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Abstract—Hospitals and health-care institutions need to plan
the resources required for handling the increased load, i.e.,
beds and ventilators during the COVID-19 pandemic. BaB-
Sim.Hospital, an open-source tool for capacity planning based on
discrete event simulation, was developed over the last year to sup-
port doctors, administrations, health authorities, and crisis teams
in Germany. To obtain reliable results, 29 simulation parameters
such as durations and probabilities must be specified. While
reasonable default values were obtained in detailed discussions
with medical professionals, the parameters have to be regularly
and automatically optimized based on current data.

We investigate how a set of parameters that is tailored to
the German health system can be transferred to other regions.
Therefore, we use data from the UK. Our study demonstrates
the flexibility of the discrete event simulation approach. However,
transferring the optimal German parameter settings to the UK
situation does not work—parameter ranges must be modified.
The adaptation has been shown to reduce simulation error by
nearly 70%. The simulation-via-optimization approach is not
restricted to health-care institutions, it is applicable to many
other real-world problems, e.g., the development of new elevator
systems to cover the last mile or simulation of student flow in
academic study periods.

Index Terms—optimization-via-simulation, surrogate-model-
based optimization, COVID-19, hospital resource planning, pre-
diction tool, capacity planning

I. INTRODUCTION

BABSIM.HOSPITAL is an open-source resource-planning
tool for hospitals that considers problems caused by the
Coronavirus disease 2019 (COVID-19) pandemic. It provides
many advantages for crisis teams, e.g., comparison with their
own local planning, simulation of local events, simulation
of several scenarios (worst / best case). There are benefits
for medical professionals, e.g, analysis of the pandemic at
local, regional, state and federal level, the consideration of

special risk groups, tools for validating the length of stays
and transition probabilities. Finally, there are potential ad-
vantages for administration, management, e.g., assessment of
the situation of individual hospitals taking local events into
account, consideration of relevant resources such as beds,
ventilators, rooms, protective clothing, and personnel planning,
e.g., medical and nursing staff.

Discrete Event Simulation (DES) models are valuable tools
for resource usage estimation and capacity planning [1]. They
are used to model the hospital resource planning problem.
BABSIM.HOSPITAL simulates the path of many thousands or
possibly even millions of patient trajectories through hospitals.
This simulation requires considerable computational resources.
Therefore, a very efficient simulator is necessary, because
only a limited number of simulations can be performed in
a reasonable time frame. We have chosen “Discrete-Event
Simulation for R” (simmer), a DES package which enables
high-level process-oriented modeling [2]. The code required
for running the simulations is published as an open-source
R-Package [3], [4].

The DES software simmer is based on the concept of a
trajectory (common path in the simulation model for entities of
the same type) and takes available hospital data into account.
It offers a means to simulate the progression of the pandemic
in terms of available and occupied hospital resources and
capacity. The modeling approach is inspired by Lawton and
McCooe [5] and is enhanced by an Surrogate Model-Based
Optimization (SMBO) approach [6], i.e., our system combines
two powerful approaches:
Discrete event simulation: the ’simmer’ R-package is used

to generate a simulation with 29 parameters with de-
fault values, established in cooperation with medical
professionals [2]. These parameters are essential for the
accuracy of the simulation and require careful optimiza-
tion. Although domain knowledge, i.e., from medical978-1-7281-8393-0/21/$31.00 ©2021 European Union



professionals, provides valuable information to perform
realistic simulations, further fine-tuning is required.

Model-based optimization: the Sequential Parameter Opti-
mization Toolbox (SPOT) R-package is used to perform
SMBO to identify the best values for the 29 parame-
ters in a fast and accurate manner, which results in an
optimization-via-simulation approach [7].

However, the relatively large number of parameters limits the
quality of the optimization process.

The BABSIM.HOSPITAL tool has been online for several
months1. This article reports the experiences that were col-
lected during this period and provides answers to the following
questions:
(Q-1) How to extend the interface that enables usage of data,

independently of the German DIVI and RKI data sets?
(Q-2) How to integrate domain knowledge and how to adapt

a complex simulation model to a new environment?
We illustrate how this model, that was based on data from
Germany, can be transferred to other regions, especially to the
UK.

The rest of this paper is structured as follows: Section II
discusses the available data and its preparation, Section III
introduces the BABSIM.HOSPITAL simulator and Section IV
describes the corresponding optimization problem. Section V
describes how domain knowledge can be used to adapt the
search boundaries. Specifically, we will discuss the different
availability of ventilated Intensive Care Unit (ICU) bed in
Germany and in the UK. After presenting simulation results
from optimization runs in Section VI, the findings of this study
are discussed in Section VII.

