Evolutionary Algorithms for the
Optimization of Simulation Models Using PVM

Thomas Back, Thomas Beielstein, Boris Naujoks
Informatik Centrum Dortmund
Joseph-von-Fraunhofer-Strafle 20

D—44227 Dortmund

Jochen Heistermann
ZFE T SN 44
Siemens AG

D-81730 Munchen

June 14, 1995

Abstract

Simulation models usually share some specific char-
acteristics that make the automatic optimization of
their input parameters an extremely difficult task.
Evolutionary algorithms — search and optimization
methods gleaned from the model of organic evolu-
tion — are applicable to this problem and known
to be able to yield good solutions for many diffi-
cult practical optimization problems. The paper
presents a parallel, steady-state evolutionary al-
gorithm which exploits the available parallel ma-
chine configuration in an optimal manner. The al-
gorithm is implemented under PVM and runs in a
LAN of SUN SPARC workstations. The basic al-
gorithm is applicable to arbitrary simulation mod-
els, and only the individual structure and the ge-
netic operators must be specified for a particular ap-
plication. As an application example, the problem
of optimizing pressurized water reactor core reload
designs 1s briefly discussed and first experimental
results are presented.

1 Simulation Models

Presently, many computer models of technical and
natural systems of high complexity exist and al-
low for a simulation of the dynamics of these sys-
tems. Generally speaking, such simulation models
are conceivable as a kind of “black box” that re-
ceives a vector ¥ = (x1, ..., L,) of input parameters
and delivers some output . The output can only
be determined by performing such a simulation ex-
periment, 1.e., no analytical knowledge about the
input-output mapping is available.

Usually, simulation models are used in the man-
ner of “what happens, if 77 questions by varying the

input parameters by hand and assessing the result-
ing output behaviour. In principle, however, the
more important goal is to optimize the input para-
meters of the simulation model such that a certain
criterion for the model output is maximized or min-
imized, i.e., the simulation model is interpreted as
an objective function f: M — R, mapping the in-
put # € M C My x...x M, into a real-valued quant-
ity (notice that, in order to obtain a scalar quant-
ity, the output vector i of the simulation model has
to undergo some appropriate mapping — both the
simulation model and this mapping are combined
here into the function f).

The resulting problem to optimize the function
f:

f(Z) — min (1)
(the maximization problem is equivalent), i.e., to
find a vector &* € M such that f* = f(z*) < f(¥)
for all # € M, is called the global optimization
problem and is in most cases practically unsolvable.
Nevertheless, even if practical processes might be
improved only slightly by performing a computer
aided optimization of the corresponding simulation
model, the improvement can be valuable and easily
overcompensate the resources invested.

So far, however, an optimization of simulation
modelsis rarely attempted, because the correspond-
ing objective functions are characterized by a num-
ber of properties that increase the complexity of the
problem even further:

1. No analytical information about derivatives of
f 1s available.

2. The objective function is multimodal.

3. An optimum f* might be sensitive with respect
to small changes of the input parameter values,



such that a technical realization of an optimum
might be impossible.

4. The optimum point #* might vary over time.

5. Usually, the set of feasible solutions (defined by
additional constraints) is only a subset of M.

6. The objective function is usually subject to
stochastic perturbations.

7. A single evaluation of the objective function (a
run of the simulation model) is costly regard-
ing CPU-time and possibly other hardware re-
sources.

Especially property (7) normally restricts the
number of possible experiments to a few dozens.

For these reasons, traditional optimization meth-
ods are not well suited for the optimization of sim-
ulation models or fail completely. This was demon-
strated by Schwefel (1979, 1995), who performed
extensive comparisons of the most popular optim-
ization methods and ewvolution strategies, a rep-
resentative of the class of evolutionary algorithms.
These algorithms, which are briefly described in the
next section, have many properties that recommend
their application to simulation models.

2 Evolutionary Algorithms

Gleaned from the model of organic evolution, evol-
uttonary algorithms are search and optimization
methods which utilize the basic concepts of Dar-
winian evolution, i.e., a population of individuals
which evolves towards better and better regions
of the search space M by means of (randomized)
processes of selection, mutation, and recombina-
tion. FEach individual represents a search point in
the space of potential solutions to a given prob-
lem, and the objective function value is interpreted
in the sense of a fitness of the corresponding indi-
vidual. The selection operator favors individuals of
higher fitness to reproduce more often than those of
lower fitness, recombination mixes the information
of (usually two) individuals, and mutation intro-
duces innovation into the population.

