, 106]. Mostly, these approaches can be classified as

inherently discrete models (STR-3).

Kriging can be seen as a special case of Gaussian MRFs, that is, the fully

connected graph case. However, Kriging does not model the graph structure of
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the representation: nodes are candidate solutions, not variables.580

6. Recent Trends and Developments

The model error is not the only criterion for selecting the surrogate. Recent

approaches such as the evolvability learning of surrogates (EvoLS) algorithm

implement local models for each o↵spring individually [115]. This results in

an adaptive semi-partition [116] of the search space. In contrast to this local585

procedure, Bartz-Beielstein [1, 117] presents a global approach, which combines

information from every surrogate, even from surrogates, which have a low accu-

racy. These approaches will be presented in Section 6.1 and 6.2, respectively.

6.1. Evolvability Learning of Surrogates

The naive approach of choosing the surrogate according to its estimated590

error on f does not use the available information e�ciently. Poorly selected

experimental designs might introduce some bias: Models, which have a low

estimated error in irrelevant regions of the search space can outperform models

that have a higher error, but reflect the overall structure of the search space

much better. This situation is illustrated in Figure 3. Additionally, Viana and595

Haftka [118] observe that an improved global accuracy of the surrogate is not

necessary for obtaining the best result.

The EvoLS algorithm, which is introduced by Le et al. [115], extends the

basic surrogate-assisted EA. The authors of EvoLS recommend selecting surro-

gate models that enhance search improvement in the context of optimization.600

EvoLS processes information about the (i) di↵erent fitness landscapes, (ii) state

of the search, and (iii) characteristics of the search algorithm to statistically

determine the so-called evolvability of each surrogate model. The evolvability

of a surrogate model estimates the expected improvement of the objective func-

tion value that the new candidate solution, ~x0, has gained after a local search605

has been performed on the related surrogate model. The local optimizer on the

surrogate model guarantees (theoretically) convergence to the stationary point

of the exact objective function [119], [120].

25



−1.0 −0.5 0.0 0.5 1.0

−1
.0

−0
.5

0.
0

0.
5

1.
0

x

f(x
)

Figure 3: A simple, artificial example which illustrates that the surrogate model with the

smallest prediction error is not always the best choice. The solid line represents the true cubic

function f . A dash-dotted line is used to plot quadratic surrogate, whereas a dotted line depicts

the linear surrogate. Consider a minimization problem. The initial design points are located

in the interval I+ = {x : 0  x  1}. Compared to the linear model, the quadratic surrogate

has a relatively small prediction error in I+. However, from a global search perspective, which

also includes the grey shaded region, the quadratic model is misleading. The linear model has

a larger prediction error in I+, but will guide the search in the region of optimal values.

A minimalistic EvoLS algorithm is shown in Algorithm 4. The pseudo code

presents a simplistic description of the fundamental states, e.g., the Evolution-610

aryVariation() operation in line 4 includes a parental selection, recombination,

and mutation step.

The surrogate selection (line 6) uses the evolvability, which is a function of

the candidate solution, ~x, and the surrogate M . The model with the highest

evolvability is used to perform a local search (line 7). The EvoLS algorithm615

presents a sophisticated way of exploiting local information during the surrogate

modeling phase.

6.2. Sequential Parameter Optimization

Early versions of the sequential parameter optimization toolbox (SPOT) com-

bined methods from design of experiments , response surface methodology , design620

and analysis of computer experiments, and regression trees for the analysis of

algorithms [121, 122, 123]. The SPOT was developed as a toolbox for the anal-

ysis and for an understanding of the working principles of EAs. It implements a
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Algorithm 4 EvoLS algorithm. See [115] for a more detailed description.

1: t = 0. P (t) = SetInitialPopulation().

2: Evaluate(P (t)) on f .

3: while not TerminationCriterion() do

4: P

0(t) = EvolutionaryVariation(P (t)).