II. AUTOMATED DATA COLLECTION AND CURATION

The BABSIM.HOSPITAL simulator models resources usage
in hospitals, e.g., number of ICU beds (y), as a function of
the number of infected individuals (x). In addition to the
number of infections, information about age and gender can be
used as simulation input. Extract, Transform, and Load (ETL)
processes integrate data from various sources into complex
collections [8]. After the successful extraction of data, the next
step is to transform it. This step includes several approaches to
gain accurate data which is correct, complete, consistent, and
unambiguous. The final step consists of loading the processed
data into a data collection of choice accessible for the data
analyst for further use. Especially in terms of the COVID-
19 pandemic, it is important to integrate and process the vast
amount of constantly growing data.

1) Germany: The online version of the BAB-
SIM.HOSPITAL simulator implements an ETL process
to analyze the data from the Robert Koch Institut (RKI),
https://www.rki.de, as well as the Deutsche interdisziplinäre
Vereinigung für Intensiv- und Notfallmedizin (DIVI),
https://www.divi.de. The associated data sets contain
anonymous information about every recorded case in

1The online version of BABSIM.HOSPITAL can be accessed via https://
covid-resource-sim.th-koeln.de/app/babsim.hospitalvis

Germany. The RKI data set contains 780,065 observations
of 18 variables such as age, gender, data of infection, etc.,
which were updated daily and are automatically integrated
into BABSIM.HOSPITAL. Information concerning ICU in
Germany can be retrieved from the DIVI. DIVI provides an
API and a daily report. The official simulator, which can
be accessed via https://www.th-koeln.de/babsimhospital, uses
DIVI and RKI data. Its parameters are based on discussions
with experts from Germany, especially ICU doctors and
experts from health administration. The online version is
described in Section III-B.

2) UK: This paper describes an extension of the interface
that enables usage of data independently of DIVI and RKI
data, i.e., an interface to Comma-separated Value (CSV) files
and Excel files can be used so that any kind of field and
simulation data can be processed, simulated, and optimized.
To exemplify our approach, anonymized data from a region
in the UK was used. The data was read from an Excel file,
which has the following entries (columns):
• date
• bed: total number of patients in hospital with COVID-19

(includes ICU)
• intensiveBed: number of patients on non-invasive ventila-

tors (CPAP). In normal circumstances they would be on
ICU or equivalent but in the UK this has not always been
possible.

• intensiveBedVentilation: number of patients intubated and
ventilated with COVID-19 on ICU

The field data based on UK data used three bed categories:
1) bed: non ICU patients in hospital
2) intensiveBed: ICU bed without ventilation
3) intensiveBedVentilation: ICU bed with ventilation

Fig. 2 visualizes the UK data set that is used in this study.
The whole data set consists of data from 240 days. Since our
analysis considers the second COVID-19 wave only, we use
data after September 2020.

III. THE SIMULATOR

A. Discrete Event Simulation

BABSIM.HOSPITAL simulates the typical paths that
COVID-19 infected patients follow during their hospital stays.
The DES processes every single recorded infection until the
patients’ recovery or death. Patients follow a trajectory, i.e.,
they move with a probability pij from state Si to state Sj after
a transition-specific duration dij . The respective durations and
probabilities are parameters of the model. A graph can be
used to model this behavior. Fig. 3 illustrates the transition
probabilities and describes the states.

For example, an infected patient (state S1) goes to the
hospital (state S2) with probability p12 after d12 days. With
probability p17, she recovers (state S7) after d17 days. The
probabilities of outgoing nodes sum to 1, e.g., p17 = 1− p12.
The modeling process includes four types of parameters:
transition probabilities, e.g., the probability that an infected

individual has to go to the hospital,



Fig. 1. Visualization of current German COVID-19 Data as used in BABSIM.HOSPITAL. From left to right: Daily new infections as published by the Robert-
Koch Institute, amount of occupied intensive care beds in hospitals (without invasive ventilation), amount of intensive care beds with invasive ventilation.

Fig. 2. UK data. Dots denote real-world data, red lines represent the seven-day average. ICU beds with ventilation are shown in the last row. The UK has
far fewer ICU ventilator beds than Germany.

durations, e.g., the time span until an infected individual goes
to the hospital (in days), and

distribution properties, e.g., truncated and translated gamma
distribution,

risk factors depending on demographic groups, e.g., age,
gender.

