
Surrogate Model Based Hyperparameter Tuning
for Deep Learning with SPOT

A Preprint

Thomas Bartz-Beielstein, Frederik Rehbach, Amrita Sen, and Martin Zaefferer ∗
Institute for Data Science, Engineering, and Analytics

Technische Hochschule Köln
5164 Gummersbach, Germany

thomas.bartz-beielstein@th-koeln.de

July 20, 2021

Abstract

A surrogate model based hyperparameter tuning approach for deep learning is presented. This
article demonstrates how the architecture-level parameters (hyperparameters) of deep learning
models that were implemented in Keras/tensorflow can be optimized. The implementation
of the tuning procedure is 100% accessible from R, the software environment for statistical
computing. With a few lines of code, existing R packages (tfruns and SPOT) can be combined
to perform hyperparameter tuning. An elementary hyperparameter tuning task (neural
network and the MNIST data) is used to exemplify this approach.

Keywords hyperparameter tuning · deep learning · hyperparameter optimization · surrogate model based
optimization · sequential parameter optimization

1 Introduction

Deep Learning (DL) models require the specification of a set of architecture-level parameters, which are
called hyperparameters. Hyperparameters are to be distinguished from the parameters of a model that are
optimized in the initial loop, e.g., during the training phase via backpropagation. Hyperparameter values are
determined before the model is executed—they remain constant during model development and execution
whereas parameters are modified. We will consider Hyperparameter Tuning (HPT), which is much more
complicated and challenging than parameter optimization (training the weights of a Neural Network (NN)
model).
Typical questions regarding hyperparameters in DL models are as follows:

1. How many layers should be stacked?
2. Which dropout rate should be used?
3. How many filters (units) should be used in each layer?
4. Which activation function should be used?

Empirical studies and benchmarking suites are available, but to date, there is no comprehensive theory that
adequately explains how to answer these questions. Recently, Roberts et al. [2021] presented a first attempt
to develop a DLtheory.
In real-world projects, DL experts have gained profound knowledge over time as to what reasonable hyperpa-
rameters are, i.e., HPT skills are developed. These skills are based on human expert and domain knowledge
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Figure 1: Dataset splitted into three parts: (i) a training set X(train)used to fit the models, (ii) a validation
set X(val)to estimate prediction error for model selection, and (iii) a test set X(test)used for assessment of the
generalization error

and not on valid formal rules. Figure 1 in Kedziora et al. [2020] nicely illustrates how data scientists select
models, specify metrics, preprocess data, etc. Chollet and Allaire [2018] describe the situation as follows:

“If you want to get to the very limit of what can be achieved on a given task, you can’t
be content with arbitrary [hyperparameter] choices made by a fallible human. Your initial
decisions are almost always suboptimal, even if you have good intuition. You can refine
your choices by tweaking them by hand and retraining the model repeatedly—that’s what
machine-learning engineers and researchers spend most of their time doing.
But it shouldn’t be your job as a human to fiddle with hyperparameters all day—that is
better left to a machine.”

HPT develops tools to explore the space of possible hyperparameter configurations systematically, in a
structured way. For a given space of hyperparameters Λ, a Deep Neural Network (DNN) model A with
hyperparameters λ, training, validation, and testing data X(train), X(val)and X(test), respectively, a loss
function L, and a hyperparameter response surface function ψ, e.g., mean loss, the basic HPT process looks
like this2:

(HPT-1) Set t = 1. Parameter selection (at iteration t). Choose a set of hyperparameters from the space of
hyperparameters, λ(t) ∈ Λ.

(HPT-2) DNN model building. Build the corresponding DNN model Aλ(t).
(HPT-3) DNN model training and evaluation. Fit the model Aλ(t) to the training data X(train)(see Figure 1)

and measure the final performance, e.g., expected loss, on the validation data X(val), i.e.,

ψ(val) = 1
|X(val)|

∑
x∈X(val)

L
(
x;Aλ(t)(X(train))

)
, (1)

where L denotes a loss function. Under k-fold Cross Validation (CV) the performance measure
from Equation 1 can be written as

ψ
(val)
CV = 1

k

k∑
i=1

1
|X(val)|

∑
x∈X(val)

i

L
(
x;Aλ(t)(X(train)

i )
)
, (2)

because the training and validation set partitions are build k times.
(HPT-4) Parameter update. The next set of hyperparameters to try, λ(t + 1), is chosen accordingly to

minimize the performance, e.g., ψ(val).
(HPT-5) Looping. Repeat until budget is exhausted.
(HPT-6) Final evaluation of the best hyperparameter set λ(∗) on test (or development) data X(test), i.e.,

measuring performance on the test (hold out) data

ψ(test) = 1
|X(test)|

∑
x∈X(test)

L
(
x;Aλ(∗)(X(train ∪ val))

)
. (3)

Essential for this process is the HPT algorithm in (HPT-4) that uses the validation performance to determine
the next set of hyperparameters to evaluate. Updating hyperparameters is extremely challenging, because it

2Symbols used in this study are summarized in Table 1.
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requires creating and training a new model on a dataset. And, the hyperparameter space Λ is not continuous
or differentiable, because it also includes discrete decisions. Standard gradient methods are not applicable in
Λ. Instead, gradient-free optimization techniques, e.g., pattern search or Evolution Strategies (ESs), which
sometimes are far less efficient than gradient methods, are applied.
The following HPT approaches are popular:

• manual search,
• simple random search, i.e., choosing hyperparameters to evaluate at random, repeatedly,
• grid and pattern search [Meignan et al. 2015] [Lewis et al. 2000] [Tatsis and Parsopoulos 2016],
• model free algorithms, i.e., algorithms that do not explicitly make use of a model, e.g., ESs [Hansen

2006] [Bartz-Beielstein et al. 2014],
• hyperband, i.e., a multi-armed bandit strategy that dynamically allocates resources to a set of random

configurations and uses successive halving to stop poorly performing configurations[Li et al. 2016],
• Surrogate Model Based Optimization (SMBO) such as Sequential Parameter Optimization Toolbox

(SPOT), [Bartz-Beielstein et al. 2005], and [Bartz-Beielstein et al. 2021].3

Manual search and grid search are probably the most popular algorithms for HPT. Interestingly, Bergstra and
Bengio [2012] demonstrate empirically and show theoretically that randomly chosen trials are more efficient
for HPT than trials on a grid. Because their results are of practical relevance, they are briefly summarized
here: In grid search the set of trials is formed by using every possible combination of values, grid search
suffers from the curse of dimensionality because the number of joint values grows exponentially with the
number of hyperparameters.

“For most data sets only a few of the hyperparameters really matter, but that different
hyperparameters are important on different data sets. This phenomenon makes grid search a
poor choice for configuring algorithms for new data sets”[Bergstra and Bengio 2012].

The observation that only a few of the parameters matter can also be observed in the engineering domain,
where parameters such as pressure or temperature play a dominant role. In contrast to DL, this set of
important parameters does not change fundamentally in different situations. We assume that the high
variance in the set of important DL hyperparameters is caused by confounding.
Let Ψ denote the space of hyperparameter response functions (as defined in the Appendix, see Definition
5). Bergstra and Bengio [2012] claim that random search is more efficient than grid search because a
hyperparameter response function ψ ∈ Ψ usually has a low effective dimensionality; essentially, ψ is more
sensitive to changes in some dimensions than others [Caflisch et al. 1997].
Due to its simplicity, it turns out in many situations, especially in high-dimensional spaces, that random
search is the best solution. Hyperband should also mentioned in this context, although it can result in a
worse final performance than model-based approaches, because it only samples configurations randomly and
does not learn from previously sampled configurations [Li et al. 2016]. Bergstra and Bengio [2012] note
that random search can probably be improved by automating what manual search does, i.e., using SMBO
approaches such as SPOT.
HPT is a powerful technique that is an absolute requirement to get to state-of-the-art models on any real-world
learning task, e.g., classification and regression. However, there are important issues to keep in mind when
doing HPT: for example, validation-set overfitting can occur, because hyperparameters are optimized based
on information derived from the validation data.
Falkner et al. [2018] claim, that practical Hyperparameter Optimization (HPO) solutions should fulfill the
following requirements:

• strong anytime and final performance,
• effective use of parallel resources,
• scalability, as well as robustness and flexibility.

