
MIC2005: The Sixth Metaheuristics International Conference ??-1

Particle Swarm Optimization and Sequential Sampling in
Noisy Environments

Thomas Bartz-Beielstein∗ Daniel Blum∗ Jürgen Branke†

∗Department of Computer Science, University of Dortmund
Joseph-von-Fraunhofer-Straße 20, D-44221 Dortmund, Germany

{thomas.bartz-beielstein,daniel.blum}@udo.edu

†Institute AIFB, University of Karlsruhe
Englerstraße 11, D-76128 Karlsruhe, Germany

branke@aifb.uni-karlsruhe.de

1 Introduction

In many real-world optimization problems, function values can only be estimated but not
determined exactly. Falsely calibrated measurement instruments, inexact scales, scale reading
errors, etc. are typical sources for measurement errors. If the function of interest is the output
from stochastic simulations, then the measurements may be exact, but some of the model
output variables are random variables. The term “noise” will be used in the remainder of this
article to subsume these phenomena.

This article discusses the performance of particle swarm optimization (PSO) algorithms
on functions disturbed by Gaussian noise. It extends the analyses presented in [1] and [2]
by also examining the influence of algorithm parameters, by considering a wider spectrum of
noise levels, and analysing different types of noise (multiplicative and additive). Furthermore,
we integrated a recently developed sequential sampling technique into the particle swarm
optimization method. Similar techniques have been integrated into other metaheuristics [3, 4,
5], but their application to the PSO algorithm is new.

The paper is structured as follows. First, we briefly introduce PSO in Sec. 2. Then, the
effects of noise and sequential sampling techniques are discussed in Sec. 3. Sec. 4 presents
several experimental results, including the effect of parameter tuning, some algorithmic vari-
ants with perfect local and global knowledge, and the integration of sequential sampling. The
paper concludes with a summary and an outlook.

Vienna, Austria, August 22–26, 2005



??-2 MIC2005: The Sixth Metaheuristics International Conference

2 Particle Swarm Optimization

PSO uses a population (swarm) of particles to explore the search space. Each particle repre-
sents a candidate solution of an optimization problem and has an associated position, velocity,
and memory vector. The main part of the PSO algorithm can be described formally as follows:
Let S ⊆ Rn be the n-dimensional search space of a (fitness) function f : S → R to be opti-
mized. Without loss of generality, throughout the rest of this article, optimization problems
will be formulated as minimization problems. Assume a swarm of s particles. The i-th particle
consists of three components. The first one, xi, is its position in the search space, the second
component, vi, describes the velocity, and the third component, p∗i , is its memory, storing the
best position encountered so far. The term p∗g denotes the best position of the whole swarm.
Velocities and positions are updated for each dimension 1 ≤ d ≤ n as follows:

vi(t + 1) = wvi(t)︸ ︷︷ ︸
momentum

+ c1u1i (p∗i (t) − xi(t))︸ ︷︷ ︸
local information

+ c2u2i
(
p∗g(t) − xi(t)

)
︸ ︷︷ ︸

global information

, (1)

xi(t + 1) = xi(t) + vi(t + 1). (2)

Before optimization can be started, several parameters or factors have to be specified. These
so-called exogenous factors will be analyzed in the remainder of this article. Parameters that
are used inside the algorithm are referred to as endogenous. The endogenous factors u1i and
u2i are realizations of uniformly distributed random variables U1i and U2i in the range [0, 1].
The exogenous factors c1 and c2 are weights, which regulate the influence of the local and the
global information. The factor w in the momentum term of Equation 1 is called inertia weight.
It was introduced in [6] to balance the global and local search abilities.

3 How to cope with noise

Noise makes it difficult to compare different solutions and select the better ones. In PSO, noise
affects two operations: In every iteration, (i) each particle has to compare the new solution to
its previous best and retain the better one, and (ii) the overall best solution found so far has to
be determined. Wrong decisions can cause a stagnation of the search process: Over-valuated
candidates—solutions that are only seemingly better—build a barrier around the optimum and
prevent convergence. The function value at this barrier will be referred to as the stagnation
level. Or, even worse, the search process can be misguided: The selection of seemingly good
candidates moves the search away from the optimum. This phenomenon occurs if the noise
level is high and the probability of a correct selection is very small. How strongly the noise
affects the overall performance of PSO is not clear. For example for evolution strategies, it
has been shown that increasing the population size may help the algorithm to cope with the
noise [7]. A comprehensive overview of various evolutionary algorithm variants in the presence
of noise is given in [8]. Thus, one might hope that also PSO can somehow cope with the noise,
and that it is sufficient to adjust its parameters.