The online version of the BABSIM.HOSPITAL simulator uses
risk information: every new patient is assigned a unique risk.
Although the ”risk” attribute is an important factor for the
duration and severity of a COVID-19 infection, it was not
considered in our study. However, it can easily be integrated
in future studies. Table III-A presents an overview of the
parameter ranges of the 29 parameters used in the BAB-

SIM.HOSPITAL simulation model.

Proper tuning of these parameters is essential to obtain accu-
rate predictions based on up-to-date and local data. The time-
dependent changes require a frequent refitting of the model
parameters to the current situation. Thus, a daily parameter
tuning procedure is run for each German region in order to
provide an accurate prediction. An initial estimate for each of
the given parameters was specified in cooperation with medical
professionals. For example, the rate of successful treatments in
Germany drastically changed between the first and the second
wave of COVID-19 infections. Also, political decisions on
national and local level can affect the situation significantly.
While reducing the access to nursing homes might reduce



TABLE I
DEFAULT (DE) AND ADAPTED (UK) RANGES OF THE 29 PARAMETERS. PARAMETERS THAT WERE MODIFIED FOR THE UK SETTING ARE SHOWN IN

BOLD FACE. THE PREFIX AmntDays* REFERS TO DURATIONS (IN DAYS), WHEREAS THE PREFIX FactorPatients* REFERS TO
PROPORTIONS/PROBABILITIES. THE COLUMN default SHOWS RECOMMENDATIONS FROM EXPERTS IN GERMANY, minUK AND maxUK DENOTE ADAPTED

RANGES FROM THE UK, AND minDE AND maxDE REPRESENT THE PARAMETER RANGES FROM GERMANY.

Variable Name default minUK maxUK minDE MaxDE
x1 AmntDaysInfectedToHospital 9.5 6 14 6 14
x2 AmntDaysNormalToHealthy 10 7 13 7 13
x3 AmntDaysNormalToIntensive 5 3 7 3 7
x4 AmntDaysNormalToVentilation 3.6 3 9 3 9
x5 AmntDaysNormalToDeath 5 3 7 3 7
x6 AmntDaysIntensiveToAftercare 7 10 18 5 9
x7 AmntDaysIntensiveToVentilation 4 6 10 3 5
x8 AmntDaysIntensiveToDeath 5 6 14 3 7
x9 AmntDaysVentilationToIntensiveAfter 30 25 35 25 35
x10 AmntDaysVentilationToDeath 20 17 25 17 25
x11 AmntDaysIntensiveAfterToAftercare 3 2 5 2 5
x12 AmntDaysIntensiveAfterToDeath 4 1 7 1 7
x13 GammaShapeParameter 1 0.25 2 0.25 2
x14 FactorPatientsInfectedToHospital 0.1 0.05 0.15 0.05 0.15
x15 FactorPatientsHospitalToIntensive 0.09 0.07 0.11 0.07 0.11
x16 FactorPatientsHospitalToVentilation 0.01 0.001 0.004 0.005 0.02
x17 FactorPatientsNormalToIntensive 0.1 0.07 0.13 0.07 0.13
x18 FactorPatientsNormalToVentilation 0.001 2e− 05 0.0004 0.0001 0.002
x19 FactorPatientsNormalToDeath 0.1 0.08 0.12 0.08 0.12
x20 FactorPatientsIntensiveToVentilation 0.3 0.05 0.07 0.25 0.35
x21 FactorPatientsIntensiveToDeath 0.1 0.08 0.12 0.08 0.12
x22 FactorPatientsVentilationToIntensiveAfter 0.7 0.5 0.9 0.5 0.9
x23 FactorPatientsIntensiveAfterToDeath 1e-05 1e-06 0.01 1e-06 0.01
x24 AmntDaysAftercareToHealthy 3 2 4 2 4
x25 RiskFactorA 0.02 1e-06 1.1 1e-06 1.1
x26 RiskFactorB 0.01 1e-06 0.062 1e-06 0.062
x27 RiskMale 1.5 1 2 1 2
x28 AmntDaysIntensiveAfterToHealthy 3 2 5 2 5
x29 FactorPatientsIntensiveAfterToHealthy 0.67 0.5 0.75 0.5 0.75

infections in the high risk parts of the population, opening
schools might cause many infections in the younger parts
of the population. The optimization problem can be stated
as follows: the BABSIM.HOSPITAL simulator requires two
input parameters (vectors), ~xt, the model parameters, and
~ut, the number of infections. Based on these two inputs,
BABSIM.HOSPITAL estimates the required resources—in our
case, the beds, ICU beds, and ICU beds with ventilators. The
simulation output, i.e, the required resources on each day t
will be denoted as ~̂yt, i.e.,

ŷt =
(
R̂bed(t), R̂icu(t), R̂vent(t)

)
(1)

The DES delivers valid results and enables predictions, which
are valuable for capacity planning in hospitals. The simmer
software presents a good basis for implementation and was
able to handle more than half a million data (infections) under
very limited time constraints.