The common working scheme of evolutionary al-
gorithms is summarized in algorithm 1, where a
high-level pseudocode notation is used for reasons
of clarity and shortness:

Algorithm 1 (General EA)

t:=0;

initialize Py = (dy, . ..

evaluate Py,

while not terminate do
P/ := recombine Py;
P!" := mutate PJ;
evaluate P/';
Piy1 = select (P/'UQ);
t=t+1;

od

aau) e I*;

Initialization of the g individuals of the popula-
tion P, is often performed at random. Notice that
the individual space I might contain more informa-
tion than just the position within the search space
M C I of the underlying problem. During eval-
uation, the objective function value of each mem-
ber of the population is calculated. The main loop
of the algorithm iterates the operations recombin-
ation, mutation, evaluation, and selection until a
termination criterion (in most cases, a maximum
number of function evaluations or CPU-time) is ful-
filled. @ € {0, P;} denotes a set of individuals that
are additionally taken into account by selection. As
a final result, the algorithm usually yields the best
individual which was encountered during the evol-
ution process.

The main representatives of this general evol-
utionary algorithm, genetic algorithms, evolu-
tion strategies, and evolutionary programming (see
(Béack and Schwefel 1993) for a detailed overview
and comparison of these algorithms), have clearly
demonstrated their capability to yield good approx-
imate solutions in case of complicated multimodal,
discontinuous, non-differentiable, and even noisy or
moving response surfaces of optimization problems.
They are well suited to deal with most of the major
difficulties of optimizing simulation models, because
they are direct (derivative-free) methods (1), they
are robust even for noisy (6) or time-varying (4)
functions, have global search capabilities (2), and
a reasonable set of constraint handling techniques
have been developed and successfully applied (5).

A major difficulty, however, is caused by the
need to perform a large number of function eval-
uations to evaluate a population of individuals over
several generations, because this might require a
huge amount of CPU-time. In the next section, we
present a solution to this problem which is based on
the parallel evaluation of objective function values
using PVM in a workstation-LAN.



Master: EA

Slave 1 Slave 2

Figure 1: Master-Slave concept for the parallel eval-
uation of objective function values.

3 The Parallel Evolutionary
Algorithm

Clearly, the most time-consuming part of the evol-
utionary algorithm as outlined in algorithm 1 con-
sists in the evaluation of objective function values,
if simulation models are considered for optimiza-
tion. Consequently, a parallelization on the level of
objective function evaluations is necessary, and we
decided to evaluate one objective function value per
available workstation at the same time. The appro-
priate parallelization model uses a simple master-
slave approach as shown in figure 1.

Each of the slaves receives a parameter vector
Z; (representing an individual of the evolutionary
algorithm) from the master, performs a run of the
simulation model with these input parameters, and
returns the result f(#;) of the run to the master.

It is important to notice that the time required
for the evaluation of objective function values is dif-
ferent, because of heterogenous hardware resources
and workloads in a local area network and input-
depending running times of the simulation models.
Therefore, 1n order to prevent idle times of the avail-
able machines, a generational synchronization is not
appropriate. Instead, a so-called steady-state selec-
tion scheme (Whitley 1989) is utilized, which allows
an asynchronous update of the population when an
objective function value is received: If a newly cre-
ated (by means of recombination and mutation) in-
dividual performs better than the worst individual
of the population, it substitutes the worst one. This
kind of replacement of the worst is called a (u+1)-
selection in evolution strategy terminology (Béck,
Hoffmeister, and Schwefel 1991).

Immediately after selection, the parallel evolu-

tionary algorithm creates a new offspring individual
and sends it to the free slave machine for evaluation,
such that the slave’s idle time 1s minimal. In the fol-
lowing formulation of the parallel evolutionary al-
gorithm, a high-level pseudocode description is used
for reasons of clarity and shortness — the imple-
mentation of this basic algorithm using PVM prim-
itives follows the master-slave approach outlined in
(Geist, Beguelin, Dongarra, Jiang, Manchek, and
Sunderam 1994):