3The acronym SMBO originated in the engineering domain [Booker et al. 1999], [Mack et al. 2007]. It is also
popular in the Machine Learning (ML) community, where it stands for sequential model-based optimization. We will
use the terms sequential model-based optimization and surrrogate model-based optimization synonymously.
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In the context of benchmarking, a treatment for these issues was proposed by Bartz-Beielstein et al. [2020].
Although their recommendations (denoted as (R-1) to (R-8)) were developed for benchmark studies in
optimization, they are also relevant for HPT, because HPT can be seen as a special benchmarking variant.

(R-1) Goals: what are the reasons for performing HPT? Improving an existing solution, finding a solution for
a new, unknown problem, or benchmarking two models are only three examples with different goals.

(R-2) Problems: how to select suitable problems? Can surrogates accelerate the tuning?
(R-3) Algorithms: how to select a portfolio of DL algorithms to be included in the HPT study?
(R-4) Performance: how to measure performance?
(R-5) Analysis: how to evaluate results? Hypothesis testing, rank-based comparisons.
(R-6) Design: how to set up a study, e.g., how many runs shall be performed? Tools from Design of

Experiments (DOE) are highly recommended.
(R-7) Presentation: how to describe results? Presentation for the management of publication in a journal?
(R-8) Reproducibility: how to guarantee scientifically sound results and how to guarantee a lasting impact,

e.g., in terms of comparability?

In addition to these recommendations, there are some specific issues that are caused by the DL setup. These
will be discussed in Sec. 5.
Note, some authors used the terms HPT and HPO synonymously. In the context of our analysis, these terms
have different meanings:

HPO develops and applies methods to determine the best hyperparameters in an effective and efficient
manner.

HPT develops and applies methods that try to analyze the effects and interactions of hyperparameters to
enable learning and understanding.

This article proposes a HPT approach based on SPOT that focuses on the following topics:

Limited Resources. We focus on situations, where limited computational resources are available. This
may be simply due the availability and cost of hardware, or because confidential data has to be
processed strictly locally.

Understanding. In contrast to standard HPO approaches, SPOT provides statistical tools for understanding
hyperparameter importance and interactions between several hyperparameters.

Transparency and Explainability. Understanding is a key tool for enabling transparency, e.g., quantifying
the contribution of DL components (layers, activation functions, etc.).

Reproducibility. The software code used in this study is available in the open source R software environment
for statistical computing and graphics (R) package SPOT via the Comprehensive R Archive Network
(CRAN). SPOT is a well-established open-source software, that is maintained for more than 15 years
[Bartz-Beielstein et al. 2005].

For sure, we are not seeking the overall best hyperparameter configuration that results in a NN which
outperforms any other NN in every problem domain [Wolpert and Macready 1997]. Results are specific for
one problem instance—their generalizibility to other problem instances or even other problem domains is not
self-evident and has to be proven [Haftka 2016].
This paper is structured as follows: Section 2 describes materials and methods that were used for the
experimental setup. Experiments are described in Sec. 3. Section 4 presents results from a simple experiment.
A discussion is presented in Sec. 5. The appendix contains information on how to set up the Python software
environment for performing HPT with SPOT and Training Run Tools for TensorFlow (tfruns). Source code for
performing the experiments will included in the R package SPOT. Further information are published on https:
//www.spotseven.de and, with some delay, on CRAN (https://cran.r-project.org/package=SPOT).

2 Materials and Methods

2.1 Hyperparameters

Typical hyperparameters that are used to define DNNs’ are as follows:

4
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Table 1: Symbols used in this paper

Sym-
bol

Name Comment, Example

A algorithm
Gx natural (ground truth) distribution
x data point
X data usually partitioned into training, validation,

and test data
X(train) training data
X(valid) validation data
X(test) test data
t iteration counter counter for the SPOT models, i.g., the t-th

SPOT metamodel will be denoted as M(t)

λ hyperparameter configuration
λi i-th hyperparameter configuration used in SMBO

λ(∗) best hyperparameter configuration best configuration in theory
λ̂ best hyperparameter configuration obtained by

evaluating a finite set of samples
best configuration “in practice”

Λ hyperparameter space
Ψ hyperparameter response space
ψi hyperparameter response surface function

evaluated for the i-th hyperparameter
configuration λi

ψ(train) hyperparameter response surface function (on
train data)

ψ(test) hyperparameter response surface function (on
test data)

as defined in Equation 3

ψ(val) hyperparameter response surface function (on
validation data)

as defined in Equation 1

• optimization algorithms, e.g., Root Mean Square Propagation (RMSProp) (implemented in Keras as
optimizer_rmsprop() ) or ADAptive Moment estimation algorithm (ADAM) (optimizer_adam() ).
These will be discussed in Sec.2.2.1.

• loss functions, e.g., Mean Squared Error (MSE) (loss_mean_squared_error()), Mean Ab-
solute Error (MAE) (loss_mean_absolute_error()), or Categorical Cross Entropy (CCE)
(loss_categorical_crossentropy()). The actual optimized objective is the mean of the output array
across all datapoints.

• learning rate
• activation functions
• number of hidden layers and hidden units
• size of the training batches
• weight initialization schemes
• regularization penalties
• dropout rates. Dropout is a commonly used regularization technique for DNNs. Applied to a layer,

dropout consists of randomly setting to zero (dropping out) a percentage of output features of the
layer during training [Chollet and Allaire 2018].

• batch normalization

Example 1 (Conditionally dependent hyperparameters; Mendoza et al. [2019]). This example illustrates that
some hyperparameters are conditionally dependent on the number of layers. Mendoza et al. [2019] consider
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Network hyperparameters, e.g., batch size, number of updates, number of layers, learning rate, L2
regularization, dropout output layer, solver type (SGD, Momentum, ADAM, Adadelta, Adagrad,
smorm, Nesterov), learning-rate policy (fixed, inv, exp, step)

Parameters conditioned on solver type, e.g., β1 and β2, ρ, MOMENTUM,

Parameters conditioned on learning-rate policy, e.g., γ, k, and s,

Per-layer hyperparameters, e.g., activation-type (sigmoid, tanH, ScaledTanH, ELU, ReLU, Leaky, Lin-
ear), number of units, dropout in layer, weight initialization (Constant, Normal, Uniform, Glorot-
Uniform, Glorot-Normal, He-Normal), std. normal init., leakiness, tanh scale in/out.

For practical reasons, Mendoza et al. [2019] constrained the number of layers to be between one and six: firstly,
they aimed to keep the training time of a single configuration low, and secondly each layer adds eight per-layer
hyperparameters to the configuration space, such that allowing additional layers would further complicate the
configuration process.

2.2 Hyperparameter: Features

This section considers some properties, which are specific to DNN hyperparameters.

2.2.1 Optimizers

Choi et al. [2019] considered RMSProp with momentum [Tieleman and Hinton 2012], ADAM [Kingma and
Ba 2015] and ADAM [Dozat 2016] and claimed that the following relations holds:

SGD ⊆Momentum ⊆ RMSProp
SGD ⊆Momentum ⊆ Adam
SGD ⊆ Nesterov ⊆ NAdam

Example 2 (ADAM can approximately simulate MOMENTUM). MOMENTUM can be approximated with
ADAM, if a learning rate schedule that accounts for ADAM’s bias correction is implemented.