B. The Online-Version

An online version of BABSIM.HOSPITAL, which includes a
graphical user interface, makes the simulator available and ac-
cessible to the public, see https://covid-resource-sim.th-koeln.
de/app/babsim.hospitalvis. Fig. 4 shows a screenshot of this
application.

BABSIM.HOSPITAL is open source. It is programmed in
the R programming language and freely available, see [4].

The online-version is running fully automatically for sev-
eral months. It allows processing the RKI data set, which
consists of more than 750,000 observations of 18 variables,
which are updated daily and are automatically integrated into
BABSIM.HOSPITAL simulator. The Continuous Integration /
Continuous Deployment (CI/CD) approach minimizes human
interaction, so that simulations and optimizations are started
automatically after the data is downloaded.

IV. OPTIMIZATION

Based on the simulation results, optimization runs can be
performed to improve parameter settings proposed by the
experts. The Root Mean Squared Error (RMSE) as shown
in Eq. 2, is used to measure the error of the simulator. We
formulate the minimization problem:

min
∑

k∈{bed,icu,vent}

wk

√√√√ 1

T

T∑
t=1

(
Rk(t)− R̂k(t)

)2
(2)

Here, T denotes the number of days simulated and k the three
different bed categories. Since the different bed types are not
equally important a weighted average of the RMSE for each
bed category is used as the final error measure. A detailed
description can be found in [9].

The extensive amount of data that the tool has to process
combined with the high dimension of the problem, and the
required accuracy make simplifying the modeling process
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Fig. 3. Full model of patient flows in a hospital. Nodes represent states
(Si). Edges represent state changes with associated probabilities (pij ). The
nodes are labeled as follows: Infec: Number of people tested positive for
Covid-19, published by RKI, out: Infected people not hospitalized, hosp:
Hospitalized infected people, normal: Isolation ward, intens: Intensive care
ward without invasive ventilation, vent: Intensive care ward with invasive
ventilation, intafter: Intensive aftercare ward without invasive ventilation,
aftercare: Aftercare isolation ward, healthy: Discharged as recovered, and
death: Deceased. This graph shows the core of BABSIM.HOSPITAL. This
sets BABSIM.HOSPITAL apart from other simulators. It enables a detailed
analysis of the underlying events. Upon request, it can be adapted to the
individual circumstances of interested parties.

to improve performance a big challenge. The limited time
available for each optimization run requires the use of efficient
algorithms.

The following state-of-the-art optimization approaches were
considered:
• stand-alone, standard optimization algorithms, e.g.,

BOBYQA [10], CMA-ES [11], Simulated Anneal-
ing [12],

• response surface methodology and surrogate model-based
optimizers [13],

• parallelized combinations of global with local optimiz-
ers [14],

• massively parallel single-iteration optimizers [15], [16],
and

• SMBO approaches [17].
First, the applicability of these different approaches was tested.
Pre-experimental results revealed that only SMBO approaches
produced good results. Therefore, we decided to use SMBO,
based on the implementation in SPOT [18], [19]. Specifically,
we selected a configuration of SPOT that proceeds as follows.
• SPOT starts with generating and evaluating a set of initial

solutions via a space filling design (here: Latin hypercube
design [20]).

• Then, a surrogate model is trained with the gener-
ated data. Here, a Gaussian process regression model

is trained [6]. The hyperparameters of the model are
determined with maximum likelihood estimation, using
a search strategy from Evolutionary Computation (EC),
specifically, Differential Evolution [21].

• Next, SPOT determines the candidate solution with most
promising performance according to the surrogate model.
This constrained global search is performed with another
EC-Technique: the Improved Stochastic Ranking Evolu-
tion Strategy (ISRES). The constraints are identical to
those of the actual simulator (BABSIM.HOSPITAL), e.g.,
the parameters that represent probabilities of leaving the
same state have to sum up to one.