On the other hand, one may attempt to reduce the effect of noise explicitly. The simplest
way to do so is to sample a solution’s function value n times, and use the average as estimate
for the true expected function value. This reduces the standard deviation of the noise by a
factor of

√
n, while increasing the running time by a factor of n.

Vienna, Austria, August 22–26, 2005



MIC2005: The Sixth Metaheuristics International Conference ??-3

More sophisticated sampling approaches include the information about variances and the
desired probability of a correct selection and adapt the number of samples according to this
information. Two-stage procedures use the first stage is used to estimate variances. In the sec-
ond stage an additional amount of samples is drawn for each candidate solution, each amount
depending on the variance and the overall required probability of correct selection. Sequential
procedures allow even more than two stages. We consider procedures that assign a fixed total
number of samples to candidate solutions, but sequentially decide how to allocate the samples
on the different candidate solutions. Such methods use either an elimination mechanism to
reduce the number of alternatives considered for sampling, or they assign additional samples
only to the most promising alternatives. The intuition is to use all available information as
soon as possible to adjust the further process in a promising way. A recently suggested sequen-
tial approach is the optimal computing budget allocation (OCBA) [9]. The aim of this method
is to find the best within a set of candidate solutions and to select it with a high probability.
The OCBA variant we are using here is a closed procedure and can be used for unknown and
unequal variances. It draws samples sequentially until the computational budget is exhausted
while adjusting the selection of samples to maximize the probability of a correct selection.

4 Experiments

Sequential parameter optimization (SPO) is an algorithmical procedure to adjust the exoge-
nous parameters of an algorithm, the so-called algorithm design, and to determine good tuned
parameter settings for optimization algorithms [10]. It combines methods from computational
statistics, design and analysis of computer experiments (DACE), and exploratory data analysis
to improve the algorithm’s performance and to understand why an algorithm performs poorly
or well. SPO provides a means for reasonably fair comparisons between algorithms, allowing
each algorithm the same effort and mechanism to tune parameters.

In our experiments, we use the 10-dimensional sphere (y =
∑10

i x2
i ) as test problem, because

in this unimodal environment, the algorithm can easily find the optimum, and if it does not,
this can be directly attributed to the noise. We consider additive (ỹ = y+ϵ) and multiplicative
(ỹ = y(1 + ϵ)) noise, where ϵ denotes a normally distributed random variable with mean zero
and standard deviation σ. A broad range of noise levels σ was used to analyze the behavior of
the algorithms and to detect the highest noise level PSO was able to cope with. For example,
the experiments with additive noise used σ values from the interval [10−4, 102].

The best function value found after 10,000 function evaluations was used as a performance
measure, because (i) a fixed number of evaluations is a quite fair and comparable criterion,
as it does not depend on programming skills, hardware, etc., and (ii) many real-world opti-
mization problems require simulation runs that are computationally expensive compared to
the computational effort of the optimization algorithm itself.

4.1 Global versus local certainty

As described above, noise can affect PSO in two steps: when each particle chooses its local
best, and when the global best is determined. In order to find out which of the two steps is

Vienna, Austria, August 22–26, 2005



??-4 MIC2005: The Sixth Metaheuristics International Conference

more critical for algorithm performance, we made a preliminary study with two special variants
of the PSO algorithm.

Variant PSOpc was given the correct information whenever a particle decided between its
new position and the old personal best. This variant was able to find significantly better
results than the variant PSOdefault. Moreover, it did not stagnate at certain fitness levels and
showed a progress during the whole optimization process. Similar results were observed for
the multiplicative noise. The search was not misguided by the noise and for all noise levels
the solutions obtained were better than the initial point.