Choi et al. [2019] demonstrated that these inclusion relationships are meaningful in practice. In the context
of HPT and HPO, inclusion relations can significantly reduce the complexity of the experimental design.
These inclusion relations justify the selection of a basic set, e.g., RMSProp, ADAM, and Nesterov-accelerated
Adaptive Moment Estimation (NADAM).

2.2.2 Batch Size

Shallue et al. [2019] and Zhang et al. [2019] have shown empirically that increasing the batch size can increase
the gaps between training times for different optimizers.

2.3 Performance Measures for Hyperparameter Tuning

2.3.1 Measures

Kedziora et al. [2020] state that “unsurprisingly”, accuracy4 is considered as the most important performance
measure. Accuracy might be adequate, if data is balanced. For unbalanced data, other measures are better.
In general, there are many other ways to measure model quality, e.g., metrics based on time complexity and
robustness or the model complexity (interpretability) [Bartz-Beielstein et al. 2020].
In contrast to classical optimization, where the same optimization function can be used for tuning and final
evaluation, training of DNNs faces a different situation:

• training is based on the loss function,
• whereas the final evaluation is based on a different measure, e.g., accuracy.

The loss function acts as a surrogate for the performance measure the user is finally interested in. Several
performance measures are used at different stages of the HPO procedures:

4Accuracy in binary classification is the proportion of correct predictions among the total number of observations
[Metz 1978].
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1. training loss, i.e., ψ(train),
2. training accuracy, i.e., f (train)

acc ,
3. validation loss, i.e., ψ(val),
4. validation accuracy, i.e., f (val)

acc ,
5. test loss, i.e., ψ(test), and
6. test accuracy, i.e., f (test)

acc .

This complexity gives reason for the following question:

Question: Which performance measure should be used during the HPT (HPO) procedure?

Most authors recommend using test accuracy or test loss as the measure for hyperparameter tuning [Schneider
et al. 2019]. In order to understand the correct usage of these performance measures, it is important to look
at the goals, i.e., selection or assessment, of a tuning study.

2.3.2 Model Selection and Assessment

Hastie et al. [2017] stated that selection and assessment are two separate goals:

Model selection, i.e., estimating the performance of different models in order to choose the best one. Model
selection is important during the tuning procedure, whereas model assessment is used for the final
report (evaluation of the results).

Model assessment, i.e., having chosen a final model, estimating its prediction error (generalization error)
on new data. Model assessment is performed to ascertain whether predicted values from the model
are likely to accurately predict responses on future observations or samples not used to develop the
model. Overfitting is a major problem in this context.

In principle, there are two ways of model assessment and selection: internal versus external. In the following,
N denotes the total number of samples.

External assessment uses different sets of data. The first m data samples are for model training and
N −m for validation. Problem: holding back data from model fitting results in lower precision and
power.

Internal Assessment uses data splitting and resampling methods. The true error might be underestimated,
because the same data samples that were used for fitting the model are used for prediction. The
so-called in-sample (also apparent, or resubstitution) error is smaller than the true error.

In a data-rich situation, the best approach for both problems is to randomly divide the dataset into three
parts:

1. a training set to fit the models,
2. a validation set to estimate prediction error for model selection, and
3. a test set for assessment of the generalization error of the final chosen model.

The test set should be brought out only at the end of the data analysis. It should not be used during the
training and validation phase. If the test set is used repeatedly, e.g., for choosing the model with smallest
test-set error, “the test set error of the final chosen model will underestimate the true test error, sometimes
substantially.” [Hastie et al. 2017]
The following example 3 shows that there is no general agreement on how to use training, validation, and
test sets as well as the associated performance measures.
Example 3 (Basic Comparisons in Manual Search). Wilson et al. [2017] describe a manual search. They
allocated a pre-specified budget on the number of epochs used for training each model.

• When a test set was available, it was used to chose the settings that achieved the best peak performance
on the test set by the end of the fixed epoch budget.
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• If no explicit test set was available, e.g., for Canadian Institute for Advanced Research, 10 classes
(CIFAR-10), they chose the settings that achieved the lowest training loss at the end of the fixed epoch
budget.

Theoretically, in-sample error is not usually of interest because future values of the hyperparameters are not
likely to coincide with their training set values. Bergstra and Bengio [2012] stated that because of finite data
sets, test error is not monotone in validation error, and depending on the set of particular hyperparameter
values λ evaluated, the test error of the best-validation error configuration may vary, e.g.,

ψ
(train)
i < ψ

(train)
j 6=⇒ ψ

(test)
i < ψ

(test)
j , (4)

where ψ(·)
i denotes the value of the hyperparameter response surface for the i-th hyperparameter configuration

λi.
Furthermore, the estimator, e.g., for loss, obtained by using a single hold-out test set usually has high variance.
Therefore, CV methods were proposed. Hastie et al. [2017] concluded

“that estimation of test error for a particular training set is not easy in general, given just
the data from that same training set. Instead, cross-validation and related methods may
provide reasonable estimates of the expected error.”

The standard practice for evaluating a model found by CV is to report the hyperparameter configuration
that minimizes the loss on the validation data, i.e., λ̂ as defined in Equation 10. Repeated CV is considered
standard practice, because it reduces the variance of the estimator. k-fold CV results in a more accurate
estimate as well as in some information about its distribution. There is, as always, a trade-off: the more CV
folds the better the estimate, but more computational time is needed.
When different trials have nearly optimal validation means, then it is not clear which test score to report:
small changes in the hyperparameter values could generate a different test error.
Example 4 (Reporting the model assessment (final evaluation) [Bergstra and Bengio 2012]). When reporting
performance of learning algorithms, it can be useful to take into account the uncertainty due to the choice
of hyperparameters values. Bergstra and Bengio [2012] present a procedure for estimating test set accuracy,
which takes into account any uncertainty in the choice of which trial is actually the best-performing one.
To explain this procedure, they distinguish between estimates of performance ψ(val) and ψ(test) based on the
validation and test sets, respectively.
To resolve the difficulty of choosing a winner, Bergstra and Bengio [2012] reported a weighted average of all
the test set scores, in which each one is weighted by the probability that its particular λs is in fact the best. In
this view, the uncertainty arising from X(valid) being a finite sample of the natural (ground truth) distribution
Gx makes the test-set score of the best model among {λi}i=1,2,...,S a random variable, z.

2.4 Practical Considerations

Unfortunately, training, validation, and test data are used inconsistently in HPO studies: for example, Wilson
et al. [2017] selected training loss, ψ(train), (and not validation loss) during optimization and reported results
on the test set ψ(test).
Choi et al. [2019] considered this combination as a “somewhat non-standard choice” and performed tuning
(optimization) on the validation set, i.e., they used ψ(val)for tuning, and reported results ψ(test)on the test
set. Their study allows some valuable insight into the relationship of validation and test error:

“For a relative comparison between models during the tuning procedure, in-sample error
is convenient and often leads to effective model selection. The reason is that the relative
(rather than absolute performance) error is required for the comparisons.” [Choi et al. 2019]

Choi et al. [2019] compared the final predictive performance of NN optimizers after tuning the hyperparameters
to minimize validation error. They concluded that their “final results hold regardless of whether they compare
final validation error, i.e., ψ(val), or test error, i.e., ψ(test)”. Figure 1 in Choi et al. [2019] illustrates that the
relative performance of optimizers stays the same, regardless of whether the validation or the test error is
used. Choi et al. [2019] considered two statistics: (i) the quality of the best solution and (ii) the speed of
training, i.e., the number of steps required to reach a fixed validation target.
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2.4.1 Some Considerations about Cross Validation

There are some drawbacks of k-fold CV: at first, the choice of the number of observations to be hold out from
each fit is unclear: if m denotes the size of the training set, with k = m, the CV estimator is approximately
unbiased for the true (expected) prediction error, but can have high variance because the m “training sets”
are similar to one another. The computational costs are relatively high, because m evaluations of the model
are necessary. Secondly, the number of repetitions needed to achieve accurate estimates of accuracy can be
large. Thirdly, CV does not fully represent variability of variable selection: if m subjects are omitted each
time from set of N , the sets of variables selected from each sample of size N −m are likely to be different
from sets obtained from independent samples of N subjects. Therefore, CV does not validate the full N
subject model. Note, Monte-Carlo CV is an improvement over standard CV [Picard and Cook 1984].