• The determined candidate solution is evaluated with the
actual, expensive simulation.

• After this SMBO step, a model-free search is employed
to refine the found solution (i.e., the model-free search
uses that solution as a starting point). Here, the same
Algorithm as above (ISRES) is applied to the actual error
measure of the simulator, rather than the surrogate model.

V. ADAPTATION OF THE SEARCH BOUNDARIES

The UK has markedly fewer ICU beds than Germany (6.6
per 100,000 versus 29.2 per 100,000 in 2011 [22]). Therefore,
patients may be treated differently: the clinical threshold for a
patient to be admitted to ICU may be higher than in Germany.
We can adapt the boundaries of the search space (constraints)
to reduce the probability of a patient being sent to ICU.

1) First Adaptation—Reducing Probabilities: To imple-
ment the different setting, we modified the parameter bound-
aries (see Table III-A) as follows: vent, i.e, the ICU with
ventilation node that is colored in orange in Fig. 3) has three
incoming edges: from node normal, node hosp, and node
intens. By introducing a reduction factor, say c1 ∈ R+, that
simply multiplies the default probabilities of patients reaching
the ICU ventilated node, we were able to redirect patients
to other bed categories. Because the sum of the probabilities
of the outgoing edges must be 1.0, the modification of one
probability also changes the probabilities of the associated
edges in the model (see Fig. 3). Choosing a value of c1 = 0.2
results in improved simulation outputs, and plausibly reflects
real-world differences in the provision of ICU beds in the UK
compared to Germany. Please note that c1 does not directly
affect the probabilities, it modifies the search boundaries
(constraints) of the optimizer.

The range of the parameter x16 that describes the proportion
of patients that go directly to ICU with ventilation was reduced
from [0.01; 0.02] to [5.0e − 04; 0.004]. In addition, the range
of the parameter x18, which represents the proportion of
patients that go from normal beds to ICU with ventilation
was reduced from [0.1; 0.2] to [0.02; 0.04]. Furthermore, the
range of parameter x20 that describes the proportion of patients
that go from ICU to ICU with ventilation was reduced from
[0.1; 0.2] to [0.02; 0.04].

As a consequence of the reduced search intervals of x16,
x18, and x20, simulation results of the ventilated ICU beds
were significantly improved.: the numerical RMSE goes down



Fig. 4. Online version. Users are able to select different countries and regions to simulate for, as well as some very general configurations (time window for
the simulation, assumptions about the virus’ reproduction factors, as well as some choices of different visualizations).

from 184.10 to 46.94. This improvement is also validated by
visual inspection as can be seen in the right panel of Fig. 5.

2) Second Adaptation—Increasing Durations: However,
even if the ventilated ICU bed usage was improved (bed
category III), the simulation of the second bed category is
not satisfying. We underestimate the number of ICU beds.
This may be a result of the higher UK threshold for ICU
admission meaning that the average UK ICU patient is more
unwell than the average ICU patient in Germany. To fix this
problem, we modified the duration of patients in ICU beds: the
search intervals of these parameters were increased. Therefore,
a second factor, say c2 ∈ R+ was introduced to multiply the
corresponding durations. A value of c2 = 2.0 was chosen for
our experiments. The range of the parameter x6 that represents
the number of days patients stay at ICU with ventilation before
they go to intensive aftercare was increased from [5; 9] to
[10; 18] days. The range of the parameter x7 that defines the
number of days before ICU patients go to ICU with ventilation
was increased from [3; 5] to [6; 10] days. Finally, the interval of
the parameter x8, which specifies the number of days patients
stay at ICU before they die, was increased from [3; 7] to [6; 14]
days.

VI. RESULTS

The adaptation of the parameter bounds based on do-
main knowledge results in a significant reduction of the
RMSE, which was defined in Eq. 2. Using the default BAB-
SIM.HOSPITAL parameter boundaries, which were based on

the situation in Germany, the simulation error is ε0 = 184.10.
The first adaptation, which reduces the percentage of patients
treated in ICU beds with ventilation, results in a simulation
error ε1 = 46.94, whereas the second adaption, which in-
creases the time patients spend in an ICU bed results in a
further reduction of the simulation error to ε2 = 29.0. In
summary, the adaptation has been shown to reduce simulation
errors by nearly 70%. Figures 5 and 6 clearly visualize the
improvements.