5: for each ~x in P

0(t) do

6: M = SurrogateSelection(~x).

7: ~x

0 = LocalSearch(M, ~x).

8: Evaluate(~x0) on f .

9: P (t+ 1) = P (t) [ {~x0}.

10: end for

11: t = t+ 1.

12: end while

sequential, surrogate model based approach to optimization. Information from

the surrogate model is used for analyzing the working principles of EAs. E↵ects625

of the the algorithm parameters, e.g., the population size or the type of recombi-

nation operator, and their interactions can be statistically analyzed. Nowadays,

the SPOT is an established parameter tuner and an optimization algorithm,

which has been extended in several ways. For example, Hutter et al. [124]

benchmark an SPOT derivative, the so-called sequential model-based algorithm630

configuration (SMAC) procedure, with the black-box optimization benchmark

(BBOB) set of test functions [125]. They demonstrate that with a small budget

of 10 ⇥ d evaluations of d-dimensional functions, SMAC in most cases out-

performs the state-of- the-art blackbox optimizer covariance matrix adaptation

evolution strategy (CMA-ES).635

The most recent version, SPOT2, integrates a state-of-the-art ensemble

learner. The SPOT2 ensemble engine can be briefly outlined as follows (see

Algorithm 5): The portfolio or set of surrogate models, M, includes a large

amount of surrogates, such as regression trees and random forest, least angle

regression (LARS), and Kriging, see line 2 in Algorithm 5. As such, it includes640
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several models that can also handle continuous, ordinal, categorical, and binary

variables. Thus, SPOT2 can also deal with combinatorial optimization prob-

lems. The SPOT2 ensemble engine uses cross validation to select an improved

model from the portfolio of candidate models [126]. It implements methods for

creating a weighted combination of several surrogate models to build the im-645

proved model and methods, which use stacked generalization to combine several

level-0 models of di↵erent types with one level-1 model into an ensemble [127].

The level-1 training algorithm is typically a relatively simple linear model, see

line 5 in Algorithm 5. Figure 1 in [117] illustrates the stacking procedure.

Algorithm 5 Sequential parameter optimization with stacking

1: t = 0. P (t) = SetInitialPopulation().

2: Select the set of cheap models M.

3: Evaluate(P (t)) on f .

4: while not TerminationCriterion() do

5: Use P (t) to build a stacked model M(t) using M.

6: P

0(t+ 1) = GlobalSearch(M(t)).

7: Evaluate(P 0(t+ 1)) on f .

8: P (t+ 1) = P (t) [ P

0(t+ 1).

9: t = t+ 1.

10: end while

The implementation of the proposed stacking approach is available in the650

open source R package SPOT2, made available in the supplemental material of

this article2.

Results indicate that the SPOT2 ensemble engine can lead to significant

performance improvements, which is illustrated by the following example: Re-

bolledo et al. [128] present a comparison of di↵erent data driven modeling meth-655

2The SPOT2 software package and the supplemental material, which is necessary to run

the following experiments, can be downloaded from the first author’s home page http://www.

gm.fh-koeln.de/~bartz/SPOT/
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Table 2: Comparison of the MSE values of individual models and a stacked ensemble. Smaller

values are better. Best results are shown in bold face. Values are based on the gas sensor

data example [128]. Numbers in brackets indicate standard deviations (based on ten re-

peats). Since Kriging and the linear model are deterministic, their standard deviation is zero.

Numbers for the individual models di↵er from previous results [128], because di↵erent model

implementations are used.

Kriging Linear Model Random Forest SPOT2 Ensemble

sensor 1 0.495 (0) 0.593 (0) 0.594 (0.014) 0.328 (0.085)

sensor 2 0.419 (0) 0.577 (0) 0.463 (0.009) 0.287 (0.066)

ods. The models are built on industrial data for the development of a robust

gas sensor. The data contains a limited amount of samples with high variance.

The mean square error of the models implemented in a test dataset is used as

the comparison strategy. Two sensors were tested in this comparison.