2.5 Related Work

Before presenting the elements (benchmarks and software tools) for the experiments in Sec. 2.7, we consider
existing, related approaches that might be worth looking at. This list is not complete and will be updated in
forthcoming versions of this paper.

2.5.1 Hyperparameter Optimization Software and Benchmark Studies

SMBO based on Kriging (aka Gaussian processes or Bayesian Optimization (BO)) has been successfully
applied to HPT in several works, e.g., Bartz-Beielstein and Markon [2004] propose a combination of classical
statistical tools, BO (Design and Analysis of Computer Experiments (DACE)), and Classification and
Regression Trees (CART) as a surrogate model. The integration of CART made SMBO applicable to more
general HPT problems, e.g., problems with categorical parameters. Hutter et al. [2011] presented a similar
approach by proposing Sequential Model-Based Optimization for General Algorithm Configuration (SMAC)
as a tuner that is capable of handling categorical parameters by using surrogate models based on random
forests. Similar to the Optimal Computing Budget Allocation (OCBA) approach in SPOT, Hutter et al.
[2011] implemented an intensification mechanism for handling multiple instances. Early SPOT versions used
a very simple intensification mechanism: (i) the best solution is evaluated in each iteration and (ii) new
candidate solutions, that were proposed by the surrogate model, are evaluated as often as the current best
solution. This simple intensification strategy was replaced by the more sophisticated OCBA strategy in
SPOT [Bartz-Beielstein et al. 2011].
HPO developed very quickly, new branches and extensions were proposed, e.g., Combined Algorithm Selection
and Hyperparameter optimization (CASH), Neural Architecture Search (NAS), Automated Hyperparameter
and Architecture Search (AutoHAS), and further “Auto-*” approaches [Thornton et al. 2013], [Dong et al.
2020]. Kedziora et al. [2020] analyzed what constitutes these systems and survey developments in HPO,
multi-component models, NN architecture search, automated feature engineering, meta-learning, multi-level
ensembling, dynamic adaptation, multi-objective evaluation, resource constraints, flexible user involvement,
and the principles of generalization. The authors developed a conceptual framework to illustrate one possible
way of fusing high-level mechanisms into an autonomous ML system. Autonomy is considered as the capability
of ML systems to independently adjust their results even in dynamically changing environments. They
discuss how Automated Machine Learning (AutoML) can be transformed into Autonomous Machine Learning
(AutonoML), i.e, the systems are able to independently “design, construct, deploy, and maintain” ML models
similar to the Cognitive Architecture for Artificial Intelligence (CAAI) approach presented by Strohschein
et al. [2021]. Because Kedziora et al. [2020] already presented a comprehensive overview of this development,
we will list the most relevant “highlights” in the following.
Snoek et al. [2012] used the CIFAR-10 dataset, which consists of 60, 000 32× 32 colour images in ten classes,
for optimizing the hyperparameters of a Convolutional Neural Networks (CNNs).
Bergstra et al. [2013] proposed a meta-modeling approach to support automated HPO, with the goal of
providing practical tools that replace hand-tuning. They optimized a three layer CNN.
Eggensperger et al. [2013] collected a library of HPO benchmarks and evaluated three BO methods. They
considered the HPO problem under k-fold CV as a minimization problem of ψ(val) as defined in Equation 2.
Zoph et al. [2017] studied a new paradigm of designing CNN architectures and describe a scalable method to
optimize these architectures on a dataset of interest, for instance the ImageNet classification dataset.
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Balaprakash et al. [2018] presented DeepHyper, a Python package that provides a common interface for the
implementation and study of scalable hyperparameter search methods.
Karmanov et al. [2018] created a “Rosetta Stone” of DL frameworks to allow data-scientists to easily leverage
their expertise from one framework to another. They provided a common setup for comparisons across GPUs
(potentially CUDA versions and precision) and for comparisons across languages (Python, Julia, R). Users
should be able to verify expected performance of own installation.
Mazzawi et al. [2019] introduced a NAS framework to improve keyword spotting and spoken language
identification models.
Mendoza et al. [2019] introduced Auto-Net, a system that automatically configures NN with SMAC by
following the same AutoML approach as Auto-WEKA and Auto-sklearn. They achieved the best performance
on two datasets in the human expert track of an AutoMLChallenge.
O’Malley et al. [2019] presented Keras tuner, a hyperparameter tuner for Keras with TensorFlow 2.0. They
defined a model-building function, which takes an argument from which hyperparameters such as the units
(hidden nodes) of the neural network. Available tuners are RandomSearch and Hyperband.
Because optimizers can affect the DNN performance significantly, several tuning studies devoted to optimizers
were published during the last years: Schneider et al. [2019] introduced a benchmarking framework called
Deep Learning Optimizer Benchmark Suite (DeepOBS), which includes a wide range of realistic DL problems
together with standardized procedures for evaluating optimizers. Schmidt et al. [2020] performed an extensive,
standardized benchmark of fifteen particularly popular DL optimizers.
A highly recommended study was performed by Choi et al. [2019], who presented a taxonomy of first-
order optimization methods. Furthermore, Choi et al. [2019] demonstrated the sensitivity of optimizer
comparisons to the hyperparameter tuning protocol. Optimizer rankings can be changed easily by modifying
the hyperparameter tuning protocol. Their findings raised serious questions about the practical relevance
of conclusions drawn from certain ways of empirical comparisons. They also claimed that tuning protocols
often differ between works studying NN optimizers and works concerned with training NNs to solve specific
problems.
Zimmer et al. [2020] developed Auto-PyTorch, a framework for Automated Deep Learning (AutoDL) that
uses Bayesian Optimization HyperBand (BOHB) as a backend to optimize the full DL pipeline, including
data preprocessing, network training techniques and regularization methods.
Mazzawi and Gonzalvo [2021] presented Google’s Model Search, which is an open source platform for finding
optimal ML models based on TensorFlow (TF). It does not focus on a specific domain.
Wistuba et al. [2019] described how complex DL architectures can be seen as combinations of a few elements,
so-called cells, that are repeated to build the complete network. Zoph and Le [2016] were the first who
proposed a cell-based approach, i.e., choices made about a NN architecture is the set of meta-operations
and their arrangement within the cell. Another interesting example are function-preserving morphisms
implemented by the Auto-Keras package to effectively traverse potential networks Jin et al. [2019].
Tunability is an interesting concept that should be mentioned in the context of HPT [Probst et al. 2019].
The term tunability/ describes a measure for modeling algorithms as well as for individual hyperparameters.
It is the difference between the model quality for default values (or reference values) and the model quality
for optimized values (after HPT is completed). Or in the words of Probst et al. [2019]: “measures for
quantifying the tunability of the whole algorithm and specific hyperparameters based on the differences
between the performance of default hyperparameters and the performance of the hyperparameters when this
hyperparameter is set to an optimal value”. Tunability of individual hyperparameters can also be used as a
measure of their relevance, importance, or sensitivity. Hyperparameters with high tunability are accordingly
of greater importance for the model. The model reacts strongly to (i.e., is sensitive to) changes in these
hyperparameters. The hope is that identifying tunable hyperparameters, i.e., ones that model performance is
particularly sensitive to, will allow other settings to be ignored, constraining search space. Unfortunately,
tunability strongly depends on the choice of the dataset, which makes generalization of results very difficult.
To conclude this overview, we would like to mention relevant criticism of HPO: some publications even
claimed that extensive HPO is not necessary.