Algorithm 2 (Parallel EA)

inttialize P := (&1,...,%,);
{ evaluate initial population }
fori=1to? do

send ¥; — S,
fori=74+1topudo

recetve (Z, f(Z)) — Sy;

send &y — Sy;
od
{ main recombine-mutate-select loop }
while (i < éyax) do

recetve (Z, f(Z)) — Sy;

select: if F(&) < f(Zworst)

then Zyorst .= T,
where f(fworst) =
max{ (7)) | # € P}

recombine: ¥ := r(P);

mutate: &' := m(¥');

send ¥ — S,;

1=+ 1;
od
{ collect missing slave results }
fori=1to? do

recetve (Z, f(Z)) — Sy;

select;
od

return Ty,

{ as above }

Here, 7 denotes the number of available slave
machines, and v € {1,...,7} indicates the index
of an arbitrary slave that has finished its compu-
tation and returns an individuals’ function value.
The first two for-loops of the algorithm perform the
evaluation of the randomly initialized population P.
The main loop continuously receives a result from
an arbitrary slave S, , performs selection and even-
tually substitutes the worst population member by
the individual evaluated by slave S, . Finally, a new
individual Z" is produced by recombination and
mutation and sent to slave S, for evaluation. After
termination of the main loop, the 7 final objective



function values are collected, and the algorithm re-
turns the best individual ever encountered during
the search (notice that, using (p+1)-selection, this
is identical with the best individual that occurs in
the actual population).

Like in evolution strategies, recombination is al-
ways performed for the creation of a new individual,
and the parent individuals are chosen at random
from the actual population. Recombination creates
one new individual (a second one, often also ob-
tained as a by-product, is discarded), which is then
mutated and evaluated.

Notice that the algorithm described so far rep-
resents a general evolutionary heuristic. For spe-
cific application problems, the structure of the in-
dividual space I and the specific instances of the
genetic operators recombination and mutation (as
well as other topics such as constraint handling and
the consideration of heuristic knowledge) have to be
elaborated. In the next section, we present a brief
overview of an application to a practical problem.

4 An Application Example

Our current application of algorithm 2 is the op-
timization of pressurized water reactor (PWR) core
reload designs, where the task is to identify the ar-
rangement of fresh and partially burnt fuel within
the core such that the reactor’s performance over
the next burning cycle is optimized. The work on
this application problem is performed in coopera-
tion with Siemens AG Munich, and KWU Erlan-
gen.

A core contains 193 fuel assemblies, which are ar-
ranged with quarter core symmetry. Consequently,
only the arrangement of 48 (the center element is
not exchanged) fuel assemblies (where assemblies
are identified by integer numbers) and the cor-
responding assembly orientations (an integer o €
{0,—1, =2, =3} for each assembly) have to be con-
sidered. The 48 fuel assemblies are chosen out of a
total of 69 available assemblies (21 assemblies are
kept in a storage), and an individual of the evolu-
tionary algorithm consists of 48 integer values desig-
nating the fuel assemblies and their 48 correspond-
ing orientation values.

The evaluation of the objective function value
is performed by a simulation software that was
provided by our industrial project partner. It has
some very strong requirements for the available
hardware configuration:

e A single run needs 90 sec. CPU-time on a SUN

SPARC 10 machine.
e The simulator requires 28 MB RAM.

e 50 MB of temporary data are written to the
harddisk for each simulation run.

For these reasons, up to now only 4 machines
in our LAN are suitable for evaluating individu-
als. Nevertheless, this configuration allows to ob-
tain about 3840 function values per day, which is
a reasonable number to run the evolutionary al-
gorithm.

For the preliminary experiments performed so
far, we decided to use Goldberg’s order crossover
(see (Goldberg 1989), p. 174) as recombination op-
erator. Mutation simply exchanges two randomly
chosen fuel assemblies and mutates orientation val-
ues at random with small probability. A popula-
tion size of 15 individuals s chosen as a compromise
between genotypic diversity and selective pressure.

A typical minimization run where the quality of
the best individual of the population is plotted over
the number of function evaluations is shown in fig-
ure 2.

5.5

o
o

-~
w

Objective function value

4.0 . I . I .
0 2000 4000
Number of function evaluations

6000

Figure 2: Plot of the objective function value of the
best population member over the number of func-
tion evaluations performed.