Variant PSOgc was provided with the information which of the particles’ presumed best
was the true best, i.e., it could correctly select the global best from all the presumed local best.
In the presence of additive noise the variant could find better solutions than the PSOdefault,
but the optimization stagnated and could not converge to the minimum. Experiments with
multiplicative noise also showed an improvement compared to PSOdefault, but again the basic
problem remained: the search was misled.

Overall, in our experiments with additive and multiplicative noise models, PSOpc showed
clearly superior performance compared to the PSOgc variant. However, we have to keep in
mind that variant PSOpc received in each iteration the knowledge for a number of decisions,
which was equal to the swarm size. In contrast variant PSOgc could decide once per iteration
correctly. Furthermore, PSOgc could potentially loose the true global best, namely when the
decision on the first level was wrong. This could not happen with PSOpc.

4.2 Parameter tuning vs. multiple evaluations

Now let us examine whether parameter tuning is sufficient for PSO to cope with the noise,
or whether multiple evaluations are necessary. Results are summarized in Tab. 1. Thereby,
the PSOrep variant uses a fixed number of repeated function evaluations (5 in the default
setting, and this parameter is optimized by SPO as well). As can be seen, while parameter
tuning improves the final solution quality for the single-evaluation and multiple-evaluation case,
better results can be obtained when allowing multiple evaluations rather than only optimizing
parameters and letting the algorithm cope with the noise.

4.3 Integrating OCBA into PSO

We examine how PSO can benefit from integrating a sequential sampling procedure like OCBA
(see Sec. 3). The variant PSOOCBA uses the OCBA procedure to search for the swarm’s global
best among the set of positions considered in the iteration (i.e. all new positions and all local
best). With the design of the PSOOCBA algorithm, we aim at two objectives: (i) an increased
probability to select the swarm’s global best correctly, (ii) an increased probability to select
the particles’ personal bests correctly (as a byproduct of the repeated function evaluations
of candidate positions by the OCBA method). In accordance with the OCBA technique, the
position with the resulting lowest mean of the function values is selected as the swarm’s global
best. The new personal bests of the particles result from the comparison between the function
value means of their old personal best and new positions. All function evaluations made for

Vienna, Austria, August 22–26, 2005



MIC2005: The Sixth Metaheuristics International Conference ??-5

Parameter settings

Algorithm Default SPO

PSOstandard 9.08 ± 0.43 6.94 ± 0.30

PSOrep 7.59 ± 0.35 4.99 ± 0.27

PSOOCBA 6.81 ± 0.67 1.98 ± 0.11

Table 1: Comparison of the standard al-
gorithm (standard), a variant with multiple
evaluations (rep) and the new variant with
integrated OCBA (OCBA). Each variant has
been tested with default (default) and opti-
mized (SPO) parameter settings. Results ±
standard error for the sphere with additive
noise (σ = 10).

the new personal best position are stored for re-use in the next generation.

The results in Tab. 1 indicate that variant PSOOCBA with an improved algorithm de-
sign generated by SPO significantly outperformed the other algorithm variants optimizing
the Sphere function disturbed by additive noise. OCBA enables the algorithm to distinguish
smaller function value differences than the other variants. This seems obvious with respect
to PSOdefault, as it has no noise reduction mechanism, but also performs better than PSOrep.
The PSOOCBA could evaluate more candidate solutions than the other two variants, because it
needed less evaluations per position and was able to reach the lowest stagnation level. OCBA’s
flexible assignment of samples seemed to be an advantage in the selection process. Further-
more, as OCBA allocates more samples to promising solutions, and these are more likely to
survive to the next iteration, the total number of function evaluations used for decisions in
one iteration (new and preserved) is higher for the OCBA variant than if each position had
received the same amount of function evaluations. In fact, in our experiments we observed
this number to be about twice as high, allowing more accurate decisions.

Additionally to the experimental results presented so far, other heuristics have been ana-
lyzed, too. We have observed a much faster progress of a two-membered evolution strategy
((1+1)-ES) on the Sphere function during the first phase of the optimization. Nevertheless,
the algorithm encountered the same problem as the PSO: the stagnation on a certain level.
Having tuned the parameters of both algorithms using SPO, we observed that the (1+1)-ES
stagnated on a higher fitness level than the PSO.