1. Erickson et al. [2020] introduced a framework (AutoGluon-Tabular) that “requires only a single line
of Python to train highly accurate machine learning models on an unprocessed tabular dataset such
as a CSV file”. AutoGluon-Tabular ensembles several models and stacks them in multiple layers.
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Table 2: The hyperparameters and architecture choices for the fully connected networks as defined in Falkner
et al. [2018]

Hyperparameter Lower Bound Upper Bound Log-transform
batch size 23 28 yes
dropout rate 0 0.5 no
initial learning rate 1e− 6 1e− 2 yes
exponential decay factor −0.185 0 no
# hidden layers 1 5 no
# units per layer 24 28 yes

The authors claim that AutoGluon-Tabular outperforms AutoML platforms such as TPOT, H2O,
AutoWEKA, auto-sklearn, AutoGluon, and Google AutoML Tables.

2. Yu et al. [2020] claimed that the evaluated state-of-the-art NAS algorithms do not surpass random
search by a significant margin, and even perform worse in the Recurrent Neural Network (RNN)
search space. Balaji and Allen [2018] reported a multitude of issues when attempting to execute
automatic ML frameworks. For example, regarding the random process, the authors state that “one
common failure is in large multi-class classification tasks in which one of the classes lies entirely on
one side of the train test split”.

3. Liu [2018] remarks that “for most existent AutoML works, regardless of the number of layers of the
outer-loop algorithms, the configuration of the outermost layer is definitely done by human experts”.
Human experts are shifted to a higher level, and are still in the loop.

4. Li and Talwalkar [2019] stated that (i) better baselines that accurately quantify the performance gains
of NAS methods, (ii) ablation studies (to learn about the NN by removing parts of it) that isolate
the impact of individual NAS components, and (iii) reproducible results that engender confidence
and foster scientific progress are necessary.

2.5.2 Artificial Toy Functions

Because BO does not work well on high-dimensional mixed continuous and categorical configuration spaces,
Falkner et al. [2018] used a simple counting ones problem to analyze this problem. Zaefferer and Bartz-
Beielstein [2016] discussed these problems in greater detail. How to implement BO for discrete (and continuous)
optimization problems was analyzed in the seminal paper by Bartz-Beielstein and Zaefferer [2017].

2.5.3 Experiments on Surrogate Benchmarks

Falkner et al. [2018] optimized six hyperparameters that control the training procedure of a fully connected
DNN (initial learning rate, batch size, dropout, exponential decay factor for learning rate) and the architecture
(number of layers, units per layer) for six different datasets gathered from OpenML [Vanschoren et al. 2014],
see Table 2.
Falkner et al. [2018] used a surrogate DNN as a substitute for training the networks directly, . To build a
surrogate, they sampled 10, 000 random configurations for each data set, trained them for 50 epochs, and
recorded classification error after each epoch, and total training time. Two independent random forests models
were fitted to predict these two quantities as a function of the hyperparameter configuration used. Falkner
et al. [2018] noted that Hyperband (HB) initially performed much better than the vanilla BO methods and
achieved a roughly three-fold speedup over random search.
Instead of using a surrogate network, we will use the original DNNs. Our approach is described in Sec.3.

2.6 Stochasticity

Results from DNN tuning runs are noisy, e.g., caused by random sampling of batches and initial parameters.
Repeats to estimate means and variances that are necessary for a sound statistical analysis require substantial
computational costs.
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2.7 Software: Keras, Tensorflow, tfruns, and SPOT

2.7.1 Keras and Tensorflow

Keras is the high-level Application Programming Interface (API) of TF, which is developed with a focus on
enabling fast experimentation. TF is an open source software library for numerical computation using data
flow graphs [Abadi et al. 2016]. Nodes in the graph represent mathematical operations, while the graph edges
represent the multidimensional data arrays (tensors) communicated between them [O’Malley et al. 2019].
The tensorflow R package provides access to the complete TF API from within R.

2.7.2 The R Package tfruns

The R package tfruns5 provides a suite of tools for tracking, visualizing, and managing TF training runs and
experiments from R. tfruns enables tracking the hyperparameters, metrics, output, and source code of every
training run and comparing hyperparameters and metrics across runs to find the best performing model. It
automatically generates reports to visualize individual training runs or comparisons between runs. tfruns can
be used without any changes to source code, because run data is automatically captured for all Keras and
TF models.

2.7.3 SPOT

The SPOT package for R is a toolbox for tuning and understanding simulation and optimization algorithms
[Bartz-Beielstein et al. 2021]. SMBO investigations are common approaches in simulation and optimization.
Sequential parameter optimization has been developed, because there is a strong need for sound statistical
analysis of simulation and optimization algorithms. SPOT includes methods for tuning based on classical
regression and analysis of variance techniques; tree-based models such as CART and random forest; BO
(Gaussian process models, aka Kriging), and combinations of different meta-modeling approaches.
SPOT implements key techniques such as exploratory fitness landscape analysis and sensitivity analysis.
SPOT can be used for understanding the performance of algorithms and gaining insight into algorithm’s
behavior. Furthermore, SPOT can be used as an optimizer and for automatic and interactive tuning. SPOT
finds improved solutions in the following way:

1. Initially, a population of (random) solutions is created.
2. A set of surrogate models is specified.
3. Then, the solutions are evaluated on the objective function.
4. Next, surrogate models are built.
5. A global search is performed on the surrogate model(s) to generate new candidate solutions.
6. The new solutions are evaluated on the objective function, e.g., the loss is determined.

These steps are repeated, until a satisfying solution has been found as described in Bartz-Beielstein et al.
[2021].

SPOT Surrogate Models SPOT performs model selection during the tuning run: training data X(train)

is used for fitting (training) the models, e.g., the weights of the DNNs. Each trained model Aλi

(
X(train))

will be evaluated on the validation data X(val), i.e., the loss is calculated as

ψ
(val)
i = 1

|X(val)|
∑

x∈X(val)

L
(
x;Aλi(X(train))

)
. (5)

Based on (λi, ψ(val)
i ), a surrogate model M(t) is fitted, e.g., a BO (Kriging) model using SPOT’s buildKriging

function. Figure 2 shows one example.
For each hyperparameter configuration λi, SPOT reports information about the related DNN models Aλi

1. training loss, ψ(train),
5https://cran.r-project.org/package=tfruns, https://tensorflow.rstudio.com/tools/tfruns
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Figure 2: Perspective plot of the surrogate model used by SPOT in this study

2. training accuracy, f (train)
acc ,

3. validation (testing) loss, ψ(val), and

4. validation (testing) accuracy, f (val)
acc .

Output from a typical run is show in Figure 3.

3 Experiments: Tuning Hyperparameters with SPOT

How the software packages (Keras, TF, tfruns, and SPOT) can be combined in a very efficient and effective
manner will be exemplified in this section. The general DNN workflow is as follows: first the training
data, train_images and train_labels are fed to the DNN. The DNN will then learn to associate images
and labels. Based on the Keras parameter validation_split, the training data will be partitioned into a
(smaller) training data set and a validation data set. The corresponding code is shown in Sec. 3.1. The
trained DNN produces predictions for validations.