The results of such runs are close to the best
hand-optimized solution of quality 4.14, but did not
improve it so far. However, several promising exten-



sions of the evolutionary algorithm are still under
development:

e Operators are developed which take into ac-
count existing problem knowledge, especially
regarding symmetry assumptions.

e Heuristic knowledge of experts is incorporated
into the genetic operators and constraint hand-
ling mechanisms. The results obtained by
(Poon and Parks 1992) with a so-called heur-
istic copy and match crossover operator seem
to demonstrate that this is a promising ap-
proach.

e Better constraint handling techniques are in-
corporated (currently, the algorithm uses a
penalty function method as outlined e.g. by
(Smith and Tate 1993)).

e A number of additional machines are provided
to increase the number of possible function
evaluations by an order of magnitude.

In contrast to previous work on using genetic al-
gorithms (Poon and Parks 1992) or simulated an-
nealing (Kropaczek and Turinsky 1991) for this
problem, the algorithm presented here exploits the
implicit parallelism of evolutionary algorithms in
the most natural way. For simulated annealing,
which represents the state-of-the-art optimization
method for this problem, a parallelization is not
possible at all.

5 Conclusions

The parallel steady-state evolutionary algorithm
presented here is a general approach for the optim-
1zation of simulation models, where the evaluation
of a single objective function value usually requires
a large amount of CPU-time, 1.e., communication
time 1s small compared with computing ttme of the
parallel nodes. Using PVM, the algorithm is scal-
able according to both number and type of the avail-
able machines and can easily exploit growing net-
works of available machines.

A first practical example, the optimization of
pressurized water reactor core reload designs,
demonstrated the usefulness of the approach by
yielding good results even when existing prob-
lem knowledge and expert heuristics were not con-
sidered for the design of the genetic operators
and constraint handling techniques. The core re-
load design problem and other difficult optimization

problems based on the goal to optimize the para-
meters of simulation models are important projects
for further investigation and application of the al-
gorithm presented in this paper.

Acknowledgements

The authors gratefully acknowledge support by
the BMBF-project EVOALG (a cooperation of
Informatik Centrum Dortmund, Siemens AG
Miinchen, and Humboldt-Universitat zu Berlin),
grant 01 IB 403 A. This work was performed in
cooperation with Siemens AG Miunchen and KWU
Erlangen.

References

Back, T., F. Hoffmeister, and H.-P. Schwefel
(1991). A survey of evolution strategies. In R. K.
Belew and L. B. Booker (Eds.), Proceedings of
the 4th International Conference on Genetic Al-
gorithms, pp. 2-9. Morgan Kaufmann Publishers,
San Mateo, CA.

Béck, T. and H.-P. Schwefel (1993). An overview
of evolutionary algorithms for parameter optimiz-
ation. Fvolutionary Computation 1(1), 1-23.

Geist, A., A. Beguelin, J. Dongarra, W. Jiang,
R. Manchek, and V. Sunderam (1994). PVM: Par-
allel Virtual Machine — A User’s Guide and Tu-
torial for Networked Parallel Computing. The MIT
Press, Cambridge, MA.

Goldberg, D. E. (1989). Genetic algorithms in
search, optimization and machine learning. Ad-

dison Wesley, Reading, MA.

Kropaczek, D. J. and P. J. Turinsky (1991). In-
core nuclear fuel management optimization for
pressurized water reactors utilizing simulated an-
nealing. Nuclear Technology 95, 9-32.

Poon, P. W. and G. T. Parks (1992). Optim-
ising PWR reload core designs. In R. Manner
and B. Manderick (Eds.), Parallel Problem Solving
from Nature 2, pp. 371-380. Elsevier, Amsterdam.

Schwefel, H.-P. (1979, March). Direct search for
optimal parameters within simulation models. In
Proc. 12th Annual Stmulation Symposium, Tampa,

Florida/USA, pp. 91-102.

Schwefel, H.-P. (1995). FEwvolution and Optimum
Seeking. Sixth-Generation Computer Technology
Series. Wiley, New York.



Smith, A. E. and D. M. Tate (1993). Genetic op-
timization using a penalty function. In S. Forrest
(Ed.), Proceedings of the 5th International Confer-
ence on Genetic Algorithms, pp. 499-505. Morgan
Kaufmann Publishers, San Mateo, CA.

Whitley, D. (1989). The GENITOR algorithm
and selection pressure: Why rank-based alloca-
tion of reproductive trials is best. In J. D. Schaffer
(Ed.), Proceedings of the 3rd International Confer-
ence on Genetic Algorithms, pp. 116-121. Morgan
Kaufmann Publishers, San Mateo, CA.