Table 2 compares the results received by a stacked ensemble with the results660

of individual models which are contained in the ensemble. Training and testing

were repeated ten times, to account for randomness in the random forest model

as well as the ensemble model. While Kriging is the best individual model,

the ensemble consistently outperforms it. The larger variance in the ensemble

results can be attributed to the dependence on the random sampling in the cross-665

validation procedure. In the level-1 model of the ensemble, Kriging received

the highest coe�cients. This real-world application example demonstrates the

potential merit of stacked ensembles. The code of this example is made available

in the supplemental material of this article.

7. Summary and Outlook670

Model-based optimization (and in particular SBO) approaches are probably

the most e�cient methods for expensive and time-demanding real-world opti-

mization problems. Although this observation is clearly true in the engineering

domain, similar tendencies can be observed in many other domains, e.g., drug-

design [129, 28].675
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Summarizing, the contribution of this article can be described as follows: A

comprehensible taxonomy of MBO algorithms for global optimization problems

(Figure 1) is proposed. A survey of SBO algorithms, which includes the most

recent publications from continuous and the combinatorial problem domains, is

given. Six strategies for dealing with modeling in combinatorial search spaces680

are developed. Working principles of two state-of-the-art SBO algorithms were

shown: (i) EvoLS, which constructs a local metamodel for every new candidate

solution, and (ii) SPOT2, which uses a global ensemble engine to combine a

broad variety of surrogate models. The survey presented in the first sections

of this article as well as the examples in Section 6 emphasize the trend to685

ensemble based metamodels. Due to the emerging-field nature of SBO, and

especially combinatorial SBO, several challenges remain to be solved. This

article concludes with a (subjective) selection of the most challenging problems.

7.1. Model Selection

The selection of an adequate surrogate plays a crucial role in the SBO pro-690

cess. The surrogate should reflect the underlying complex process as exact as

possible and should be as simple as possible. The estimation of the model quality

is an open research question. For example, the definition of the corresponding

training sets for the holdout or cross-validation approaches represents a critical

issue for the accuracy and e�ciency of the surrogates. Viana and Haftka [118]695

report that is is beneficial to run EGO with multiple surrogates. Interestingly,

they also observe that an improved global accuracy of the surrogate is not nec-

essary for obtaining the best result.

The number of potential surrogate model types and selection strategies is

huge. The earlier mentioned stacking approach (cf. Section 6.2) can prove to be700

a helpful starting point. Building stacked ensembles of surrogate models may

help to understand how di↵erent approaches perform, and how they can interact.

Besides providing more accurate predictions, stacking may enable researchers

to design more promising modeling approaches for complex data structures.

Model selection is still a challenging research topic with many open questions,705
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which is is especially true in the combinatorial domain. There, little guidelines

are available, due to the relative scarcity of publications.

7.2. Definiteness

In case of similarity-based models (strategy STR-6, see Section 5.5), definite-

ness is a crucial issue. While first results are available for Kriging models [99],710

some important details require further attention. First, more extensive exper-

iments are of interest. Secondly, more e�cient handling of prediction for new

data samples would be beneficial for performance in practice. And finally, a

theoretical analysis could provide a more sound foundation for the existing ap-

proaches.715

7.3. Dimensionality

The question of dimensionality, i.e., the number of variables, is an important

issue. For continuous problems, it is often stated that distance-based models

like Kriging perform poorly for larger dimensional problems. A rough threshold

of approximately 20 dimensions is frequently specified for Kriging, e.g., see [7].720

This is closely linked to the specific distance function [130]. For instance, Man-

hattan distance will be less a↵ected by such issues, compared to Euclidean

distance [130]. For the general, discrete case with an arbitrary distance func-

tion such knowledge is often not available. At the same time, feature selection

or other dimensionality reduction methods may not be instantly available for725

problems with complex, discrete data representations. Thus, further research

on dimensionality issues is recommendable. This is especially of interest for

high dimensional real-world problems as, e.g., investigated by Smith et al. [71].