3.1 The Data Set: MNIST

The DNN in this example uses the Keras R package to learn to classify hand-written digits from the
Modified National Institute of Standards and Technology (MNIST) data set. This is a supervised multi-class
classification problem, i.e., grayscale images of handwritten digits (28 × 28 pixels) should be assigned to
ten categories (0 to 9). MNIST is a set of 60, 000 training and 10, 000 test images. The MNIST data set is
included in Keras as train and test lists, each of which includes a set of images (x) and associated labels
(y): train_images and train_labels form the training set, the data that the DNN will learn from. The
DNN can be tested on the X(test)set (test_images and test_labels). The images are encoded as as 3D
arrays, and the labels are a 1D array of digits, ranging from 0 to 9.
Before training the DNN, the data are preprocessed by reshaping it into the shape the DNN can process.
The natural (original) training images were stored in an array of shape (60000, 28, 28) of type integer with
values in the [0, 255] interval. They are transformed into a double array of shape (60000, 28× 28) with Red,
Green, and Blue color space (RGB) values between 0 and 1, i.e., all values will be scaled that they are in the
[0, 1] interval. Furthermore, the labels are categorically encoded.

mnist <- dataset_mnist()
x_train <- mnist$train$x

13



A preprint - July 20, 2021

y_train <- mnist$train$y
x_test <- mnist$test$x
y_test <- mnist$test$y

dim(x_train) <- c(nrow(x_train), 784)
dim(x_test) <- c(nrow(x_test), 784)

x_train <- x_train / 255
x_test <- x_test / 255

y_train <- to_categorical(y_train, 10)
y_test <- to_categorical(y_test, 10)

3.2 The Neural Network

The DNN consists of a sequence of two dense (fully connected) layers. The second layer is a ten-way softmax
layer that returns an array of ten probability scores. Each score represents the probability that the input
image belongs to one of the ten MNIST digit classes.

model <- keras_model_sequential()
model %>%

layer_dense(units = 256, activation = 'relu', input_shape = c(784)) %>%
layer_dropout(rate = 0.4) %>%
layer_dense(units = 128, activation = 'relu') %>%
layer_dropout(rate = 0.3) %>%
layer_dense(units = 10, activation = 'softmax')

Finally, (i) the loss function, which determines how the DNN good a prediction is based on the training data,
(ii) the optimizer, i.e., the update mechanism of the network, which adjusts the weights using backpropagation,
and (iii) the metrics, which monitor the progress during training and testing, are specified using the compile
function from Keras.

model %>% compile(
loss = 'categorical_crossentropy',
optimizer = optimizer_rmsprop(lr = 0.01),
metrics = c('accuracy')

)

The DNN training can be started as follows (using Kera’s fit function).

history <- model %>% keras::fit(
x_train, y_train,
batch_size = 128,
epochs = 20,
verbose = 0,
validation_split = 0.2

)

Figure 3 shows the quantities that are being displayed during training:

(i) the loss of the network over the training and validation data, ψ(train) and ψ(val), respectively, and

(ii) the accuracy of the network over the training and validation data, f (train)
acc and f (val)

acc , respectively.

This figure illustrates that an accuracy greater than 95 percent on the training data can be reached quickly.
Finally, using Kera’s evaluate function, the DNN model performance can be checked on X(test).
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Figure 3: Training and validation data. Loss and accuracy plotted against epochs.

score <- model %>% evaluate(
x_test, y_test,
verbose = 0

)
cat('Test loss:', score[[1]], '\n')
cat('Test accuracy:', score[[2]], '\n')

Test loss: 0.2828377
Test accuracy: 0.9638

The relationship between ψ(train), ψ(val), and ψ(test)as well as between f
(train)
acc , f (val)

acc , and f
(test)
acc can be

analyzed with SPOT.
Running the DNN model as a standalone process before starting the tuning process is strongly recommended.
As shown in this section, the default DNN model seems to work fine.

3.3 Interfacing tfruns from SPOT

After testing the model as a standalone implementation, the model can be combined with the SPOT framework.
A wrapper function is used to connect tfruns to the SPOT tuner. The setup requires a few lines of R code
only. Instead of two hyperparameters, var1 and var2, that are passed to TF as shown in the following code
example, an arbitrary amount of hyperparameters can be passed.

funTfrunsSingle <- function(x) {
runs <- tuning_run("kerasModel.R",

flags = list(var1 = x[1], var2 = x[2]),
confirm = FALSE)

runs$metric_val_loss[[1]]
}
funTfruns <- wrapFunction(funTfrunsSingle)
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Table 3: The hyperparameters and architecture choices for the first DNN example: fully connected networks

Variable Name Hyperparameter Type Default Lower Bound Upper Bound
x1 first layer dropout rate numeric 0.4 1e− 6 1
x2 second layer dropout rate numeric 0.3 1e− 6 1
x3 units per first layer integer 256 16 512
x4 units per second layer integer 128 4 256
x5 learning rate numeric 0.001 0.0001 0.1
x6 training epochs integer 20 5 25
x7 batch size integer 64 8 256
x8 rho numeric 0.9 0.5 0.999

The first line defines the R function funTfrunsSingle() for a single hyperparameter configuration. It calls
the code from the kerasModel.R file, which implements the DNN described in Sec. 3.1.
In order to evaluate several hyperparameter configurations during one single function call, SPOT’s
wrapFunction() is applied to the funTfrunsSingle() function. Note, that SPOT operates on matrix
objects.

3.4 Hyperparameter Tuning with SPOT

The following hyperparameters will be tuned:

x1, x2 the dropout rates. The dropout rates of the first and second layer will be tuned individually.
x3, x4 the number of units, i.e., the number of single outputs from a single layer. The number of units of

the first and second layer will be tuned individually.
x5 the learning rate, which controls how much to change the DNN model in response to the estimated

error each time the model weights are updated.
x6 the number of training epochs, where a training epoch is one forward and backward pass of a complete

data set.
x7 the batch size, and
x8 optimizer_rmsprop() ’s decay factor.

These hyperparameters and their ranges are listed in Table 3. Using these parameter specifications, we are
ready to perform the first SPOT HPT run:

res <- spot(
x = NULL,
fun = funTfruns,

lower <- c(1e-6, 1e-6, 16, 16, 1e-9, 10, 16, 0.5),
upper <- c(0.5, 0.5, 512, 256, 1e-2, 50, 512, 1-1e-3),

control = list(
funEvals = 480,
types = c(

"numeric",
"numeric",
"integer",
"integer",
"numeric",
"integer",
"integer",
"numeric"

)
)

)

The budget is set to n = 480 evaluations (20 times the number of hyperparameters (8), multiplied by the
number of repeats (3)), i.e., the total number of DNN training and testing iterations.
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Figure 4: Internal ‘list‘ structure of the result object ‘res‘ from the SPOT run.
List of 9
$ xbest : num [1, 1:8] 4.67e-01 1.48e-01 4.31e+02 9.20e+01 1.97e-04 ...
$ ybest : num [1, 1] 0.0685
$ x : num [1:480, 1:8] 0.433 0.134 0.339 0.222 0.215 ...
$ y : num [1:480, 1] 0.8908 0.0837 0.1272 0.1418 0.1203 ...
$ logInfo : logi NA
$ count : int 480
$ msg : chr "budget exhausted"
$ modelFit:List of 33
..$ thetaLower : num 1e-04
..$ thetaUpper : num 100
..$ types : chr [1:8] "numeric" "numeric" "integer" "integer" ...
...
..$ min : num 0.0717
..- attr(*, "class")= chr "kriging"

$ ybestVec: num [1:280] 0.0824 0.0824 0.0824 0.0824 0.0824 0.0824 0.0824 0.0824 0.0824 0.0824 ...

SPOT provides several options for adjusting the HPT parameters, e.g., type of the SMBO model and optimizer
as well as the size of the initial design. These parameters can be passed via the spotControl function to
SPOT. For example, instead of the default model, which is BO, a random forest can be chosen. A detailed
description of the SPOT tuning algorithm can be found in Bartz-Beielstein et al. [2021].