5 Summary and outlook

We have examined the influence of noise on the performance of PSO, and compared several
algorithmic variants with default and tuned parameters. Based on our results, we make the
following conclusions: (i) Parameter tuning alone cannot eliminate the influence of noise. (ii)
Sequential selection procedures such as OCBA can significantly improve the performance of
particle swarm optimization in noisy environments. Local information plays an important role
in this selection process and cannot be omitted.

Why did sequential selection methods improve the algorithm’s performance? First, the
selection of the swarm’s best of one iteration was correct with a higher probability compared
to reevaluation approaches. Second, as more samples were drawn for promising positions,
positions that remained and reached the next iteration were likely to have received more
samples than the average. Samples accumulated and led to a greater sample base for each
iteration’s decisions. These two advantages might be transferable to other population-based
search heuristics, in which individuals can survive several generations. Summarizing, we can

Vienna, Austria, August 22–26, 2005



??-6 MIC2005: The Sixth Metaheuristics International Conference

conclude that it was not sufficient to only tune the algorithm design (e.g. applying SPO),
or to only integrate an advanced sequential selection procedure (e.g. OCBA). The highest
performance improvement was caused by the combination of SPO and OCBA. However, our
experiments were restricted to artificial test functions only. The application of the PSOOCBA

variant to real-world problems will be the next step. In such problems, the noise might not
be normally distributed. First experiments, which analyzed the applicability of OCBA to an
elevator group control problem proposed in [10] produced promising results. Furthermore, it
might be interesting to include other sequential sampling techniques, e.g. sequential selection
with memory as proposed in [11], in our investigations.

References

[1] K. E. Parsopoulos and M. N. Vrahatis, “Particle swarm optimizer in noisy and continu-
ously changing environments,” in Artificial Intelligence and Soft Computing, M. Hamza,
Ed. IASTED/ACTA Press, 2001, pp. 289–294.

[2] T. Krink, B. Filipic, G. B. Fogel, and R. Thomsen, “Noisy optimization problems - a
particular challenge for differential evolution?” in Proceedings of the 2004 IEEE Congress
on Evolutionary Computation. Portland, Oregon: IEEE Press, 20-23 June 2004, pp.
332–339.

[3] G. Rudolph, “Reflections on bandit problems and selection methods in uncertain environ-
ments,” in Proc. Seventh Int’l Conf. Genetic Algorithms (ICGA’97), East Lansing MI,
T. Bäck, Ed. San Francisco CA: Morgan Kaufmann, 1997, pp. 166–173.

[4] T. Bartz-Beielstein and S. Markon, “Tuning search algorithms for real-world applications:
A regression tree based approach,” in Proc. 2004 Congress on Evolutionary Computation
(CEC’04), Portland OR, G. W. Greenwood, Ed., vol. 1. Piscataway NJ: IEEE Press,
2004, pp. 1111–1118.

[5] J. Branke and C. Schmidt, “Sequential sampling in noisy environments,” in Parallel Prob-
lem Solving from Nature, ser. LNCS. Springer, 2004.

[6] Y. Shi and R. Eberhart, “Parameter selection in particle swarm optimization,” in Evolu-
tionary Programming, V. Porto, N. Saravanan, D. Waagen, and A. Eiben, Eds. Springer,
1998, vol. VII, pp. 591–600.

[7] H.-G. Beyer, The Theory of Evolution Strategies. Springer, Heidelberg, 2001.

[8] Y. Jin and J. Branke, “Evolutionary optimization in uncertain environments—a survey,”
IEEE Transactions on Evolutionary Computation, 2005.

[9] J. Chen, C. Chen, and D. Kelton, “Optimal computing budget allocation
of indifference-zone-selection procedures,” 2005, working paper, taken from
http://www.cba.uc.edu/faculty/keltonwd/, Jan. 2005.

[10] T. Bartz-Beielstein, “New experimentalism applied to evolutionary computation,” Ph.D.
dissertation, University of Dortmund, April 2005.

[11] S.-H. Kim and B. L. Nelson, “A fully sequential procedure for indifference-zone selection
in simulation,” ACM Trans. Model. Comput. Simul., vol. 11, no. 3, pp. 251–273, 2001.

Vienna, Austria, August 22–26, 2005