Simpson et al. [2] list some recent approaches to tackle this “curse of dimension-

ality” and problems related to generate adequate surrogates in high-dimensional730

and complex non-linear search spaces.

Dimensionality can also be interpreted as the number of samples, which leads

to additional challenges. Nowadays, an increasing number of applications gener-

ate large data sets. Instead of very expensive and small data sets, huge data sets
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have to be processed in this situation. Several applications from bioinformatics,735

social media, or climate science rely on the modeling of massive data sets with

up to billions of data samples. Recently developed methods rely on special ma-

trix structures (Kronecker or Toeplitz). For example, Wilson et al. [131] present

early results for massively scalable Gaussian processes, which enables the use of

Gaussian processes on billions of data points. The development of multi-fidelity740

surrogates, which use coarse grained models to obtain similar results as the ex-

act model might be very interesting. Furthermore, methods for data sets that

do not satisfy special matrix structures are of great interest.

7.4. Benchmarking

An important issue is the set of benchmark or test functions, used to evaluate745

algorithm and modeling performance. Previous approaches try to compose a set

of test functions with many di↵erent features, e.g., by using step, linear, convex,

and sinusoidal functions. A more recent approach [132] uses an infinite number

of test problem instances to prevent an over fitting (or better: over learning) of

the competing algorithms. The test problems are based on real-world problem750

instances, which are systematically modified.

While benchmarking is still not resolved for continuous model-based opti-

mization, the situation is even less settled in the discrete domain. Of the few

published, real-world, expensive, combinatorial problems, most are not openly

accessible. Even in case of availability, the benchmark set would be rather small755

and the expense of computation would hinder broader experimental studies.

Thus, most of the benchmark problems are well known cheap-to-compute prob-

lems, e.g., the traveling salesperson problem (see the overview in Table 1). It

is questionable whether performances estimated for these problems are actually

representative for real-world expensive problems. In fact, the simple problem760

structure may be unable to give proper credit to complex models like Kriging.

This may be one reason for results as, e.g., observed by Caceres et al. [81].
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7.5. Multiple Objectives

Last, but not least, the problems discussed so far for single objective SBO ex-

ist also for model-based multi-objective optimization algorithms. The question765

of using global or local models is discussed in several publications, e.g., Isaacs et

al. [133] present a local approach, which maintains an external archive, whereas

Pilat and Neruda [134] present an approach by aggregating metamodels for

evolutionary multiobjective and many-objective optimization. Horn et al. [135]

present a taxonomy for model-based multi-objective optimization algorithms,770

which can be recommended as a starting point.
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[114] P. Larrañaga, R. Etxeberria, J. A. Lozano, J. M. Peña, Combinatorial

optimization by learning and simulation of bayesian networks, in: Pro-

ceedings of the Sixteenth Conference on Uncertainty in Artificial Intel-1170

ligence, UAI’00, Morgan Kaufmann Publishers Inc., San Francisco, CA,

USA, 2000, pp. 343–352.

[115] M. N. Le, Y. S. Ong, S. Menzel, Y. Jin, B. Sendho↵, Evolution by adapting

surrogates, Evolutionary Computation 21 (2) (2013) 313–340. doi:10.

1162/evco_a_00079.1175

47



[116] M. Kryszkiewicz, J. F. Peters, H. Rybinski, A. Skowron (Eds.), Rough

Sets and Intelligent Systems Paradigms, Vol. 4585 of Lecture Notes in

Computer Science, Springer Berlin Heidelberg, Berlin, Heidelberg, 2007.

doi:10.1007/978-3-540-73451-2.

[117] T. Bartz-Beielstein, Stacked Generalization of Surrogate Models - A Prac-1180

tical Approach, Tech. Rep. 5/2016, TH Köln, Köln (2016).
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