4 Results

While discussing the hyperparameter tuning results, HPT does not look the the final, best solution only. For
sure, the hyperparameter practitioner is interested in the best solution. But even from this greedy point
of view, considering the route to the solution can is also of great importance, because analysing this route
enables learning and can be much more efficient in the long run compared to a greedy strategy.
Example 5. Consider a classification task that has to be performed several times in a different context
with similar data. Instead of blindly (automatically) running the HPO procedure individually for each
classification task (which might also require a significant amount of time and resources, even when it is
performed automatically) a few HPT procedures are performed. Insights gained from HPT might help to avoid
pitfalls such as ill specified parameter ranges, too short run times, etc.

In addition to an effective and efficient way to determine the optimal hyperparameters, SPOT provides tools
for learning and understanding.6

The HPT experiment from Sec. 3 used n = 480 DNN evaluations, i.e., SPOT generated a result list (res)
with the information shown in Fig.4.
Plots. First of all, the res list information will be used to visualize the route to the solution: in Fig. 5, loss
function values are plotted against the number of iterations. This figure reveals that some hyperparameter
configurations should be investigated further, because these configurations result in relatively high loss
function values. Using the default hyperparameter configuration results in a loss value of 0.28. The related
hyperparameters values are shown in Table 4.

Table 4: Worse configurations

dropout1 dropout2 units0 units1 lr epochs batchSize rho
red 0.03 0.42 133.00 198.00 0.01 48.00 43.00 0.58

cyan 0.05 0.05 295.00 163.00 0.00 10.00 449.00 0.51

Box plots. Secondly, looking at the relationship between interesting hyperparameter configurations from
this experiment might be insightful: therefore, Fig. 6 visualizes (using box plots) the ranges of the

6Or, as Bartz-Beielstein [2006] wrote: “ [SPOT] provides means for understanding algorithms’ performance (we
will use datascopes similar to microscopes in biology and telescopes in astronomy).”
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Figure 5: Loss function values plotted against the number of iterations. The orange line represents the loss
obtained with the default DNN hyperparameters. The dotted black line represents the best loss value from
the initial design. Initial design points have black boxes. The blue line shows the best function value found
during the tuning procedure. Grey squares represent the values generated during the hyperparameter tuning
procedure. The red square shows one large value, and cyan colored dots indicate worse configurations that
occurred during the tuning procedure. These values should be investigated further. Note: loss values plotted
on a log scale

eight hyperparameters from the complete HPT experiment. Figure 6 shows information about the best
hyperparameter configuration (colored in blue), the worst configuration (red), and the worst configuration
from the tuning phase (cyan).
Regression trees. Thirdly, to analyze effects and interactions between hyperparameters, a simple regression
tree can as shown in Fig. 7 can be used. The regression tree supports the observations, that hyperparameter
values for x1, i.e., the dropout rate (first layer), x5, i.e., the learning rate, and x7, i.e., the batch size are
relevant. To conclude this first analysis, interactions will be visualized. SPOT provides several tools for the
analysis of interactions. Highly recommended is the use of contour plots as shown in Fig. 8.
Figure 8 supports the observations, that hyperparameters x1 and x5 have significant effects on the loss
function.

summary(result$y)

## V1
## Min. :0.06850
## 1st Qu.:0.08563
## Median :0.12405
## Mean :0.25914
## 3rd Qu.:0.21495
## Max. :3.26130

Linear models. Finally, a simple linear regression model can be fitted to the data. Based on the data from
SPOT’s res list, this can be done as follows:
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Figure 6: Eight box plots, i.e., each plot represents the values of one parameter (plotted on a log scale). The
red square represent the worst value, the blue one show the settings of the best value, and the cyan one
show the worst value from the tuning phase.
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Figure 7: Regression tree based on the first run with 600 evaluations. Apparently, hyperparameter values
from x1, x5 and x7 are important. This result supports the previous analysis.
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Figure 8: Surface plot: learning rate x5 plotted against dropout1 x1.

lm.res <- lm(res$y ~ res$x)
summary(lm.res)

##
## Call:
## lm(formula = res$y ~ res$x)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.56771 -0.14752 -0.01971 0.11414 2.13325
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 6.687e-01 1.005e-01 6.653 7.97e-11 ***
## res$x1 -4.783e-01 9.330e-02 -5.126 4.32e-07 ***
## res$x2 2.856e-01 1.007e-01 2.837 0.00475 **
## res$x3 4.506e-04 1.034e-04 4.357 1.62e-05 ***
## res$x4 -1.798e-04 2.181e-04 -0.824 0.41010
## res$x5 4.716e+01 4.353e+00 10.832 < 2e-16 ***
## res$x6 7.589e-03 1.224e-03 6.201 1.23e-09 ***
## res$x7 -8.828e-04 9.885e-05 -8.931 < 2e-16 ***
## res$x8 -6.831e-01 9.154e-02 -7.462 4.14e-13 ***
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
##
## Residual standard error: 0.2763 on 471 degrees of freedom
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## Multiple R-squared: 0.5149, Adjusted R-squared: 0.5066
## F-statistic: 62.49 on 8 and 471 DF, p-value: < 2.2e-16

Although this linear model requires a detailed investigation (a mispecification analysis is necessary) it also
is in accordance with previous observations that hyperparameters x1, x5 and x7 (and in addition to the
previous observations, also x8) have significant effects on the loss function.

5 Discussion and Conclusions

This study briefly explains, how HPT can be used as a datascope for the optimization of DNN hyperparameters.
The results and observations presented in Sec.4 can be stated as hypotheses, e.g.,

(H-1): hyperparameter x1, i.e., the dropout rate, has a significant effect on the loss function. Its values
should larger than zero.

This hypothesis requires further investigations. The results scratch on the surface of the HPT set of tools,
e.g., the role and and impact of noise was not considered. SPOT provides very powerful tools such as OCBA
to handle noisy function evaluations efficiently [Chen et al. 1997] [Bartz-Beielstein et al. 2011].
Furthermore, there seems to be an upper limit for the values of the loss function: no loss function values are
larger than 3.
Considering the research goals stated in Sec. 1, the HPT approach presented in this study provides many
tools and solutions. Wheres in ML and optimization, standard workflows are available, e.g., Cross-Industry
Standard Process for Data Mining (CRISP-DM) and DOE, the situation in DL is different. It might take some
time until a Cross-Industry Standard Process for Deep Learning (CRISP-DL) will be established, because
several, fundamental questions are not fully answered today.
In addition to the research goals (R-1) to (R-8) from Sec. 1, important goals that are specific for HPT in
DNN should be mentioned. We will discuss problem and algorithm designs separately:

Problem Design. The problem design comprehends the set of parameters that related to the problem. In
HPT and HPO, regression or classification tasks are often considered. In our study, the MNIST data
set was chosen.

• Selection of an adequate performance measure: Kedziora et al. [2020] claimed that “research
strands into ML performance evaluation remain arguably disorganised, [. . .]. Typical ML
benchmarks focus on minimising both loss functions and processing times, which do not necessarily
encapsulate the entirety of human requirement.”

• A sound test problem specification is necessary, i.e., train, validation, and test sets should be
clearly specified.

• Initialization (this is similar to the specification of starting points in optimization) procedures
should be made transparent.

• Usage of surrogate benchmarks should be considered (this is similar to the use of CFD simulations
in optimization)

• Repeats (power of the test, severity), i.e., how many runs are feasible or necessary?
• What are meaningful differences (w.r.t. specification of the loss function or accuracy)?
• Remember: scientific relevance is not identical to statistical significance.
• Floor and ceiling effects should be avoided.
• Comparison to baseline (random search, random sampling, mean value . . .) is a must.

Algorithm Design. The algorithm design in HPT and HPO refers to the model, i.e., DNNs. In our study,
the neural network from Sec. 3.2 was chosen.

• A sound algorithm (neural network) specification us required.
• Initialization, pre-training (starting points in optimization). Pre-tuning should be explained.
• Hyperparameter (ranges, types) should be clearly specified.
• Are there any additional (untunable) parameters?
• How is noise (randomness, stochasticity) treated?
• How is reproducibility ensured (and by whom)?
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• Last but not least: open source code and open data should be provided.