VII. DISCUSSION AND OUTLOOK

The BABSIM.HOSPITAL simulator, an open-source tool
for capacity planning based on discrete event simulation,
was developed over the last year to support doctors, admin-
istrations, health authorities, and crisis teams in Germany.
The high dimension and computational expense of the BAB-
SIM.HOSPITAL simulator poses a challenging optimization
task. Solving this task for many regions in Germany under
very different local circumstances requires efficient solutions
to cope with the further growing infection numbers and thus
also growing simulation run times. A SMBO approach delivers
stable and valid results for every state and region in Germany.

Estimating the effort of transferring the simulator to differ-
ent regions is of great interest. Based on data from the UK,
we demonstrated that an adaption of the search ranges (bound
constraints) of the associated optimizer leads to satisfactory
results.



Fig. 5. Left: Real data compared to results from the BABSIM.HOSPITAL simulation with default parameters. Large residuals (errors), especially for normal
bed and ICU beds with ventilation can be observed. BABSIM.HOSPITAL uses default parameter sets. These are based on domain knowledge (recommendations
from doctors) from Germany. Right: Real data compared to results from the BABSIM.HOSPITAL simulation with optimized parameters. The c1 value was
set to 0.2. Considering the regular ICU beds (category II) there is still a difference between the real data from the UK and the simulated data. Therefore, a
second adaption was necessary.

Fig. 6. Real data compared to results from the BABSIM.HOSPITAL simulation
with optimized parameters. The comparison with the results from Fig. 5 shows
a significant improvement. Residuals are much smaller, because the simulation
model parameters were adapted to the situation in UK hospitals. Additionally,
simulation results for category II beds improved.

The questions posed in Section I can be answered as
follows:
(Q-1) The extended version of the BABSIM.HOSPITAL in-

terface is able to process any input data that contains
information about the date, the number of beds (this
information is optional), the number of patients on
non-invasive ventilation, and the number of patients
intubated and ventilated. Using real-world data from
the UK, we successfully demonstrated how these data
can be processed by the simulator. The adaption from
the German health-care system to the UK system can
be achieved by changing the search ranges of the
optimizer—-and not the absolute parameter values of
the simulator. The modification of these ranges is
much easier than the modification of specific values,
because ranges are easier to specify than point values.

Interestingly, the same factor as the relative number of
ICU beds (c1 was chosen as 1/5, which reflects the
difference in the number of ICU beds in the UK versus
Germany [22]) was useful for the first adaptation (as
even c1 = 1/5 seems extreme until you know how
different the two countries are!). Our study reveals that
simulations with BABSIM.HOSPITAL are not restricted
to the health system in Germany.

(Q-2) This study clearly demonstrates that domain knowledge
is essential for obtaining reliable and valid simulation
results. Especially in high dimensional search spaces,
optimizers can deliver results that are mathematically
optimal, but practically irrelevant. The discussion de-
livers important insights into the problem.

Furthermore, the BABSIM.HOSPITAL simulator can be used
as an attractive simulation and optimization benchmark for EC
algorithms, since it presents a challenging real world problem.
Especially, it provides a benchmark problem that is very noisy,
relatively high-dimensional, has several inequality constraints,
and is expensive to evaluate. It is freely available as open
source, and hence, easily accessible to the research community.
The BABSIM.HOSPITAL simulator was respectively used as
the basis of a competition at the Genetic and Evolutionary
Computation Conference2. Moreover, this work demonstrates
how DES can profit from EC methods, and vice versa. This
is important, since simulation via DES is applicable in a wide
variety of other real world problems (such as the control of
elevators or logistics).

From the real-world applications point of view, knowing
the optimizer’s output in terms of number of days for each
transition in the model, and their probability, is interesting to

2GECCO 2021 Industrial Challenge: Optimization of a simulation model
for a capacity and resource planning task for hospitals under special consid-
eration of the COVID-19 pandemic, see:
https://gecco-2021.sigevo.org/Competitions and
https://tinyurl.com/gecco2021challenge



clinicians. Plausibly it could help compare treatment strategies
where hospitals have acted differently. For example, some
hospitals used a lot of Continuous positive airway pressure
(CPAP) but other centers used less and therefore had to move
to ventilation earlier. One particular advantage of the simulator
for the UK data is estimating how much spare capacity there is
in hospitals for continuing elective surgery such as arranging
cancer operations.

REPRODUCIBILITY

The programming code as well as the data, which was used
in this study, will be published on CRAN as a vignette of
the next version of the R package BABSIM.HOSPITAL, see
https://CRAN.R-project.org/package=babsim.hospital.
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