To conclude: differences between HPT and HPO were discussed. A HPT approach based on SMBO was
introduced and exemplified. It combines two packages from the statistical programming environment R:
tfruns and SPOT, hence providing a HPT environment that is fully accessible from R.
Although HPT can be performed with R functions, the underlying TF (Keras) and Python environment has
be be installed. This installation is explained in the Appendix.

6 Appendix

6.1 Software Installations

6.1.1 Installing Python

Create and Activate a Python Environment in the Project It is recommended that one Python
virtual environment is used per experiment. Navigate into the project directory by using the following
command:
cd <project-dir>

Create a new virtual environment in a folder called python within the project directory using the following
command:
virtualenv python

The virtualenv can be activated using the following command in a terminal:

source python/bin/activate

To verify that the correct version of Python was activated the following command can be executed in a
terminal:
which python

Install Python packages in the Environment Python packages such as numpy, pandas, matplotlib,
and other packages can be installed in the Python virtualenv by using pip install:
pip install numpy pandas matplotlib tensorflow

Install and Configure reticulate to use the Correct Python Version Install the reticulate package
using the following command in the R console (e.g., from within RStudio):

install.packages("reticulate")

To configure reticulate to point to the Python executable in the virtualenv python from above, create a
file in the project directory called .Rprofile with the following contents:

Sys.setenv(RETICULATE_PYTHON = "python/bin/python")

R (or RStudio) must be restarted for the setting to take effect. To check that reticulate is configured for
the correct version of Python the following command can be used in the R (or RStudio) console:

reticulate::py_config()

6.1.2 Installing Keras

To get started with Keras, the Keras R package, the core Keras library, and a backend tensor engine (such as
TF) must be installed. This can be done as follows from within R (or RStudio):
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install.packages("tensorflow")
install.packages("keras")
library(keras)
install_keras()

This will provide you with a default CPU-based installation of Keras and TF. To install a GPU-based version
of the TF backend engine, the corresponding command reads as follows:

install_keras(tensorflow = "gpu")

6.1.3 Installing SPOT

The following commands can be used to install the most recent version of SPOT and the additional package
Sequential Parameter Optimization Toolbox – Miscelleanous Functions (SPOTMisc) from CRAN:

install.packages("SPOT")
install.packages("SPOTMisc")

Further information about the most recent SPOT versions will be published on https://www.spotseven.
de/spot/.

6.2 The Hyperparameter Optimization Problem

For convenience, we include the definitions of “learning algorithms” and “hyperparameter optimization” from
Bergstra and Bengio [2012]. The objective of a learning algorithm A is to find a function f that minimizes
some expected loss L(x; f) over i.i.d. samples x from a natural (ground truth) distribution Gx.
Definition 1 (Learning algorithm; [Bergstra and Bengio 2012]). A learning algorithm A is a functional that
maps a data set X(train) (a finite set of samples from Gx) to a function f .

A learning algorithm can estimate f through the optimization of a training criterion with respect to a set of
parameters θ. The learning algorithm itself often has hyperparameters λ, and the actual learning algorithm is
the one obtained after choosing λ, which can be denoted Aλ, and f = Aλ(X(train)) for a training set X(train).
Practitioners are interested in a way to choose λ so as to minimize generalization error, which can be defined
as follows.
Definition 2 (Generalization error; [Bergstra and Bengio 2012]).

Ex∼Gx

[
L(x;Aλ(X(train)))

]
. (6)

The computation performed by A itself often involves an inner optimization problem (optimizing the weights
of a NN), which is usually iterative and approximate.
The problem of identifying a good value for hyperparameters λ is called the problem of hyperparameter
optimization. The outer-loop optimization problem, which is of great practical importance in empirical
machine learning work, can be stated as follows:

λ(∗) = arg min
λ∈Λ

Ex∼Gx

[
L
(
x;Aλ(X(train))

)]
. (7)

Definition 3 (Hyperparameter optimization problem; [Bergstra and Bengio 2012]). The hyperparameter
optimization problem can be stated in terms of a hyperparameter response function, ψ ∈ Ψ as follows:

λ(∗) ≈ arg min
λ∈Λ

1
|X(val)|

∑
x∈X(val)

L
(
x;Aλ(X(train))

)
(8)

= arg min
λ∈Λ

ψ(λ) (9)

≈ arg min
{λ(i)}i=1,2,...,S

ψ(λ) = λ̂. (10)

We can define HPO as a minimization problem:
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Definition 4 (Hyperparameter optimization; [Bergstra and Bengio 2012]). Hyperparameter optimization is
the minimization of

ψ(λ) over λ ∈ Λ. (11)
Definition 5 (Hyperparameter surface). Similar to the definition in DOE, the function ψ ∈ Ψ is referred to
as the hyperparameter response surface.

Different data sets, tasks, and learning algorithm families give rise to different sets Λ and functions Ψ.
Knowing in general very little about Ψ or the search space Λ, the dominant strategy for finding a good λ is
to choose some number (S) of trial points {λ(i)}i=1,2,...,S , to evaluate ψ(λ) for each one, and return the λ(i)

that worked the best as λ̃. This strategy is made explicit by Equation 10.
Whereas λ denotes an arbitrarily chosen hyperparameter configuration, important hyperparameter configura-
tions will be labeled as follows: λi is the i-th hyperparameter configuration, λ(?)(t) is the best hyperparameter
configuration at iteration t, and λ(?) is the final best hyperparameter configuration.
Definition 6 (Low effective dimension; [Bergstra and Bengio 2012]). If a function f of two variables could
be approximated by another function of one variable (f(x1, x2) ≈ g(x1)), we could say that f has a low
effective dimension.

Glossary

ADAM ADAptive Moment estimation algorithm.
API Application Programming Interface.
AutoDL Automated Deep Learning.
AutoHAS Automated Hyperparameter and Architecture Search.
AutoML Automated Machine Learning.
AutonoML Autonomous Machine Learning.

BO Bayesian Optimization.
BOHB Bayesian Optimization HyperBand.

CAAI Cognitive Architecture for Artificial Intelligence.
CART Classification and Regression Trees.
CASH Combined Algorithm Selection and Hyperparameter optimization.
CCE Categorical Cross Entropy.
CIFAR-10 Canadian Institute for Advanced Research, 10 classes.
CNN Convolutional Neural Network.
CRAN Comprehensive R Archive Network.
CRISP-DL Cross-Industry Standard Process for Deep Learning.
CRISP-DM Cross-Industry Standard Process for Data Mining.
CV Cross Validation.

DACE Design and Analysis of Computer Experiments.
DeepOBS Deep Learning Optimizer Benchmark Suite.
DL Deep Learning.
DNN Deep Neural Network.
DOE Design of Experiments.

ES Evolution Strategy.

HB Hyperband.
HPO Hyperparameter Optimization.
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HPT Hyperparameter Tuning.

MAE Mean Absolute Error.
ML Machine Learning.
MNIST Modified National Institute of Standards and Technology.
MSE Mean Squared Error.

NADAM Nesterov-accelerated Adaptive Moment Estimation.
NAS Neural Architecture Search.
NN Neural Network.

OCBA Optimal Computing Budget Allocation.

R R software environment for statistical computing and graphics.
RGB Red, Green, and Blue color space.
RMSProp Root Mean Square Propagation.
RNN Recurrent Neural Network.

SMAC Sequential Model-Based Optimization for General Algorithm Configuration.
SMBO Surrogate Model Based Optimization.
SPOT Sequential Parameter Optimization Toolbox.
SPOTMisc Sequential Parameter Optimization Toolbox – Miscelleanous Functions.

TF TensorFlow.
tfruns Training Run Tools for TensorFlow.
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